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Manufacturing of AA7075 Aluminum Alloy Composites Reinforced by Nanosized Particles 
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In this work, composite powders of aluminum alloy 7075 (AA7075) reinforced by 2 weight 
percent of nanosized particles of silicon carbide (SiC), titanium nitride (TiN), and zinc oxide (ZnO) 
were produced in a bath of isopropyl alcohol by high energy ball milling during 480 min at 25 ºC, 900 
rpm, and Balls-to-Powder Weight Ratio (BPR) of 20:1. The techniques of X-Ray Diffraction (XRD), 
Laser Diffraction Method (LDM), Scanning Electron Microscopy (SEM), and microanalysis of Energy 
Dispersive Spectroscopy (EDS) were used to characterize the powders as received and processed. Then, 
the composites were hot extruded and characterized by XRD, SEM, and microhardness Vickers (HV). 
The milling process reduces the crystallite and particle size to around 30 nm and 10 µm, respectively. 
After extrusion, a fine microstructure and good consolidation were found for all bars, except for 
AA7075 as received. The ranging microhardness values were from 97 HV to 121 HV.
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1. Introduction
A composite combines two or more different materials to 

obtain a new material with unique characteristics. The type, 
variation, and interaction of reinforcement in the matrix are 
vital in determining the final properties1.

Nanostructured metallic matrix composites usually combine 
the ductility of the metal (matrix) with ceramic particles 
(reinforcements) to enhance the mechanical properties to values 
found in the material of responsibilities2. For example, the 
aluminum alloy matrix can promote characteristic properties 
of high strength stiffness to weight ratio, good formability, 
corrosion resistance, and recycling potential, making it the 
ideal candidate to replace heavier materials like steel or copper 
in other applications. In this context, the aluminum alloy 7075 
matrix can support high-stress structural due to the formation of 
MgZn2 precipitates. At the same time, SiC particle reinforcements 
can promote a significant strength, TiN increases the self-life of 
material, and ZnO improves the substrate coating3-8.

The powder metallurgy route can manufacture nanostructured 
composites using High-Energy Ball Milling (HEBM) technique. 
The process has a significant advantage in grain and particle 
reinforcement because it utilizes high-frequency impacts causing 
severe plastic deformation, cold welding of the particles, and 
repeated fracturing9. HEBM introduces shear bands that contain 

a high-density network of dislocations and other crystallite 
defects that reduces crystallite and particle size and promotes 
changes in morphology before reaching the equilibrium state10-13. 
Special attention is paid to studying the influence of the medium 
on the milling process when developing ball-milling methods. 
Composites milled in a liquid medium can present finer ground 
than achieve dry milling due to how the nanoparticles are 
dispersed in the matrix. Moreover, HEBM in a liquid media 
can increase the contamination of the process and decrease the 
surface energy of particles14-19.

The hot extrusion technique is suitable for consolidating 
powdered material and excluding the sintering step. Usually, 
it requires elevated pressures and temperatures to reach 
desired quality and microstructure. On the other hand, the 
parameters of extrusion, such as the force applied, the billet 
temperature, and the extrusion speed, are primary factors 
influencing the quality of the specimens20. It is an efficient 
route to manufacture aluminum alloy composites reinforced 
with ceramic phases with good densification21,22.

Therefore, this paper focuses on manufacturing AA7075 
metal matrix composite reinforced with nanosized particles 
of SiC, TiN, or ZnO produced by high-energy ball milling 
and hot extrusion. The aim is to evaluate the effects of 
milling in a bath of isopropyl alcohol at room temperature 
and reinforcements on the microstructure before and 
after extrusion and the microhardness of the extruded bars. *e-mail: heronilton.lira@ufrpe.br
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The control of these parameters is fundamental to producing 
a nanostructured composite with better performance.

2. Experimental Procedure

2.1. Manufacturing and characterization of powders
AA7075 powders with 99.7 % purity, supplied by 

Aluminum Powder Corporate, have been used as matrices. 
The initial particle size obtained by LDM was 31.7 µm 
(D50), and the crystallite size measured by XRD was 49 nm. 
According to manufacturer, the chemical composition in 
weight percentual is in Table 1.

Three nanometric powders have been used as reinforcements. 
The nanoparticle sizes ware informed by the manufacturers: 
SiC, with a D50 of 50 nm (supplied by Iolitec GMBH), 
TiN, with a D50 of 20 nm (supplied by Iolitec GMBH); and 
ZnO, with a D50 of 100 nm (supplied by Sigma – Aldrich 
Corporate).

