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Use of artificial intelligence in ophthalmology: 
a narrative review
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INTRODUCTION 
Early diagnosis of eye diseases is of great importance for preventing loss of vision and thereby 
improving the quality of life. However, the teaching of ophthalmology has declined in medi-
cal schools, thus leaving general practitioners with the task and difficulty of identifying ocular 
pathological conditions.

In addition, there is irregular distribution of ophthalmology specialists in many countries, which 
makes it difficult for the population to access adequate eye care.1 Within this scenario, artificial 
intelligence (AI) may offer an alternative that could increase the population’s access to eye care.2,3

Formation of a convolutional layer is the basis of an algorithm. This transforms the input 
data through application of a set of filters to produce a final response (such as the output). Neural 
networks set weights on their own for the filters used during the training process. The filters are 
defined before the training phase but can be optimized during the learning process.

During the learning phase, algorithm performance can be improved. This phase can be 
supervised when data is assigned during training. It can also be unsupervised and, in this case, 
the device creates its own input sample.

The training and development phase of an algorithm is generally divided into training, val-
idation and test data sets. These data sets should not be repeated: hence, an image that is in one 
of the data sets (for example, training) should not be used in any of the other data sets (for exam-
ple, validation). The data set used during the training phase can be made as subsets and can be 
optimized through retro-propagation of the information collected.

The data set used in validation is used for selection of parameters and adjustments, and for 
implementation of training conditions. After the training phase, independent test data is used, 
captured using different devices, from different populations under different clinical contexts.
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ABSTRACT
BACKGROUND: Artificial intelligence (AI) deals with development of algorithms that seek to perceive 
one’s environment and perform actions that maximize one’s chance of successfully reaching one’s prede-
termined goals.
OBJECTIVE: To provide an overview of the basic principles of AI and its main studies in the fields of glau-
coma, retinopathy of prematurity, age-related macular degeneration and diabetic retinopathy. From this 
perspective, the limitations and potential challenges that have accompanied the implementation and 
development of this new technology within ophthalmology are presented. 
DESIGN AND SETTING: Narrative review developed by a research group at the Universidade Federal de 
São Paulo (UNIFESP), São Paulo (SP), Brazil.
METHODS: We searched the literature on the main applications of AI within ophthalmology, using the 
keywords “artificial intelligence”, “diabetic retinopathy”, “macular degeneration age-related”, “glaucoma” and 
“retinopathy of prematurity,” covering the period from January 1, 2007, to May 3, 2021. We used the MED-
LINE database (via PubMed) and the LILACS database (via Virtual Health Library) to identify relevant articles.  
RESULTS: We retrieved 457 references, of which 47 were considered eligible for intensive review and crit-
ical analysis. 
CONCLUSION: Use of technology, as embodied in AI algorithms, is a way of providing an increasingly 
accurate service and enhancing scientific research. This forms a source of complement and innovation in 
relation to the daily skills of ophthalmologists. Thus, AI adds technology to human expertise.
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When examining the performance results from an algorithm, 
it is important to evaluate the methodology and the way in which 
it was developed. For example, an algorithm developed for analysis 
of fundus retinography may perform poorly if applied to a retinal 
photograph with a larger field.4-9

OBJECTIVE
The purpose of this article was to provide an overview of the basic 
principles of AI and its main studies in the fields of glaucoma, 
retinopathy of prematurity, age-related macular degeneration 
and diabetic retinopathy. From this perspective, the limitations 
and potential challenges that have accompanied implementation 
and development of this new technology within ophthalmology 
are presented.

METHODS 
We searched the literature on the main applications of artificial 
intelligence within ophthalmology, using the keywords “artifi-
cial intelligence”, “diabetic retinopathy”, “macular degeneration 
age-related”, “glaucoma” and “retinopathy of prematurity”, cov-
ering the period from January 1, 2007, to May 3, 2021. We used 
the Medical Literature Analysis and Retrieval System Online 
(MEDLINE) database (via PubMed) and the Latin American 
and Caribbean Literature in Health Sciences (Literatura Latino-
Americana e do Caribe em Ciências da Saúde, LILACS) database 
(via Virtual Health Library) to identify relevant articles. 

