Estimativas de Parâmetros de Curvas de Crescimento de Bovinos Zebu, Criados no Estado de Pernambuco¹

Kleber Régis Santoro², Severino Benone Paes Barbosa³, Lúcia Helena de Albuquerque Brasil⁴, Eufrázio de Souza Santos⁵

RESUMO - Foram analisados dados de pesagem constantes no banco de dados de Controle de Desenvolvimento Ponderal da Associação Brasileira de Criadores de Zebu (ABCZ), referentes a 24.028 animais Zebu das raças Guzerá, Nelore e Nelore Mocho, nascidos entre 1960 e 2000, objetivando-se estimar parâmetros de curvas de crescimento por meio de equações não-lineares e verificar a influência de efeitos fixos e aleatórios sobre as estimativas. As pesagens ocorreram ao nascimento e em intervalos de 90 dias até dois anos de idade. Para análise dos dados de peso-idade, foram utilizados os seguintes modelos não-lineares: Brody, Gompertz, Logístico, Mitscherlich, von Bertalanffy, Richards e Logístico duplo. As fontes de variação estudadas no modelo misto foram sexo, propriedade, ano e mês de nascimento, tipo de sistema de criação e interação sexo*sistema de criação, como efeitos fixos, e reprodutor e mãe, como efeitos aleatórios. A equação Logística Dupla foi a que apresentou o melhor ajustamento e a Mitscherlich, o pior, segundo o número de convergências e o índice de ajuste. Os efeitos fixos mais influentes foram sexo, propriedade, ano e mês de nascimento e sistema de criação. O efeito aleatório mais influente foi o de mãe. A variabilidade encontrada pode possibilitar a exploração da modificação da curva de crescimento por meio de programas de melhoramento genético.

Palavras-chave: Guzerá, modelo misto, modelos não-lineares, Nelore, Nelore Mocho, zebu

Growth Curve Parameters for Zebu Breeds Raised at Pernambuco State, Northeastern Brazil

ABSTRACT - Weight records of 24.028 zebu animals from Guzerá, Nelore, and Polled Nelore breeds available from Brazilian Association of Zebu Breeders (ABCZ) database were used to estimate growth curve parameters. The measures were taken on animals which were born between 1960 and 2000, every three months, from birth to 24 months of age. Non-linear Brody, Gompertz, Logistic, Mitscherlich, von Bertalanffy, Richards, and Double Logistic models including sex, farm, year of birth, month of birth, raising system, and interaction sex*raising system as fixed effects and sire and dam, as random effects were compared. Considering the number of iterations for convergence and the adjustment criteria, Double Logistic was the best fitting model and the Mitscherlich was the worst one. The most important fixed effects were sex, farm, year of birth, month of birth and raising system. The major random effect was the dam effect. The variability observed in this study indicates the possibility of changing the growth curve by a breeding program.

Key Words: Guzerá, mixed model, Nelore, Nelore Mocho, non-linear models, zebu

Introdução

O processo de crescimento de um organismo pode ser visto, de uma forma geral, como uma resposta completa à interação entre os processos de catabolismo e anabolismo, sujeitos às influências do meio, às características genéticas do indivíduo e à interação genótipo-ambiente (Trenkle & Marple, 1983).

Pesquisadores têm se dedicado em descrever as medidas tomadas sucessivamente no tempo, por meio de modelos, considerando esses dados separadamente ou como pontos em um processo contínuo. Estas medidas, denominadas longitudinais, não se referem apenas às características contínuas, mas também às discretas.

Entre as medidas de crescimento corporal animal possíveis de utilização, uma das mais comuns, que não altera o organismo sob análise e que pode ser mensurada a baixo custo é o peso em determinadas idades (Lawrence & Fowler, 1997; Pearson & Dutson, 1991). Dados referentes a essas medidas distribuemse ao longo do tempo de forma semelhante a curvas exponenciais e podem ser analisados por modelos que consideram relações não-lineares de peso e idade.

¹ Parte da tese de doutorado do primeiro autor financiada pelo CNPq.

² Professor – UAG/UFRPE. Rua Ernesto Dourado, 82 - Bairro Heliópolis - CEP: 55296-190 - Garanhuns - PE. E.mail: ksantoro@ufrpe.br

³ Professor DZ/UFRPE. Rua Dom Manoel de Medeiros, s/n; Bairro de Dois Irmãos - CEP: 52171-900, Recife - PE. E.mail: sbarbosa@ufrpe.br

⁴ Professora DZ/UFRPE. Rua Dom Manoel de Medeiros, s/n; Bairro de Dois Irmãos - CEP: 52171-900, Recife - PE

⁵ Professor Pós-Graduação em Biometria/UFRPE. Rua Dom Manoel de Medeiros, s/n; Bairro de Dois Irmãos - CEP: 52171-900, Recife - PE.

As equações da família de Richards têm sido amplamente utilizadas na análise de dados de crescimento de bovinos de corte e de leite (Brown et al., 1976; Fitzhugh Jr., 1976; Goonewardene et al., 1981; Ludwig et al., 1981; Nobre et al., 1987; Kroll & Tornero, 1994; Perotto et al., 1994; Koenen & Groen, 1996; Oliveira et al., 2000; Mazzini, 2001).

Entre os problemas da abordagem pelos modelos não-lineares da família de Richards, destaca-se a nãoconvergência (Nobre et al., 1987), os parâmetros estimados fora de limites plausíveis biologicamente (Ludwig et al., 1981) e a desconsideração da heterogeneidade da variância para as medidas, da correlação entre as medidas e da autocorrelação dos erros (Mazzini, 2001). Alguns autores propuseram extensões aos modelos da família de Richards como forma de melhorar a qualidade do ajuste: Kroll & Tornero (1994), que consideraram erros autorregressivos e efeito da estação do ano; Koenen & Groen (1996), que empregaram a função logística em duas fases, a qual tem a vantagem de estimar diretamente os parâmetros nos dois pontos de inflexão da curva de crescimento; e Mazzini (2001), que analisou dados considerando heterogeneidade de variância e autocorrelação nos erros.

Os benefícios do uso desses modelos no melhoramento genético animal seriam a estimação dos parâmetros para as curvas e a identificação dos animais mais apropriados a determinados fins, como maior ganho de peso em uma fase específica da vida. Além dos parâmetros analisáveis diretamente da equação de Richards (a, k e m) e que possuem interpretação biológica, segundo Perotto et al. (1997), podem ser deduzidos os seguintes índices no auxílio ao melhoramento genético: taxa média de crescimento absoluto, taxa média de maturação absoluta, peso, grau de maturidade e idade no ponto de inflexão, máxima velocidade de ganho de peso e máxima taxa de maturação.

Estudos da influência de efeitos fixos e aleatórios sobre os parâmetros podem auxiliar na interpretação dos fatores que afetam a característica, promovendo melhor análise e auxiliando o planejamento de programas de melhoramento genético.