For each batch, 50 g of nanocrystalline powders AA7075 
alloy was put in stainless steel attritor mill developed by 
the UFPE, equipped with a K-type thermocouple and a 
temperature controller. In all cases, milling was carried out 
for 480 minutes at 900 rpm, with a 20:1 ball-to-powder 
weight ratio (BPR) using 6.4 mm stainless steel balls 100C6 
(1 %C, 1.5 %Cr), 1 wt% of zinc stearate (C36H70O4Zn) 
as process control agent (PCA), a bath of 100 ml isopropyl 
alcohol (C3H7OH – 99.82 %) as liquid media milling, and 
the process temperature (25 ºC) maintained via a water 
refrigerated jacket, around the attritor mill23.

The reinforcements have the same concentration of 2 wt% 
for comparative purposes. This final percentage follows 
a previous work developed using TiC demonstrating that 
crystallite size diminished as reinforcement concentration 
increased from 0.5 to 2 wt%24.

After milling, all the samples were dried at 100 ºC to 
evaporate the alcohol completely25. Then, the crystallite size, 
particle size, and morphology were analyzed.

XRD (Shimadzu XRD - 7000) investigated the crystallite 
size in the 2-Theta range from 5º - 120º with a scan rate of 
0.02 º/s at 40 kV and 30 mA. The linear regression of the 
Williamson – Hall plot equation26,27 (Equation 1) was used 
to calculate the crystallite size and the contribution of micro 
deformation to the Full Width at Half Maximum (FWHM) of 
the four principal peaks of aluminum for a confidence factor 
of more than 92 percent. The experiment did not consider 
the instrument’s effect on crystallite size comparatively.

/ 4  FWHM k Lcos tagλ θ ε θ= +    (1)

Where “FWHM” is the full width at half maximum in radians; 
“k” is a constant (0.94); “λ” is the wavelength of the x-rays 
(15.4nm); “L” is the average crystallite size; “θ” is the Bragg 
angle, and “ε” is the micro deformation measured.

Laser Diffraction Method, LDM (Malvern Mastersizer 
2000) determined the particle size. The sample was suspended 
in alcohol or water and agitated by ultrasound28,29.

SEM - Hitachi TM 3000 operating at 20 kV, equipped with 
an EDX probe, analyzed the morphology and composition 
of the particles.

2.2. Hot extrusion consolidation and extruded bars 
characterization

All the composite powders were cold compressed as billets 
at the force of 35 kN during 120 s and compression speed 
of 1 kN/s. The billets were placed in a mold equipped with 
resistors to 450 ºC. The billets were extruded in a relation of 
25:1 at a speed of 1 mm/s to obtain bars of 5 mm diameter30-33 
(Figures 1-3). Furthermore, boron nitride (BN) was used as a 
solid lubricant due to its chemical inertness, high-temperature 
stability (1000 ºC), good thermal conductivity, and electrical 
insulation to avoid sticking during extrusion34.

XRD, SEM, and Vickers microhardness characterized 
the extruded bars. Shimadzu HMV-2 durometer (HV 0.05) 
performed the microhardness according to ASTM E-38435. 
XDR and SEM equipment were the same as those used for 
powder characterization.

3. Results and Discussion

3.1. Characterization of AA 7075 non-reinforced 
and reinforced composite powders

All the results are presented to compare the AA7075 powders 
received, milled, and alloyed milled with the different types 
of nano-reinforcements (composite powders). Table 2 shows 
crystallite and particle sizes, Figure 4 shows the diffractograms, 
and Figure 5 presents the particle size distribution.

After gridding, the diffraction peaks became broader 
and minor. The crystallite size decreased from 49nm to 
around 30nm, even without any reinforcement, because 
of the cold-welding phenomenon and repeated fractures36. 
Besides that, the medium particle size decreased from D50 of 
31.7 µm to around 10 µm, and micro deformation increased 
from 0.02 percent to around 0.12 percent.

Table 1. Values of chemical composition of AA7075 powders.

Weight (%)
Material Si (max) Fe (max) Cu Mn (max) Mg Cr Zn Ti (max) Al
AA7075 0.4 0.5 1.2-2.0 0.3 2.1-2.9 0.18- 28 5.1-6.1 0.2 Balance

Figure 1. Cold compressed billet before extrusion.
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Figure 2. a) Extrusion mold equipped with resistors; b) Mold placed in a compression machine.

Figure 3. Example of the bar extruded.