Through this search, we selected and reviewed articles on the 
potential automated clinical applications of artificial intelligence 
technologies and big data analysis. A summary of the articles 
selected is provided below. The details of the search strategy are 
shown in Table 1.

RESULTS 
From the search in the databases, one clinical trial, four meta-
analyses, four randomized controlled trials, 47 reviews and four 
systematic reviews were identified. After screening the titles and 
abstracts, removing duplicates and screening the citations, 47 

studies were considered eligible for critical analysis. The article 
selection process is detailed in Figure 1. 

Diabetic retinopathy
Diabetes is the leading cause of blindness in adulthood, affecting 
more than 415 million people worldwide.10,11 Recent studies on 
the use of AI for monitoring diabetic retinopathy have demon-
strated that it has high precision for detecting this disease.10,12,13

In 2018, IDx-DR, which is an AI diagnostic system that auton-
omously diagnoses patients with diabetic retinopathy (including 
macular edema), was approved by the United States Food and Drug 
Administration (FDA) for classifying diabetic retinopathy. This was 
the first artificial intelligence device approved by that institution. 

Ting et al.12 evaluated the performance of artificial intelligence 
for screening for diabetic retinopathy, macular degeneration and 
glaucoma, using 494,661 images of the retina. This algorithm 
was then tested externally in 11 multiethnic cohorts. For detect-
ing diabetic retinopathy, its sensitivity was 90.5% and specificity 
was 91.6%. For diabetic retinopathy with the risk of vision loss, 
its sensitivity was 100% and specificity was 91.1%. For macular 
degeneration, its sensitivity was 93.2% and specificity was 88.7%. 
For glaucoma, its sensitivity was 96.4% and specificity was 87.2%.

Tufail et al.10 evaluated automated screening of patients with 
diabetic retinopathy by evaluating systems for automatic detection 
of diabetic retinopathy in comparison with human graders. EyeArt 
had sensitivity of 94.7% for detecting diabetic retinopathy and 93.8% 
for referable retinopathy (maculopathy, proliferative or pre-prolif-
erative diabetic retinopathy). Retmaker had sensitivity of 73% for 
any retinopathy, 85% for referable retinopathy and 97.9% for pro-
liferative retinopathy. AI models were trained to detect microan-
eurysms, retinal hemorrhages and hard or soft exudates. Retmaker 
is a system that has been used for screening diabetic retinopathy.10

Abràmoff et al.14 evaluated an algorithm for automatic detection 
of diabetic retinopathy, with specificity of 59.45% and sensitivity 
of 96.8%. Gulshan et al.15 developed an algorithm for screening 
diabetic retinopathy using 128,175 images of color fundus retinog-
raphy, which had specificity of 90.3% and sensitivity of 98.1%, and 

Table 1. Details of the search strategy
Database Search strategies Papers found
MEDLINE (via PubMed) (“artificial intelligence”) and (“diabetic retinopathy”) 226
MEDLINE (via PubMed) (“artificial intelligence”) and (“macular degeneration age-related”) 53
MEDLINE (via PubMed) (“artificial intelligence”) AND (“glaucoma”) 151
MEDLINE (via PubMed) (“artificial intelligence”) and (“retinopathy of prematurity”) 26
LILACS (via Biblioteca Virtual em Saúde) (“artificial intelligence”) and (“diabetic retinopathy”) 188
LILACS (via Biblioteca Virtual em Saúde) (“artificial intelligence”) and (“macular degeneration age-related”) 90
LILACS (via Biblioteca Virtual em Saúde) (“artificial intelligence”) and (“glaucoma”) 118
LILACS (via Biblioteca Virtual em Saúde) (“artificial intelligence”) and (“retinopathy of prematurity”) 21

LILACS = Latin American and Caribbean Literature in Health Sciences (Literatura Latino-Americana e do Caribe em Ciências da Saúde); MEDLINE = Medical 
Literature Analysis and Retrieval System Online.
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reached an area below the receiver operating characteristic (ROC) 
curve of 0.99 for detecting referable diabetic retinopathy. 