As funções pertencentes à família de Richards foram agrupadas por Richards (1959), que agregou algumas funções de crescimento já conhecidas e utilizadas na análise de dados individuais de animais e plantas e de crescimento de populações, em uma

única função flexível da qual poderiam ser deduzidas. Entre os casos especiais da família de Richards, encontram-se as funções de Brody ou Monomolecular (Brody, 1945), Logística ou Autocatalítica (Nelder 1961), von Bertalanffy (von Bertalanffy, 1957) e Gompertz (Winsor, 1932), com os parâmetros a, b e k, e a de Richards (Richards, 1959), com um parâmetro a mais, o m. A função geral, neste caso, é dada por:

$$Y_t = a \left(1 \pm b \ e^{-kt} \right)^m$$

em que, segundo Fitzhugh Jr. (1976) e Nobre et al. (1987), Y_t é o peso corporal na idade t; a, o valor assintótico, interpretado como peso assintótico ou peso à maturidade; b, um parâmetro escala (constante de integração) que não tem interpretação biológica; k, o índice de maturidade ou de precocidade; k^{-1} , tempo para atingir a maturidade; m, o parâmetro de inflexão, que estabelece o grau de maturidade u_I , no ponto de inflexão $u_I = [(m-1)/m]^m$, de modo que, de forma generalizada, u_t é a proporção peso/idade $t: u_t = Y_t/a = \left(1 \pm b \ e^{-kt}\right)^m$. O sinal inferior de \pm deve ser aplicado quando $m \ge 1$ e o superior, quando m < 0.

Os objetivos neste trabalho foram estimar parâmetros de modelos não-lineares de curvas de crescimento de bovinos Zebu no estado de Pernambuco, determinar o modelo mais adequado para a descrição das observações e verificar a influência de efeitos fixos e aleatórios sobre esses parâmetros.

Material e Métodos

Foram utilizados dados constantes no banco de dados de Controle de Desenvolvimento Ponderal da Associação Brasileira de Criadores de Zebu (ABCZ), referentes a 24.028 animais Zebu (4.436 Guzerá, 14.035 Nelore e 5.557 Nelore Mocho) nascidos entre 1960 e 2000 e criados no estado de Pernambuco.

Os animais foram criados a pasto, semiestabulados, estabulados ou com mudança no sistema em algum período de criação. As pesagens ocorreram ao nascimento e em intervalos de 90 dias até dois anos de idade, totalizando nove pontos amostrais.

Os seguintes modelos não-lineares foram utilizados para os dados de peso-idade:

Brody (B): $P_i = a - b e^{-kt_i}$ Gompertz (G): $P_i = a e^{-b e^{-kt_i}}$ Logístico (L): $P_i = a(1 + b e^{-kt_i})^{-1}$ Mitscherlich (M) (Batschelet, 1984):

$$P_i = a(1 - e^{-kt_i})$$

von Bertalanffy (vB): $P_i = a(1 - b e^{-kt_i})^3$
Richards (R): $P_i = a(1 \pm b e^{-kt_i})^m$
Logístico duplo (LD):

$$P_i = \frac{a_1}{1 + e^{-k(t_i - b_1)}} + \frac{a_2}{1 + e^{-k(t_i - b_2)}}$$

em que P_i representa o peso observado no tempo t_i ; t_i , o tempo decorrido do nascimento à pesagem i, em dias; a, o peso assintótico; a_1 e a_2 , os pesos assintóticos na primeira e segunda fases, respectivamente ($a_1 + a_2 = a$); b, uma constante de integração; b_1 e b_2 , as idades no primeiro e segundo pontos de inflexão, respectivamente; k, o índice de maturidade e m, o parâmetro de inflexão.

O coeficiente de ajuste (R^2) para as equações foi calculado como $R^2 = 1 - (sqe)/(sqt)$, em que sqe é a soma de quadrados dos erros e sqt, a soma de quadrados total (Kvålseth, 1985). As estimativas obtidas para os parâmetros das equações que convergiram e foram julgadas nos limites considerados biologicamente aceitáveis, ou seja, $a \le 1000$, $k \le 1$ e $a_1 + a_2 \le 1000$, foram analisadas segundo o modelo misto:

$$\begin{split} Y_{ijklmnop} &= S_j + P_k + A_l + M_m + R_n + S_j *R_n + \\ Rep_o &+ F_p + e_{ijklmnop} \end{split}$$

em que: $Y_{ijklmnop}$ representa a i-ésima observação para a variável $Y,Y=a,a_1,a_2,a_1+a_2,b,b_1,b_2,k,k^{-1},m;$ S_j , o sexo: j=1 (macho), 2 (fêmea); P_k , a propriedade de criação (k=7,...,41); A_l , o ano de nascimento (l=1960,...,2000); M_m , o mês de nascimento (m=1,...,12); R_n , o tipo de sistema de criação n=a pasto (1), semi-estabulado (2), estabulado (3), com mudança no sistema (4); S_j*R_n , a interação entre o j-ésimo sexo e o n-ésimo sistema de criação; Rep_o , o efeito aleatório do o-ésimo reprodutor; F_p , o efeito aleatório da p-ésima mãe; e $e_{ijklmnop}$, o erro aleatório associado à i-ésima observação.

Empregou-se o PROC NLIN (SAS, 2000) nas análises dos modelos não-lineares, de modo que as estimativas iniciais empregadas foram obtidas na literatura ou a partir da média dos dados da amostra para todos os parâmetros, quando não disponíveis. Escolheu-se o método de estimação de Gauss-Newton para calcular as estimativas dos parâmetros porque mais simples que o de Newton, mesmo necessitando de um maior número de iterações (Hoffman & Vieira, 1998). O modelo misto foi analisado utilizando-se o

PROC MIXED (SAS, 2000) com estimativas de máxima verossimilhança restrita, com estrutura de variâncias não-relacionadas (VC). Optou-se pela significância de efeitos fixos e aleatórios até 10% (P<0,10), por considerar-se que a variabilidade das estimativas dos parâmetros fosse alta. O critério de informação de Akaike (AIC) foi calculado como $AIC = l(\hat{\theta}) - q$, em que $\hat{\theta}$ é a maximização do logaritmo da verossimilhança e q, o número de parâmetros de covariância.

Resultados e Discussão

A escolha dos animais com todas as pesagens do nascimento aos dois anos de idade reduziu consideravelmente o número de observações analisáveis (Figura 1), verificando-se decréscimo de 24.028 para 1.358 no total de animais na amostra. Este comportamento pode ser creditado, em parte, à movimentação inerente à comercialização dos animais e aos eventuais problemas, como mortes, ou ao desinteresse do produtor em continuar com o controle de desenvolvimento ponderal no rebanho.

A presença de maior número de fêmeas que machos provavelmente resultou dos sistemas de manejo dos animais, nos quais as fêmeas seriam abatidas ou comercializadas mais tardiamente, possibilitando seu melhor acompanhamento.