Figure 4. Diffractograms of AA7075 As received, Milled, Milled 
with 2 wt% SiC, TiN, and ZnO nano-reinforcements.

Figure 5. Particle size distribution of AA7075: As received, Milled, 
Milled with 2 wt% SiC, TiN, and ZnO nano-reinforcements.

The process observes similar values among AA7075 
milled, AA7075 plus 2wt% of TiN or ZnO. The crystallite 
and particle size values for the sample AA7075 plus 2 wt% of 
SiC were superior because of less micro deformation found.

The SEM (Figures 6-9) shows an almost spherical 
morphology for the as-received powders from the gas-atomized 

Table 2. Values of crystallite, micro deformation, and particle size AA7075 (25 ºC, 480 min, 900 rpm, 20:1 BPR): As received, milled, 
reinforced with 2 wt%  SiC, TiN, and ZnO (Composites).

Samples Crystallite Size [nm] Micro Deformation [%] Particle Size [µm] Reinforce
AA7075 As received 49 0.02 31.71 No

AA7075 Milled 29 0.12 10.64 No
AA7075 Milled 32 0.10 13.66 2 % SiC
AA7075 Milled 29 0.12 9.25 2 % TiN
AA7075 Milled 30 0.12 10.40 2 % ZnO

manufacturing process. After milling, small rounded and flat 
particles show a quasi-equilibrium state found for all cases.

The milling efficiency depends on the characteristics 
like mechanical parameters applied, the medium used, type, 
and percentage of reinforcements and alloy elements37. Wet 
milling provides relatively small stress and temperature, and 
distributes the reinforcement to the whole system, while the 
energetic conditions (high milling time, rotation speed, and 
BPR) produce the balanced morphology of the particle38,39.

The microanalysis of EDS (Table 3 and Figures 10-14) 
indicates that alcohol liquid promotes the rise of oxygen 
percentual. No contamination from the steel balls and the 
stainless steel attritor mill was detected.
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Figure 6. SEM AA7075 As received at 500x (a); A7075 Milled at 500x(b) and 8000x(c).

Figure 7. SEM AA7075 Milled + 2 % SiC at 500x (a) and 8000x (b).

Figure 8. SEM AA7075 Milled + 2 % TiN at 500x (a) and 8000x (b).

Figure 9. SEM AA7075 Milled + 2 % ZnO at 500x (a) and 8000x (b).
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Figure 10. EDS AA7075 As received.

Figure 11. EDS AA7075 Milled.

Table 3. Microanalyses of EDS AA7075.

Element
As received Milled Milled + 2 % SIC Milled + 2 % TiN Milled + 2 % ZnO

Weight (%) Error Weight (%) Error Weight (%) Error Weight (%) Error Weight (%) Error

Aluminum 89.90 ±3.9 69.90 ±3.9 73.79 ±2.8 65.85 ±2.7 69.88 ±2.8

Oxygen 3.84 ±0.8 23.84 ±0.8 20.57 ±2.8 26.13 ±4.3 23.53 ±3.7

Magnesium 2.30 ±0.1 2.10 ±0.1 2.04 ±0.1 1.82 ±0.1 2.07 ±0.1

Zinc 3.96 ±0.1 3.87 ±0.1 2.51 ±0.1 3.42 ±0.1 4.52 ±0.2

Silicon - - - - 1.09 ±0.1 - - - -

Titanium - - - - - - 0.74 ±0.0 - -

Nitrogen - - - - - - 2.04 ±1.1 - -
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Figure 12. EDS AA7075 Milled + 2 % SiC.

Figure 13. EDS AA7075 Milled + 2 % TiN.

Figure 14. EDS AA7075 Milled + 2 % ZnO.



7Manufacturing of AA7075 Aluminum Alloy Composites Reinforced by Nanosized Particles of SiC, TiN, and 
ZnO by High-Energy Ball Milling and Hot Extrusion

3.2. Characterization of extruded bars
Figure 15 shows the diagram of the relationship between 

the applied force and the displacement of the piston during 
the extrusion of all materials. For the composites and 
powder AA7075 milled, the forces required to extrude the 
bars (800 kN) were more significant than the ones found to 
extrude the powder AA7075 as received (540 kN). However, 
the crystallite decreased after milled, so the microhardness 
increased due to the Hall-Petch effect. The reinforcements 
also give extra resistance to the AA7075 milled powders 
changing the forces to extrude. The TiN reinforcement is the 
one that promotes higher force due probably to an increase 
of the friction between particles by its chemical nature and 
initial size of 20 nm.