Subsequently, Gulshan et al.16 investigated use of an algorithm 
in 10 primary care centers for six months, which resulted in sen-
sitivity of 87.2% and specificity of 90.8% for detecting clinically 
significant macular edema in at least one eye. This follow-up study 
emphasized the importance of testing an artificial intelligence algo-
rithm in the real world. 

Li et al.13 developed an artificial intelligence-based model for 
detecting diabetic retinopathy based on the color of retinography 

photographs. Its sensitivity was 97.0% and specificity was 91.4%, 
as result of using more than 100,000 images. It reached an area 
below the ROC curve of 0.99 in validation and 0.955 in external 
validation using an independent multiethnic data set.

Gargeya et al.17 published a study in which 75,137 fundus ret-
inography photos from diabetic patients were used to train and 
test an artificial intelligence model. The model had sensitivity of 
94% and specificity of 98%. 

The data should preferably be validated using different camera 
systems and populations. Some diabetic retinopathy assessment 

LILACS = Latin American and Caribbean Literature in Health Sciences (Literatura Latino-Americana e do Caribe em Ciências da Saúde).

Figure 1. Flow diagram of the study selection process.
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systems only evaluate the central 45 degrees, close to the macula, 
and do not assess diabetic retinopathy lesions that may be occur-
ring on the periphery of the patient’s retina.16

Because of the great variation in the reference standards between 
different studies, it is difficult to compare the performance of the 
algorithms. To solve this challenge, algorithms could be tested on 
an independent data set with a single reference standard.

Age-related macular degeneration
Diabetic retinopathy and age-related macular degeneration 
(AMD) are the leading causes of blindness among adults over 
the age of 50 years in the United States. Just like in relation to 
diabetic retinopathy, development of algorithms for diagnosing 
and monitoring AMD has therefore been stimulated. AMD cases 
normally need to be referred to a tertiary-level eye service for 
clinical evaluation by experts.18-20 

Algorithms evaluating color fundus photos 
Ting et al.12 used a database of 72,610 fundus retinography images 
to classify these patients into intermediate and advanced levels of 
macular degeneration, with sensitivity of 93.2% and specificity 
of 88.2%.

Burlina et al.21 classified patients using software developed 
from 130,000 images on 4613 patients and reported that it showed 
91.6% accuracy for identifying moderate and advanced macular 
degeneration. The findings from their study resulted in classifi-
cation of these patients into four stages, ranging from 1 (without 
signs of macular degeneration) to 4 (advanced stage). 

Grassmann et al.22 tested an algorithm using 120,656 fundus 
retinography images from 3,654 patients and reported that it showed 
accuracy of 84.2% for differentiating between early and late macular 
degeneration and 94.3% for identifying healthy individuals. These 
investigators used 13 scales based on the Age-Related Eye Disease 
Study (AREDS), such that stage one showed no signs of degen-
eration of the macula, stages two to nine represented intermedi-
ate disease and stage ten represented the late stage of the disease.

Peng et al.23 evaluated the severity and risk of progression of 
macular degeneration using fundus color photography. The perfor-
mance of the algorithm was compared with that of retinal specialists, 
and it demonstrated accuracy of 0.94 for detecting large drusen, 
0.93 for pigmentary abnormalities and 0.97 for advanced AMD. 