Houve grande variação nos períodos entre pesagens nos grupos não-selecionado e selecionado, embora as estatísticas tenham melhorado após a seleção (Tabela 1). Isso impossibilitou o uso das observações para estimação de uma curva média de crescimento baseada na média dos pesos observados em tempos precisos, embora uma curva média possa ser obtida a partir da média dos parâmetros estimados (Tabelas 2 a 8). A maior variação e a menor média ocorreram para o período entre a primeira (ao nascimento) e a segunda pesagens, para ambos os grupos, o que pode ser explicado pelas dificuldades de manejo impostas a pesagens em idades do nascimento à desmama, em razão da necessidade de separação de mãe e filho, que não ocorre em idades posteriores.

As estimativas para os parâmetros das equações para os animais selecionados (Tabelas 2 a 8) corroboram a bibliografia consultada (Ludwig et al., 1981; Nobre et al., 1987; Perotto et al., 1992; Oliveira et al., 2000).

O número de animais que apresentaram convergência em relação ao total de animais analisados (Tabela 9),

Tabela 1 - Estatísticas para número de dias entre pesagens para a amostra antes e após a seleção Table 1 - Statistics for number of days between measures before and after selection

				zerá zera		elore <i>llore</i>		e Mocho d Nellore
Período entre pesagens Time between measures	Estatística Statistic	Amostra Sample	Fêmea Female	Macho <i>Male</i>	Fêmea Female	Macho Male	Fêmea Female	Macho <i>Male</i>
1 - 2	$\overline{\chi}$ c	T	64,99	64,39	62,38	63,08	63,12	63,02
	2	S	53,55	51,56	48,15	46,88	53,87	46,33
	s^2	T	1197,20	1292,17	1326,70	1213,06	1008,64	1065,74
	O.I.	S	767,05	683,07	852,52	829,91	748,69	830,08
	CV	T S	53,24 51,72	55,82 50,69	58,39 60,64	55,22 61,45	50,31 50,79	51,80 62,18
2-3	\overline{x}	T	92,87	91,67	91,82	91,71	94,38	95,03
	_	S	90,98	92,27	90,33	89,06	90,90	86,17
	s^2	T	409,91	245,14	207,76	170,11	559,41	481,06
		S	116,29	66,89	139,93	12841	100,14	69,76
	CV	T	21,80	17,08	15,70	14,22	25,06	23,08
		S	11,85	8,86	13,09	12,72	1,01	9,69
3 - 4	\overline{x}	T	90,52	90,38	91,95	91,34	92,22	92,58
	2	S	89,90	88,21	90,72	92,05	93,01	98,55
	s^2	T	178,46	151,06	211,92	168,43	118,39	109,45
	a.	S	116,50	145,22	151,69	123,98	114,08	86,05
	CV	T	14,76	13,60	15,83	14,21	11,80	11,30
	_	S	12,01	13,66	13,58	12,10	11,48	9,41
4 - 5	\overline{x}	T	92,53	92,43	91,41	91,45	91,42	91,19
	2	S	91,03	89,69	91,70	89,71	92,17	85,71
	s^2	T	249,43	229,29	184,91	152,14	122,96	122,40
	O.I.	S	142,28	215,66	136,79	125,73	118,09	121,62
	CV	T S	17,07 13,10	16,38 16,37	14,88 12,75	13,49 12,50	12,13 11,79	12,13 12,87
5-6	\overline{x}	T	92,54	92,55	92,73	92,28	92,53	93,45
3 0	<i>30</i>	S	94,06	94,03	92,00	93,93	91,76	95,94
	s^2	Ť	325,85	136,76	247,59	226,00	157,39	174,61
	~	S	135,55	214,36	135,34	100,05	129,71	141,53
	CV	T	19,51	12,64	16,97	16,29	13,56	14,14
		S	12,38	15,57	12,64	10,65	12,41	12,40
6 - 7	\overline{x}	T	92,70	91,14	91,45	91,29	93,11	93,98
	2	S	91,76	91,42	90,78	89,63	92,73	93,28
	s^2	T	177,40	127,28	150,35	129,15	90,16	90,47
		S	111,32	119,36	130,26	96,85	92,22	38,56
	CV	T	14,37	12,38	13,41	12,45	10,20	10,12
		S	11,50	11,95	12,57	10,98	10,36	6,66
7 - 8	\overline{x}	T	90,59	91,52	90,85	91,18	92,03	92,30
	2	S	91,64	92,56	91,25	90,49	90,67	85,25
	s^2	T	158,33	185,72	130,52	123,37	93,93	78,59
	C.	S	154,40	160,48	122,03	90,43	117,57	75,48
	CV	T S	13,89 13,56	14,89 13,69	12,58 12,11	12,18 10,51	10,53 11,96	9,60 10,19
8 0	\overline{x}							
8 – 9	\mathcal{A}	T S	90,75 91,76	89,75 90,02	92,75 92,60	92,88 92,32	91,02 88,80	95,76 92,94
	s^2	T	128,10	159,19	202,27	219,36	133,97	85,18
	3	S	147,00	80,44	145,50	116,58	185,34	69,20
	CV	T	12,47	14,06	15,33	15,95	12,72	9,64
	C*	S	13,21	9,96	13,03	11,70	15,33	8,95

 $[\]overline{x}$ = média; s^2 = variância; CV = coeficiente de variação; T = antes da seleção; S = após a seleção. \overline{x} = average; s^2 = variance; CV = coefficient of variation; T = before selection; S = after selection.

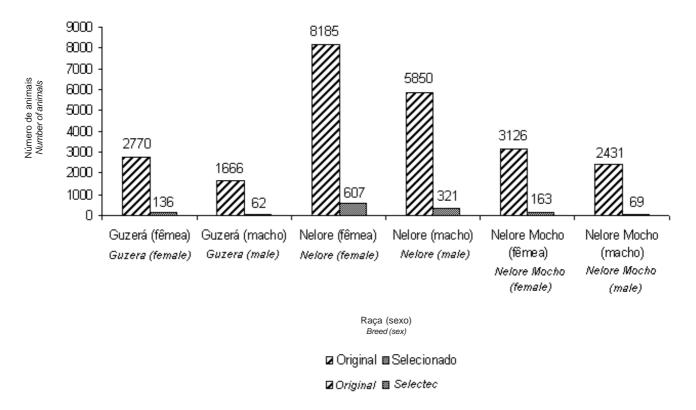


Figura 1 - Total de animais na amostra antes e após a seleção dos dados. Figure 1 - Total number of animals in the sample before and after record selection.

juntamente com os coeficientes de ajuste (Tabelas 2 a 8 e 10), forneceu informações para se considerar o modelo logístico duplo o mais adequado para todas as raças e sexos sob o ponto de vista de facilidade computacional, enquanto os modelos de Richards e Brody foram superiores quanto à interpretação biológica de seus parâmetros. Outros autores consideraram melhores os modelos Brody (Nobre et al., 1987; Ludwig et al., 1981), Richards (Nobre et al., 1987; Goonewardene et al., 1981), von Bertalanffy (Oliveira et al., 2000) e logístico duplo (Koenen & Groen, 1996).