Figure 16 shows a significant difference among the 
diffractograms of the specimens extruded compared to 
diffractograms of powders samples AA7075 (Figure 4). The 
bars extruded maintain the same peaks found at the origin 
powders, except for an increase of intensity from the crystallite 
size growth and an amorphous phase indicator at 20 º degrees. 
The amorphous phase reduces the intensity of the diffraction 
peak when compared to the crystalline response due to the 
characteristics applied to the extrusion process (extrusion rate 
of 25:1, temperature of 450 ºC / 2 minutes, extrusion speed 
of 1 mm/s). These parameters provide great frictional forces 
during extrusion and promote less homogeneous structural 
changes40. Specifically, the Al secondary reflections of AA7075 
as received, reduced due to significant changes in the structure 
of the spectrum, suggesting that the portion of alloying elements 
was dissolved in the matrix to form a solid solution. Therefore, 
there is a critical temperature at which grain growth decrease 
due to pre-existing alloy precipitates acting as a barrier in the 
matrix. With the increase in temperature by extrusion, there 
is the dissolution of precipitates considered anchors of the 
grain boundaries41,42.

According to Table 4, crystallite size grows about ninety 
percent of the value found in powders except for the as-
received one. The results indicate that the composite extruded 
bars and the AA7075 milled extruded bar have less thermal 
stability than the bar of AA7075 as-received because the 
crystallite size is inversely proportional to the volumetric 
modulus and an increase in temperature43.

The SEM micrographs (Figure 17) show a fine microstructure 
and good consolidation for all milled extruded bars, except 
for AA7075 as-received. In this case, the bar was deformed 
heterogeneously, and superficial agglomerates formed in 
the extrusion direction due to the thermal stability found.

Figure 15. Force VS Piston displacement for all powders.

Figure 16. Diffractograms of AA7075-based extruded bars.

Table 4. Values of crystallite size for all billets extruded.

Samples Powder Crystallite Size [nm] Billet Extruded Crystallite Size [nm] Relative Percentage [%] Reinforce

AA7075 As received 49 67 36.73 No

AA7075 Milled 29 54 86.20 No

AA7075 Milled + 2 % SiC 32 62 93.75 2 % SiC

AA7075 Milled + 2 % TiN 29 53 82.75 2 % TiN

AA7075 Milled + 2 % ZnO 30 59 96.67 2 % ZnO

Table 5 shows that high-energy ball milling increases 
powders’ microhardness from 21 % to 52 % compared to the 
as-received material. The results suggest the combination of 
two mechanisms related to the microhardness of extruded 
composites: the reduction of crystallite size and the inhibition 
of the movement of dislocations by the dispersion of 
reinforcements originating from the milling process44,45. 
The highest hardness values are related to the smaller 
crystallite sizes obtained after extrusion and the kind of 
reinforcement used.
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4. Conclusions
Powders of AA7075 unreinforced and reinforced by 

nanosized particles of SiC, ZnO, and TiN in 2 wt% were 
produced by high-energy ball milling, and bars were extruded 
with relative success. The results can be resumed as follows:

1. For all samples of milled powders, the crystallite 
and particle sizes achieved values of the same 
magnitude independent of reinforcement, about 
30 nm and 10 µm, respectively.

2. Small rounded and flat particle powders show a 
quasi-equilibrium state achieved, and no contamination 
from the steel balls and the stainless steel attritor 
mill was detected.

3. All extruded bars obtained a fine microstructure 
and good consolidation, except for AA7075 
as-received, which was deformed heterogeneously, 

Table 5. Values of microhardness Vickers for all extruded bars.

Microhardness Vickers

Samples HV 0.05 Increment Percentage 

AA7075 As received (80 ± 2.97)95%p -

AA7075 Milled (120.75 ± 4.03)95%p 50.93 %

AA7075 Milled + 2 % SiC (97.27 ± 2.75)95%p 21.58 %

AA7075 Milled + 2 % TiN (121.60 ± 4.69)95%p 52.00 %

AA7075 Milled + 2 % ZnO (113.17 ± 7.33)95%p 41.46 %

and superficial agglomerates were formed in the 
extrusion direction.

4. The highest hardness values are related to the 
smaller crystallite sizes obtained after extrusion 
and the kind of reinforcement used.
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Figure 17. SEM billets extruded AA7075 (2000x): As received (a); Milled (b); Milled + 2 % SIC (c); Milled + 2 % TiN (d); Milled + 2 % ZnO (e).
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