Algorithms evaluating optical coherence tomography 
Bogunovic et al.24 developed a machine learning method for esti-
mating a risk score and biomarkers associated with progres-
sion of macular degeneration in optical coherence tomography 
(OCT) examinations. In addition, Bogunovic et al.25 evaluated an 
algorithm for analyzing OCT images in order to predict the best 
mode of treatment with intravitreal injection. The main predictive 

characteristic found in the latter study was the presence of subreti-
nal fluid in the central 3 mm of the macular OCT image.

Schlegl et al.26 developed an AI model for detecting and quan-
tifying intra and subretinal fluid. This algorithm performed well in 
detecting these lesions in patients with macular degeneration and 
central retinal vein occlusion. The method had accuracy of 0.94 
for detecting intraretinal fluid relating to macular degeneration, 
diabetic macular edema and retinal vein occlusion. The accuracy 
for detecting subretinal fluid was 0.92, with superior performance 
among patients with macular degeneration and retinal vein occlu-
sion, compared with patients with macular edema due to diabetes.27

Venhuizen et al.28 demonstrated the use of AI for classifying 
the severity of macular degeneration, with sensitivity of 98.2% and 
specificity of 91.2%. Using a database of 100,000 OCT B-scans 
(50% from examinations without alteration and 50% from exam-
inations with macular degeneration), Lee et al.29 reported that their 
algorithm showed accuracy of 87.6% with sensitivity of 84.6% and 
specificity of 91.5%. That algorithm was developed using images 
from OCT, diagnoses of macular degeneration provided by a spe-
cialist and worst vision of 20/30 in the better eye.

Thus, the main algorithms that have been developed are useful 
for detecting and segmenting injuries, estimating the risk of pro-
gression to advanced stages or evaluating the risk of conversion 
of dry AMD to an exudative form. 

Glaucoma
Glaucoma is an important cause of loss of vision worldwide. In 
evaluating optic neuropathy, the cup disc needs to be character-
ized: its size and shape can vary between people. However, defin-
ing the cup disc is insufficient for diagnosing glaucoma, due to 
the large anatomical changes of the optic disc. Examination of the 
OCT retinal nerve fiber layer thickness and ganglion cell com-
plex can be used for diagnosing glaucoma. Visual field exami-
nation is inexpensive and can be used to assess functional loss. 
However, the sensitivity and specificity of the diagnosis is lower 
than when a combination of visual field and OCT data is used.

Use of anatomical and functional data together is superior to 
anatomical data in isolation for diagnosing glaucoma. Artificial 
intelligence algorithms can combine these factors to aid in making 
diagnoses. In a study using a database of 125,189 fundus retinog-
raphy images, Ting et al.12 reported that their algorithm had sen-
sitivity of 96.4% and specificity of 87.2% for detecting suspected 
glaucoma, defined as discs with an upper excavation of 0.8 and/
or glaucomatous changes. Li et al.30 evaluated a machine learning 
algorithm for detecting glaucoma based on 48,116 color fundus 
photographs, with sensitivity of 95.6%, specificity of 92% and an 
area under the ROC curve of 0.986. The main cause of false neg-
atives in their study was patients with high myopia. Physiological 
excavation of the optic disc was the most common cause of false 
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positives in their study. A study using deep learning to classify 
suspected glaucoma using OCT examinations was developed to 
differentiate healthy eyes from initial glaucoma.31

Kim et al.32 developed a model based on machine learning 
using three types of records including retinal nerve fiber layer 
thickness, visual field and ophthalmic clinical data. These inves-
tigators reported accuracy of 0.98, sensitivity of 0.983 and spec-
ificity of 0.975. 

Ahn et al.33 developed an algorithm that only required retinog-
raphy data. Use of this limited data resulted in accuracy of 92.2% 
for identifying glaucoma cases. This model may be convenient 
with regard to helping with screening of glaucoma cases. Asaoka 
et al.34 used artificial intelligence to analyze visual fields in patients 
with pre-perimetric open glaucoma and were able to differentiate 
them from patients with healthy eyes, with good accuracy (92.6%).