O segundo melhor modelo, analisando-se somente o coeficiente de ajuste, foi o de Richards (Tabela 10), mas mostrou-se pouco satisfatório por apresentar o menor número de convergências (Tabela 9), o que, segundo Rutledge et al. (1972) e Brown et al. (1976), pode ser atribuído primeiramente à alta correlação entre os parâmetros k e m, apesar do coeficiente de ajuste geralmente superior, justificado pela flexibilidade do parâmetro m. Segundo Doren et al. (1989), o modelo de Richards teria problemas de ajuste aos dados após o período de inflexão, que seria a transição da puberdade à idade adulta. Isso explicaria, em parte,

o pequeno número de convergências obtido para a amostra, pois o ponto de inflexão estaria pouco definido, uma vez que a idade máxima de coleta de dados foi de dois anos e, a partir daí, provavelmente os animais continuaram a se desenvolver, implicando em perda de informações e afetando o cálculo do ponto de inflexão "real", justificando o acompanhamento dos animais até idades superiores a dois anos. Portanto, modelo se adequa melhor a bovinos europeus com observações até dois anos de idade, pois a maturidade desses animais é atingida dentro deste período, o que não ocorre com animais zebuínos.

Os maiores pesos assintóticos foram obtidos, em geral, para a raça Nelore e as menores taxas de maturação, para a raça Guzerá, apesar de nem sempre terem sido significativamente diferente dos pesos das outras raças (Tabela 11). Assim, os animais da raça Guzerá poderiam atingir peso assintótico igual aos das demais raças somente em idade mais avançada, em razão de seu desenvolvimento mais lento, mas poderiam alcançar peso adulto mais elevado que aqueles em idades superiores. A indisponibilidade de dados em idades superiores a dois anos não possibilitou

Tabela 2 - Medidas descritivas dos parâmetros médios estimados pela equação Brody Table 2 - Brody equation parameters mean estimates

Raça	Sexo	Parâmetro	Observações	Média	Desvio-padrão	Coeficiente de variação		Máximo
Breed	Sex	Parameter	Records	Mean	Standard deviation	Coefficient of variation	Minimum	Maximum
Guzerá	Fêmea	a	98	428,918	187,405	43,69	113,135	997,620
Guzera	Female	b	98	399,076	185,968	46,59	87,309	958,014
		k	98	0,002351	0,001882	80,05	0,000363	0,012265
		k^{-1}	98	646,482	426,508	65,97	81,527	2752,200
		\mathbb{R}^2	98	0,9584	0,0469	4,89	0,7906	0,9986
	Macho	a	29	482,300	204,661	42,43	160,188	920,919
	Male	b	29	448,162	204,959	45,73	139,078	890,519
		k	29	0,002028	0,001386	68,35	0,000568	0,006516
		k^{-1}	29	667,734	367,056	54,97	153,464	1759,540
		R^2	29	0,9592	0,0439	4,57	0,8075	0,9937
Nelore	Fêmea	a	506	469,564	196,097	41,76	190,645	998,642
Nellore	Female	b	506	439,316	195,252	44,44	161,305	971,465
		k	506	0,002216	0,001246	56,23	0,000440	0,008842
		k^{-1}	506	615,264	379,742	61,72	113,085	2271,36
		\mathbb{R}^2	506	0,9744	0,0375	3,85	0,5892	0,9995
	Macho	a	152	547,135	180,642	33,01	252,124	981,8607
	Male	b	152	511,562	179,894	35,16	224,205	960,961
		k	152	0,001887	0,001017	53,88	0,000372	0,007563
		k-1	152	681,109	380,933	55,92	132,207	2686,50
		R^2	152	0,9758	0,0196	2,01	0,8623	0,9991
Nel. M.	Fêmea	a	152	449,297	141,867	31,57	194,666	982,559
Polled	Female	b	152	418,798	141,360	33,75	166,446	961,000
Nelore		k	152	0,002582	0,003840	148,71	0,000611	0,047723
		k^{-1}	152	537,102	269,328	50,14	20,954	1635,12
		\mathbb{R}^2	152	0,9755	0,0312	3,20	0,7326	0,9996
	Macho	a	46	624,310	150,318	24,07	328,819	959,833
	Male	b	46	589,477	151,663	25,72	289,626	916,068
		k	46	0,001574	0,000613	38,96	0,000519	0,003820
		k-1	46	726,528	281,831	38,79	261,723	1925,36
		\mathbb{R}^2	46	0,9806	0,0115	1,17	0,9444	0,9978

a verificação desse fato. Essa falha no acompanhamento dos animais deveria ser corrigida, o que colaboraria com maior precisão da estimativa da curva de crescimento (Ludwig et al., 1981; Nobre et al., 1987).

As equações de crescimento utilizadas partem de diferentes pressupostos para o seu ajuste aos dados,

como evidenciado, por exemplo, pelos diferentes pontos de inflexão considerados pelos modelos. Isto acarretou diferentes estimações para peso assintótico (a ou a_1+a_2) e idade à maturidade (k^{-1}), entre outros parâmetros. Essas estimativas também apresentaram variações distintas, tanto entre modelos quanto entre

Tabela 3 - Medidas descritivas dos parâmetros médios estimados pela equação Gompertz Table 3 - Gompertz equation parameters mean estimates