Using 3242 retinography images from eyes with confirmed glau-
coma, Shibata et al.35 developed a trained and tested algorithm, from 
which they reported an excellent area under the ROC curve, of 0.965. 
This algorithm was trained to detect cup size, optic disc notch, nerve 
fiber layer atrophy, peripapillary atrophy and optic disc hemorrhage.

Masumoto et al.36 used 1,379 retinography images to detect 
glaucoma, and found 80.2% specificity and 81.3% sensitivity. The 
values were higher for severe cases of glaucoma.

Elze et al.37 developed an AI system for identifying patterns 
of glaucomatous and non-glaucomatous visual field (VF) loss. 
Through an analysis on 13,231 reliable Humphrey VFs, they iden-
tified an ideal solution with 17 prototypes of glaucomatous vision 
loss. Algorithms show great difficulty in detecting the early stages 
of glaucoma when patients do not have defects in the visual field. 
Thus, studies using longitudinal data are needed in order to cor-
rectly identify patients who will develop glaucoma.

In patients with severe glaucoma, disease identification by 
means of algorithms usually has better results. However, cau-
tion needs to be exercised due to the great anatomical variability 
of optic nerves in populations, especially among patients with a 
high degree of myopia.

Retinopathy of prematurity
Retinopathy of prematurity (ROP), which has a prevalence of 
6%-18%, is one of the main causes of loss of vision in childhood 
worldwide.38 This disease, in its third epidemic, resulted in irre-
versible blindness in more than 50,000 premature newborns 
because of a shortage of trained specialists.39,40

Experts usually disagree about the clinical classification of ROP. 
In the cryotherapy (CRYO)-ROP study, the second examiner dis-
agreed with the first regarding the diagnosis of threshold disease 
in 12% of the cases.41 Also, in a multicenter telemedicine study on 
diagnosing ROP, almost 25% of the tests did not align with one of 
the three criteria for clinically significant ROP.42

The initial approaches to automated image analysis have been 
based on quantification of vascular tortuosity and vascular dilation. 
These systems were developed and validated for wide-angle RetCam 
images. They were evaluated based on the diagnoses of specialists 
but did not have any application in the real world because they 
are only semi-automated, thus requiring manual identification.43

The initial computational approaches for detecting this patho-
logical condition focused on the vascular tortuosity of retinopathy 
of prematurity-plus (ROP-plus).44 Recent work has suggested other 
possibilities for assessing vessel angles as resources for predictive 
values for this disease, using linear logistic regression models.45

Brown et al. developed and validated a fully automated deep 
learning system called informatics-retinopathy of prematurity 
deep learning (i-ROP DL), using a database of 5,511 retinogra-
phy images obtained by means of a RetCam background camera. 
This enabled diagnosis of three levels of ROP (plus, pre-plus and 
normal), with an area under the ROC curve of 0.98 for a positive 
diagnosis of the disease, in comparison with a reference standard 
defined by specialists. The i-ROP DL system reached specificity 
of 94% and sensitivity of 93% for diagnosing ROP-plus and 94% 
specificity and 100% sensitivity for diagnosing ROP at pre-plus 
or worse levels.46

In an algorithm developed by Redd et al.,47 an area under the 
ROC curve of 0.96 was found for identifying type 1 ROP and 0.91 
for clinically significant ROP.47 Xiao et al. developed an AI pro-
gram that quantified the area of neovascularization in patients 
with ROP.48 The AI program reached a higher range of correla-
tion coefficients than that of specialists, for classification of areas 
with neovascularization. The algorithm works for quantification 
of key values of oxygen-induced retinopathy images, using deep 
learning neural networks. Ataer-Cansizoglu et al. developed an AI 
program with 95% accuracy for analyzing vascularization data.49

Current methods for detecting ROP can distinguish between 
mild and severe cases of ROP but are still unable to identify the 
stage of the disease.50 Campbell et al.51 demonstrated that auto-
mated diagnosis of ROP (i-ROP) had an accuracy of 95%, while the 
average accuracy of 11 specialists was 87%. Thus, algorithms with 
performance comparable to that of retinal specialists already exist.

DISCUSSION
Development of algorithms for diagnosing ophthalmic diseases 
requires many images in order to achieve a classification. When 
an algorithm is designed, the following need to be considered: 
the population in which it will be applied, whether it is aligned 
with current clinical evidence and whether use of the algorithm 
applies only to diagnosing the disease.52 

Because diseases such as glaucoma, macular degeneration, dia-
betic retinopathy and retinopathy of prematurity have relatively 
high prevalence, this favors creation of algorithms, given the large 
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amount of data that has been documented. Rare diseases, with 
limited data, still present a challenge with regard to development 
of artificial intelligence programs. Among the topics selected for 
the present review, retinopathy of prematurity is one for which the 
fewest algorithms have been developed. This is thought to be due 
to the lower prevalence of this pathological condition in relation 
to the others analyzed and the greater difficulty in documenting 
data among preterm patients. Development of new portable devices 
that document retinopathy of prematurity may contribute towards 
development of new algorithms in the future.

Ethical and legal aspects should always be considered by groups 
that develop algorithms, with the aims of avoiding racial preju-
dice in healthcare and preserving fundamental rights to protec-
tion of personal data.

Currently, there are large databases (big data) of electronic 
medical records and digital images, which enable recognition of 
patterns in large volumes of data within a short period of time, 
thereby reducing errors in diagnostics and therapeutics and creat-
ing personalized medicine. In this context, a large database called 
Intelligent Research in Sight was created to store data on 17,363,018 
patients from 7200 ophthalmologists in the United States, in order 
to improve individual care and public policies.53

The data of some algorithms can be used for three major groups 
of purposes: classification, segmentation and prediction. In classi-
fication, an image will be classified in different categories (presence 
or absence of disease, for example). This function is explored in 
disease screening and staging algorithms. In segmentation algo-
rithms, different anatomical structures and lesions of importance 

in determining disease biomarkers are outlined. Prediction algo-
rithms, on the other hand, address the relationship of data with 
future results, and thus help in estimating disease prognosis.

Some AI programs have multiple layers of information input 
and output, thus enabling a more efficient machine learning pro-
cess that not only classifies the parameters, but also extracts the 
results. Most metrics within performance analysis have included 
calculation of sensitivity, specificity and the area under the ROC 
curve, which is calculated from sensitivity and specificity values. 
The closer to 1.0 that the area under the ROC curve reaches, the 
greater the sensitivity/specificity of the method is. Moreover, it is 
necessary to evaluate the sensitivity under a fixed specificity. An 
artificial intelligence system with a good area under the ROC curve 
may have low sensitivity at a high level of specificity, thus resulting 
in a high rate of false negatives (Table 2).10,12,14-16,21-23,28-30,32-34,36,46,49,51 

It is important to highlight the reliability of the ground truth 
labels, which in ophthalmological studies are evaluations by special-
ists, who may nevertheless have divergent opinions. It is important 
that the sample used for training the algorithms should be specified. 

Incorporation of machine learning technology within ophthal-
mology can improve medical care for the population in regions with 
limited medical resources, thus reducing some social inequalities.