Raça Breed	Sexo Sex	Parâmetro Parameter	Observações Records	Média <i>Mean</i>	Desvio-padrão Standard deviation	Coeficiente de variação Coefficient of variation	Mínimo Minimum	Máximo Maximum
Guzerá	Fêmea	a	129	380,755	147,756	38,80	141,112	902,865
Guzera	Female	b	129	2,215	0,359	16,24	1,458	3,087
Guzera	remate	k	129	0,004404	0,002296	52,13	0,001054	0,017034
		k ⁻¹	129	281,158	139,966	49,78	58,705	948,167
		R^2	129	0,9638	0,0373	3,87	0,7738	0,998510
	Macho	a	55	463,228	175,602	37,90	139,247	926,756
	Male	b	55 55	2,298	0,407	17,71	1,521	3,180
	mue	k	55 55	0,003707	0,001701	45,89	0,001340	0,010579
		k ⁻¹	55 55	322,791	141,365	43,79	94,527	746,015
		R^2	55	0,9655	0,033267	3,44	0,8372	0,9986
Nelore	Fêmea	a	597	379,072	129,550	34,17	174,690	937,233
Nellore	Female	b	597	2,218	0,656	29,57	1,433	16,243
		k	597	0,004849	0,002094	43,19	0,001139	0,030337
		k^{-1}	597	240,644	106,486	44,25	32,962	877,944
		R^2	597	0,9727	0,0355	3,65	0,5926	0,9989
	Macho	a	298	540,091	187,936	34,79	227,567	999,445
	Male	b	298	2,378	0,387	16,29	1,607	3,613
		k	298	0,003897	0,001457	37,38	0,001205	0,012387
		k^{-1}	298	291,474	109,504	37,56	80,729	829,684
		R^2	298	0,9762	0,0225	2,31	0,8687	0,9998
Nel. M.	Fêmea	a	163	365,650	93,902	25,68	182,989	779,126
Polled	Female	b	163	2,137	0,252	11,79	1,064	2,861
Nellore		k _.	163	0,005065	0,001733	34,21	0,001700	0,014959
		k^{-1}	163	218,911	75,730	34,59	66,847	588,083
		\mathbb{R}^2	163	0,9705	0,0321	3,31	0,7314	0,9968
	Macho	a	66	497,838	134,765	27,07	302,129	929,761
	Male	b	66	2,370	0,690	29,13	1,780	7,536
		k	66	0,004048	0,001153	28,50	0,001945	0,007558
		k-1	66	268,651	82,855	30,84	132,305	513,955
		\mathbb{R}^2	66	0,9758	0,0157	1,61	0,9143	0,9985

raças para um mesmo modelo, implicando diretamente em diferentes estimativas para a influência de efeitos fixos e aleatórios, como demonstrado a seguir.

A qualidade de ajuste do modelo misto encontra-se na Tabela 12, pela estatística de qualidade de ajuste pelo critério de informação de Akaike (AIC) e pela redução em σ_e^2 . Os resultados evidenciarama possibilidade de exploração da modificação da curva de crescimento por meio de seus parâmetros, pois a variabilidade no rebanho proporcionada pelas progenitoras foi

Tabela 4 - Medidas descritivas dos parâmetros médios estimados pela equação Logística Table 4 - Logistic equation parameters mean estimates

Raça	Sexo	Parâmetro	Observações	Média	Desvio-padrão	Coeficiente de variação		Máximo
Breed	Sex	Parameter	Records	Mean	Standard deviation	Coefficient of variation	Minimum	Maximum
Guzerá	Fêmea	a	83	352,216	111,7918	31,73	111,930	631,354
Guzera	Female	b	83	6,382	1,967	30,83	2,757	11,241
		k	83	0,007660	0,003773	49,25	0,003012	0,023874
		k-1	83	151,818	53,446	35,20	41,885	331,968
		\mathbb{R}^2	83	0,9609	0,0415	4,32	0,7744	0,9982
	Macho	a	46	489,999	186,540	38,06	205,998	972,250
	Male	b	46	7,646	2,905	38,00	3,309	16,195
		k	46	0,005966	0,001809	30,33	0,003177	0,012760
		k^{-1}	46	182,348	53,599	29,39	78,364	314,671
		\mathbb{R}^2	46	0,9708	0,0221	2,27	0,8925	0,998121
Nelore	Fêmea	a	378	374,820	113,952	30,40	168,047	836,192
Nellore	Female	b	378	6,322	1,875	29,66	2,820	16,096
		k	378	0,007854	0,002523	32,13	0,002659	0,020209
		k ⁻¹	378	140,924	48,590	34,47	49,481	376,031
		\mathbb{R}^2	378	0,9692	0,0308	3,17	0,6828	0,9977
	Macho	a	256	503,297	138,811	27,58	251,280	954,448
	Male	b	256	7,452	2,443	32,79	3,2990	19,602
		k	256	0,006495	0,001973	30,37	0,002578	0,017449
		k^{-1}	256	167,063	48,257	28,88	57,308	387,819
		\mathbb{R}^2	256	0,9717	0,0252	2,59	0,8699	0,9986
Nel. M.	Fêmea	a	123	349,103	73,672	21,10	177,996	654,853
Polled	Female	b	123	5,808	1,348	23,22	2,875	9,847
Nellore		k	123	0,009308	0,012670	136,11	0,003462	0,145337
		k ⁻¹	123	131,457	36,912	28,07	6,880	288,853
		\mathbb{R}^2	123	0,9646	0,0348	3,60	0,7332	0,9950
	Macho	a	61	458,541	119,280	26,01	292,207	836,273
	Male	b	61	7,393	7,132	96,47	3,977	61,021
		k	61	0,006744	0,001744	25,86	0,004112	0,013071
		k^{-1}	61	157,622	38,975	24,72	76,503	243,145
		\mathbb{R}^2	61	0,9685	0,0167	1,731	0,9273	0,9942

significativa na maioria dos casos, enquanto, para os reprodutores, foi significativa apenas em alguns casos.

O peso assintótico foi afetado pelos efeitos de reprodutor e fêmea: σ_{Rep}^2 e σ_{F}^2 , respectivamente, para as equações Mitscherlich e von Bertalanffy, para a raça Nelore, e Mitscherlich, para a raça Nelore Mocho. Programas de melhoramento genético pode-

riam usufruir dessa variabilidade por meio do acasalamento de animais com valores superiores, alterando o tempo necessário para atingir a maturidade (k^{-1}), de modo que o peso máximo seria atingido em idades inferiores.

A taxa de maturidade da raça Nelore Mocho foi influenciada em todas as equações pela fêmea e, pelo

Tabela 5 - Medidas descritivas dos parâmetros médios estimados pela equação Mitscherlich Table 5 - Mitscherlich equation parameters mean estimates

Raça Breed	Sexo Sex	Parâmetro Parameter	Observações Records	Média <i>Mean</i>	Desvio-padrão Standard deviation	Coeficiente de variação Coefficient of variation	Mínimo Minimum	Máximo Maximum
Guzerá	Fêmea	a	127	401,569	186,704	46,49	111,215	947,105
Guzera	Female	k	127	0,002969	0,002159	72,70	0,000500	0,015620
		k^{-1}	127	499,618	347,480	69,54	64,020	1999,38
		\mathbb{R}^2	127	0,9354	0,0543	5,81	0,7254	0,9932
	Macho	a	47	458,053	217,589	47,50	145,284	942,315
	Male	k	47	0,002510	0,001590	63,35	0,000582	0,008878
		k ⁻¹	47	559,240	352,011	62,94	112,628	1716,29
		\mathbb{R}^2	47	0,9348	0,0468	5,00	0,7931	0,9920
Nelore	Fêmea	a	596	416,895	172,048	41,26	157,553	961,197
Nellore	Female	k	596	0,002903	0,001399	48,18	0,000447	0,011271
		k^{-1}	596	434,044	235,506	54,25	88,721	2235,21
		\mathbb{R}^2	596	0,9499	0,0456	4,81	0,5706	0,9955
	Macho	a	223	515,917	193,944	37,59	233,471	980,344
	Male	k	223	0,002412	0,001231	51,05	0,000536	0,010321
		k^{-1}	223	523,495	272,365	52,02	96,887	1862,27
		\mathbb{R}^2	223	0,9506	0,0348	3,66	0,7525	0,9960
Nel. M.	Fêmea	a	161	395,748	120,604	30,47	184,323	948,728
Polled	Female	k	161	0,003403	0,004550	133,72	0,000874	0,058897
Nellore		k^{-1}	161	375,986	164,989	43,88	16,978	1144,03
		\mathbb{R}^2	161	0,9571	0,0382	3,99	0,6485	0,9921
	Macho	a	60	545,873	139,095	25,48	308,164	882,004842
	Male	k	60	0,002167	0,000811	37,41	0,000867	0,005209
		k^{-1}	60	527,459	200,514	38,01	191,940	1153,16
		\mathbb{R}^2	60	0,9639	0,0182	1,89	0,9144	0,9940