Future directions, strengths and limitations
Development of enormous longitudinal studies to judge the 
artificial intelligence systems developed is important for assess-
ing the real security and effectiveness of artificial intelligence 
systems. Narrative reviews contribute towards providing 

Table 2. Comparison of accuracy, sensitivity, specificity and number and type of images analyzed

Authors Pathological condition/ number of images analyzed Precision
Ting et al.12 Diabetic retinopathy/76,370 images of retinal photographs Sensitivity of 90.5% and specificity of 91.6%
Tufail et al.10 Diabetic retinopathy/20,258 images of retinal photographs EyeArt (sensitivity of 93.8%) and Retmaker (sensitivity of 97.9%)
Abràmoff et al.14 Diabetic retinopathy/1,748 images of retinal photographs Sensitivity of 96.8% and specificity of 59.4%
Gulshan et al.15 Diabetic retinopathy/9,963 images of retinal photographs Sensitivity of 98.1% and specificity of 90.3%
Gulshan et al.16 Diabetic retinopathy/103,634 images of retinal photographs Sensitivity of 87.2% and specificity of 90.8%
Ting et al.12 AMD/72,610 images of retinal photographs Sensitivity of 93.2% and specificity of 88.2%
Burlina et al.21 AMD/130,000 images of retinal photographs 91.6% accuracy
Grassmann et al.22 AMD/120,656 images of retinal photographs 84.2% accuracy
Venhuizen et al.28 AMD/3,265 images of OCT Sensitivity of 98.2% and specificity of 91.2%
Peng et al.23 AMD/58,402 images of retinal photographs Accuracy of 97.0%
Lee et al.29 AMD/48,312 images of OCT Sensitivity of 84.6% and specificity of 91.5%
Ting et al.12 Glaucoma/125,189 images of retinal photographs 96.4% sensitivity and 87.2% specificity
Li et al.30 Glaucoma/48,116 images of retinal photographs Sensitivity of 95.6% and specificity of 92%
Kim et al.32 Glaucoma/399 images of visual field Sensitivity of 98.3% and specificity of 97.5%
Ahn et al.33 Glaucoma/1,542 images of retinal photographs 92.2% accuracy
Asaoka et al.34 Glaucoma/171 images of visual field 92.6% accuracy
Masumoto et al.36 Glaucoma/982 images of visual field Sensitivity of 81.3% and specificity of 80.2%
Brown et al.46 ROP/5,511 images of retinal photographs 93% sensitivity and 94% specificity
Ataer-Cansizoglu et al.49 ROP/77 images of retinal photographs 95% accuracy
Campbell et al.51 ROP/77 images of retinal photographs 95% accuracy

AMD = age-related macular degeneration; OCT = optical coherence tomography; ROP = retinopathy of prematurity.
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updates on the medical knowledge available. These reviews help 
in formulating new research projects based on interpretation of 
the results from published studies after non-systematic analy-
sis. New studies that use algorithms that combine analysis on 
OCT images, fundus retinography and visual fields can be use-
ful for diagnosing and evaluating multiple pathological condi-
tions simultaneously.12

Development of algorithms with real-time cloud information 
analysis is often helpful within the management and monitoring 
of eye diseases. However. studies need to be carried out with the 
aim of preventing certain decisions made by algorithms from going 
beyond certain ethical and moral precepts that have been estab-
lished by society. Biases in data collection can substantially affect 
the generalization of the trained model beyond the population in 
which it was trained.

Thus, further studies are needed, with algorithms developed in 
different populations. The data used for external validation should 
come from a geographically distinct population, with validation 
by independent researchers.54 Studies should be developed with 
protocols that promote transparency in clinical trials, in order to 
validate the use of algorithms.55 

  The current algorithms have been developed to evalu-
ate two-dimensional images. Incorporation of multimodal images 
in the training of the algorithms can facilitate identification of 
three-dimensional ocular pathological conditions.

The articles included in this review generated heterogeneous 
data because of the diversity in the design of the studies. The main 
limitation of this review was the lack of tools for methodological 
assessment of the reviews. In addition, this narrative review does 
not provide quantitative answers to specific questions about study-
ing artificial intelligence. 

CONCLUSION
Use of technology, as embodied in artificial intelligence algo-
rithms, is a way of providing an increasingly accurate service and 
enhancing scientific research. This forms a source of complement 
and innovation in relation to the daily skills of ophthalmologists. 
Thus, artificial intelligence adds technology to human expertise. 
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