reprodutor, apenas na Mitscherlich. A variabilidade apontou para a possibilidade de alteração no grau de maturidade dos descendentes a partir da correta seleção dos pais.

De modo geral, a fêmea teve maior influência que o macho, evidenciando a importância do correto ma-

nejo desses animais no rebanho, seja sob o aspecto nutricional, em que a correta alimentação propiciaria melhor desenvolvimento ao descendente por meio do fornecimento do leite, diminuindo o tempo necessário para atingir a maturidade, seja do ponto de vista do melhoramento, em que o fator genético materno teve

Tabela 6 - Medidas descritivas dos parâmetros médios estimados pela equação von Bertalanffy Table 6 - von Bertalanffy equation parameters mean estimates

Raça <i>Breed</i>	Sexo Sex	Parâmetro Parameter	Observações <i>Records</i>	Média <i>Mean</i>	Desvio-padrão Standard deviation	Coeficiente de variação Coefficient of variation	Mínimo Minimum	Máximo Maximum
Guzerá	Fêmea	a	124	393,142	158,291	40,26	112,553	937,565
Guzera	Female	b	124	0,535342	0,060997	11,39	0,379871	0,665194
		k	124	0,003712	0,002228	60,01	0,001101	0,015211
		k ⁻¹	124	344,346	166,199	48,26	65,738	908,101
		\mathbb{R}^2	124	0,9628	0,0423	4,39	0,7777	0,9991
	Macho	a	50	484,877	186,294	38,42	143,361	923,972
	Male	b	50	0,550069	0,068482	12,44	0,411474	0,7001
		k	50	0,003012	0,001562	51,85	0,000939	0,009208
		k^{-1}	50	412,510	197,903	47,97	108,601	1064,60
		\mathbb{R}^2	50	0,9663	0,0347	3,59	0,8292	0,9979
Nelore	Fêmea	a	584	399,344	143,170	35,85	178,709	989,828
Nellore	Female	b	584	0,537849	0,053969	10,03	0,393943	0,790898
		k	584	0,003900	0,001615	41,42	0,000658	0,012412
		k ⁻¹	584	305,187	147,415	48,30	80,561	1518,13
		R^2	584	0,9741	0,0359	3,68	0,5911	0,9992
	Macho	a	262	554,117	198,394	35,80	232,909	991,938
	Male	b	262	0,561694	0,060051	10,69	0,427810	0,714208
		k	262	0,003159	0,001287	40,75	0,000720	0,010733
		k^{-1}	262	368,100	157,991	42,92	93,167	1388,58
		\mathbb{R}^2	262	0,9776	0,0213	2,18	0,8677	0,9997
Nel. M.	Fêmea	a	161	384,869	111,797	29,04	185,719	928,732
Polled	Female	b	161	0,530845	0,040979	7,71	0,392337	0,624094
Nellore		k	161	0,004536	0,005755	126,86	0,001142	0,074633
		k ⁻¹	161	274,981	112,791	41,01	13,398	874,945
		\mathbb{R}^2	161	0,9728	0,0321	3,30	0,7313	0,998203
	Macho	a	62	518,337	127,600	24,61	307,959	822,824
	Male	b	62	0,554371	0,037724	6,80	0,464049	0,655583
		k	62	0,003143	0,000930	29,61	0,001447	0,005996
		k-1	62	350,744	121,301	34,58	166,761	690,736
		\mathbb{R}^2	62	0,9786	0,0131	1,34	0,9407	0,998931

maior variabilidade que o paterno. Portanto, conforme a amostra estudada, maior atenção deve ser dada às fêmeas em um possível programa de melhoramento genético.

A idéia de mudança no formato da curva de crescimento foi sugerida por Tallis (1968), que traba-

lhou a construção de um índice de seleção *I* que modificasse uma curva pré-existente em alguns ou em todos os pontos. Fitzhugh Jr. (1976) analisou vários aspectos da utilização de modelos da família de Richards, discutindo métodos para alteração do for-

Tabela 7 - Medidas descritivas dos parâmetros médios estimados pela equação Richards Table 7 - Richards equation parameters mean estimates

Raça	Sexo	Parâmetro	Observações	Média	Desvio-padrão	Coeficiente de variação		Máximo
Breed	Sex	Parameter	Records	Mean	Standard deviation	Coefficient of variation	Minimum	Maximum
Guzerá	Fêmea	a	30	475,838	214,670	45,11	214,284	991,109
Guzera	Female	b	30	0,873604	0,126828	14,51	0,464891	0,998527
		k	30	0,002404	0,001216	50,59	0,000092	0,005090
		k ⁻¹	30	871,053	1911,82	219,48	196,444	10838,77
		m	30	1,284192	0,636412	49,55	0,553303	3,096886
		\mathbb{R}^2	30	0,9759	0,0396	4,06	0,7952	0,9989
	Macho	a	7	525,846	123,147	23,41	343,941	665,718
	Male	b	7	0,651698	0,190619	29,24	0,342966	0,843298
		k	7	0,002687	0,001180	43,91	0,000798	0,004293
		m	7	2,939347	1,462005	49,73	1,713397	5,669456
		k ⁻¹	7	492,058	356,921	72,53	232,893	1252,94
		\mathbb{R}^2	7	0,9935	0,0041	0,41	0,9858	0,9980
Nelore	Fêmea	a	222	450,401	169,951	37,73	200,683	997,900
Nellore	Female	b	222	0,851969	0,161191	18,91	0,081253	0,996000
		k	222	0,002465	0,001348	54,70	0,000262	0,006690
		k-1	222	608,702	533,927	87,71	149,471	3807,84
		m	222	1,519427	1,914213	125,98	0,585001	24,475432
		\mathbb{R}^2	222	0,9857	0,0200	2,03	0,7904	0,9996
	Macho	a	58	629,900	196,507	31,19	313,491	990,063
	Male	b	58	0,883492	0,133933	15,15	0,423529	0,995094
		k	58	0,001817	0,000945	52,04	0,000311	0,005215
		k ⁻¹	58	762,408	543,414	71,27	191,725	3214,38
		m	58	1,379242	0,902989	65,46	0,5634127	4,826415
		\mathbb{R}^2	58	0,9883	0,0107	1,08	0,9568	0,9993
Nel. M.	Fêmea	a	89	449,965	147,314	32,73	205,459	955,722
Polled	Female	b	89	0,868034	0,147569	17,00	0,130778	0,996751
Nellore		k	89	0,002533	0,001435	56,65	0,000337	0,010410
		k ⁻¹	89	564,410	448,696	79,49	96,056	2959,78
		m	89	1,456963	1,919051	131,71	0,577538	18,276509
		\mathbb{R}^2	89	0,9842	0,0172	1,751	0,9226	0,9996
	Macho	a	22	598,093	134,228	22,44	385,894	963,166255
	Male	b	22	0,865015	0,156276	18,06	0,458161	0,990453
		k	22	0,002020	0,000935	46,30	0,000693	0,003776
		k ⁻¹	22	647,386	386,705	59,73	264,787	1441,16
		m	22	1,478789	0,996515	67,38	0,593461	4,297190
		\mathbb{R}^2	22	0,9869	0,0136	1,38	0,9445	0,9990

Tabela 8 - Medidas descritivas dos parâmetros médios estimados pela equação Logístico Duplo Table 8 - Double logistic equation parameters mean estimates

Raça	Sexo	Parâmetro	Observações	Média		Coeficiente de variação		Máximo
Breed	Sex	Parameter	Records	Mean	Standard deviation	Coefficient of variation	Minimum	Maximum
Guzerá	Fêmea	a1	112	188,427	63,836	33,87	49,511	367,149
Guzera	Female	b1	112	117,098	56,904	48,59	-26,519	339,665
		a2	112	151,653	76,408	50,38	2,101	690,878
		b2	112	731,103	2212,97	302,68	11,758	23905,82
		k	112	0,015547	0,005751	36,99	0,006243	0,044873
		\mathbb{R}^2	112	0,9899	0,0108	1,09	0,9299	0,9995
	Macho	a1	50	210,721	74,373	35,29	99,309	484,563
	Male	b1	50	120,865	56,840	47,02	25,962	322,651
		a2	50	206,472	97,164	47,05	59,747	532,821
		b2	50	546,312	121,903	22,31	43,335	878,530
		k	50	0,015378	0,009597	62,40	0,007268	0,075721
		R^2	50	0,9924	0,0081	0,82	0,9614	0,9994
Nelore	Fêmea	a1	486	213,138	65,379	30,67	63,765	434,211
Nellore	Female	b1	486	114,022	38,727	33,96	15,675	306,223
		a2	486	157,492	84,747	53,81	25,805	868,574
		b2	486	532,198	113,462	21,31	46,463	874,470
		k	486	0,015087	0,004689	31,08	0,006768	0,073273
		\mathbb{R}^2	486	0,990914	0,0204	2,06	0,639705	0,9998
	Macho	a1	258	240,348	78,206	32,53	63,753	477,636
	Male	b1	258	118,677	44,276	37,30	-12,697	323,408
		a2	258	221,348	87,412	39,49	66,595	531,809
		b2	258	532,338	94,147	17,68	68,782	827,596
		k	258	0,014414	0,003564	24,73	0,007736	0,037424
		R^2	258	0,9933	0,0069	0,69	0,9515	0,9999
Nel. M.	Fêmea	a1	123	226,221	55,060	24,33	87,435	376,243
Polled	Female	b1	123	117,848	44,512	37,77	3,193	311,864
Nellore		a2	123	131,453	53,091	40,38	32,208	376,190
		b2	123	512,010	118,657	23,17	44,647	910,706
		k	123	0,020691	0,042676	206,25	0,008717	0,460005
		\mathbb{R}^2	123	0,988781	0,0132	1,34	0,881660	0,9990
	Macho	a1	37	262,355	69,082	26,33	101,364	399,039
	Male	b1	37	130,590	46,507	35,61	51,023	234,405
		a2	37	234,692	72,350	30,82	110,097	446,036
		b2	37	562,108	118,795	21,13	332,702	869,924
		k	37	0,013958	0,003157	22,62	0,008836	0,021418
		\mathbb{R}^2	37	0,9941	0,0065	0,65	0,9712	0,9996

Tabela 9 - Número de animais para os quais as equações convergiram em relação ao total de animais analisados e representatividade, em porcentagem

Table 9 - Number of animals for which the equation had obtained convergence in relation with the total analyzed, %

	Guz Guz			elore llore	Nelore Mocho Polled Nellore	
	Fêmea Female	Macho <i>Male</i>	Fêmea Female	Macho <i>Male</i>	Fêmea Female	Macho <i>Male</i>
Modelo	136 ^a	62	607	321	163	69
Model						
Brody	98(72,06%)	29 (46,77%)	506(83,36%)	152 (47,35%)	152 (93,25%)	46(66,67%)
Brody						
Gompertz	129 (94,85%)	55 (88,71%)	597 (98,35%)	298 (92,83%)	163(100,00%)	66 (95,65%)
Gompertz						
Logístico	83(61,03%)	46(74,19%)	378 (62,27%)	256(79,75%)	123 (75,46%)	61 (88,40%)
Logistic						
Mitscherlich	127 (93,38%)	47 (75,80%)	596 (98,18%)	223 (69,47%)	181 (98,77%)	60(86,95%)
Mitscherlich						
von Bertalanffy	124(91,17%)	50(80,64%)	584 (96,21%)	262 (81,62%)	161 (98,77%)	62(89,85%)
Von Bertalanffy						
Richards	30(22,06%)	7(11,29%)	222 (36,57%)	58(18,07%)	89 (54,60%)	22(31,88%)
Richards						
Logístico duplo Double logistic	112(82,35%)	50(80,64%)	486(80,06%)	258 (80,37%)	123 (75,46%)	37 (53,62%)

a Número total de animais sob análise.

Tabela 10 -Teste para a diferença entre médias para o coeficiente de ajuste para os diferentes modelos utilizados para todas as raças estudadas

Table 10 - Test for difference between means of adjusted coefficient for different models used for all breeds

Modelo Model	Média <i>Mean</i>	Student-Newman-Keuls
Logístico duplo	0,991341	A
Double logistic Richards	0,985321	В
Richards Von Bertalanffy	0,973512	С
Von Bertalanffy Brody	0,973071	С
Brody Gompertz	0,972235	С
Gompertz Logístico	0,968650	D
Logistic Mitscherlich	0,949602	E
Mitscherlich	0,7 17002	L

^{*}Linhas com letras distintas na mesma coluna diferem a 5% (P<0,05).

mato da curva de crescimento e para construção de índices e critérios de seleção.

A raça Hereford foi estimada como 28% superior em maturação (k) aos cruzamentos Charolês, Angus e Galloway (Goonewardene et al., 1981). No Brasil, Rosa et al. (1979), trabalhando com dados da raça Nelore, indicaram o critério de seleção para peso aos 12 meses como o mais adequado na tentativa de se aumentar a precocidade sem aumentar excessivamente o peso adulto, como respostas correlacionadas à seleção. Testando um cruzamento delineado para explorar a heterose total, Perotto et al. (1994) concluíram que o formato da curva de crescimento dos descendentes tinha sido alterado em relação aos animais fundadores do rebanho. Ao analisarem dados de fêmeas Gir, Guzerá, Holandês x Gir e Holandês x Guzerá, Perotto et al. (1997) relataram que o cruzamento Holandês x Zebu aumentou o peso adulto sem diminuir muito a taxa de maturação. Esses resultados implicam que a variabilidade genética ocorre na amostra estudada e que ela pode ser utilizada na mudança da forma da curva de crescimento, sendo que ela ocorre na amostra estudada.

^a Total number of animals under analysis.

^{*} Rows with different characters on same column differ at 5% (P<0.05).

Tabela 11 - Teste para a diferença entre médias para o peso assintótico (a) e a taxa de maturidade (k) entre os diferentes modelos utilizados para todas as raças estudadas

Table 11 - Test for difference between means of asymptotic weight (a) and maturity rate for different models used for all breeds

				metro umeter	
		a	l	1	ζ.
Modelo <i>Model</i>	Raça Breed	Média <i>Mean</i>	SNK* SNK	Média <i>Mean</i>	SNK SNK
Logístico duplo	Guzerá (Guzera)	363,88	A	0,015495	A
Double logistic	Nelore (Nellore)	402,21	В	0,014854	A
	Nelore Mocho (Polled Nellore)	389,90	В	0,019134	В
Richards	Guzerá (Guzera)	485,30	A	0,0024578	A
Richards	Nelore (Nellore)	487,58	A	0,0023314	A
	Nelore Mocho (Polled Nellore)	479,32	A	0,0024318	A
Von Bertalanffy	Guzerá (Guzera)	419,50	A	0,0035112	A
Von Bertalanffy	Nelore (Nellore)	447,28	A	0,0036707	A
00.7	Nelore Mocho (Polled Nellore)	421,98	A	0,0041491	В
Brody	Guzerá (Guzera)	441,11	A	0,0022776	A
Brody	Nelore (Nellore)	487,48	В	0,0021402	A
·	Nelore Mocho (Polled Nellore)	489,96	В	0,0023483	A
Gompertz	Guzerá (Guzera)	405,41	A	0,0041959	A
Gompertz	Nelore (Nellore)	432,69	A	0,0045325	В
	Nelore Mocho (Polled Nellore)	403,75	A	0,0047726	В
Logístico	Guzerá (Guzera)	401,35	АВ	0,0070562	A
Logistic	Nelore (Nellore)	426,70	A	0,0073056	A
	Nelore Mocho (Polled Nellore)	385,38	В	0,0084584	В
Mitscherlich	Guzerá (Guzera)	416,83	A	0,0028457	A
Mitscherlich	Nelore (Nellore)	443,86	A	0,0027699	A
	Nelore Mocho (Polled Nellore)	436,51	A	0,0030677	A

^{*} Letras diferentes na mesma coluna, para o mesmo modelo, diferem a 5% (P<0,05) pelo teste Student-Newman-Keuls.

^{*} Different characters in the same column, for the same model, differ at 5% (P<0.05) by Student-Newman-Keuls test.

Tabela 12 - Qualidade de ajuste do modelo misto, pelo critério de informação de Akaike (AIC), valores preditos para os componentes de variância e suas significâncias

Table 12 - Mixed linear model quality adjust, by Akaike information criteria (AIC), variance components predicted values and its significance

	significance							
					lodelo sob ar Iodel under an			
			-	Somente μ Only μ		Comp Ful		
Equação Equation	Parâmetro Parameter	Raça Breed	AIC	σ_e^2	AIC	$\sigma_{\mathop{\mathrm{Re}} p}^2$ (Sire)	σ_F^2 (Dam)	$\sigma_{\scriptscriptstyle e}^{\scriptscriptstyle 2}$
Brody Brody	a	Guzerá Nelore Nel. M.	-844,6 -4401,7 -1284,8	36852,00 38128,00 26079,00	-609,3 -3912,5 -979,9	0,00 376,37 0,00	0,00 3272,39 2923,27	28559,00*** 26737,00*** 6134,58**
	k ⁻¹	Guzerá Nelore Nel. M.	-941,0 -4840,5 -1395,4	170062,00 144965,00 80176,00	-692,5 -4343,5 -1113,1	1394,76 335,58 0,00	18989,00 35551,00** 27162,00***	161202,00* 98972,00*** 22486,00***
Gompertz Gompertz	a	Guzerá Nelore	-1192,8 -5861,0	25803,00 28688,00	-942,9 -5193,7	2918,28 930,87**	0,00 1350,62	19278,00*** 13865,00*** 3590,84***
	k ⁻¹	Nel. M. Guzerá Nelore	-1423,8 -1169,3 -5475,8	15043,00 19965,00 12118,00	-1108,2 -931,2 -5001,5	1290,92 636,41 142,87	1007,79 7715,37 0,00	9731,20* 10034.00***
Logístico	a	Nel. M. Guzerá	-1328,8 -832,2	6541,73 24629,00	-1082,8 -585,5	0,00	2215,92*** 2238,99	1935,39*** 13827,00**
Logistic	k ⁻¹	Nelore Nel. M. Guzerá	-4039,0 -1114,3 -6978,6	19732,00 10952,00 3055,50	-3462,2 -820,4	357,37 0,00 622,18 ^{nc}	1826,55** 537,13 2562,72 ^{nc}	9498,23*** 2528,25*** 2,866E-9 ^{nc}
	K -	Nelore Nel. M.	-0978,0 -3379,9 -936,0	2509,06 1559,31	nc -2995,3 -717,2	77,94 23,34	0,00 301,60**	1960,70*** 425,11***
Mitscherlich Mitscherlich	ı a	Guzerá Nelore	-1162,6 -5428,8	38610,00 33685,00	-904,9 -4842,3	0,00 1750,39**	0,00 4496,84***	29451,00*** 16157,00***
	k-1	Nel. M. Guzerá Nelore Nel. M.	-1406,6 -1261,8 -5678,7 -1467,2	20245,00 121592,00 62063,00 35139,00	-1072,6 -990,3 -5178,2 -1163,8	3306,31** 6641,32 0,00 7752,59**	2023,73** 51213,00* 12515,00*** 4998,70*	2901,80*** 51130,00* 41783,00*** 8772,95***
von Bertalar von Bertalanf	•	Guzerá Nelore Nel. M.	-1407,2 -1139,0 -5578,5 -1400,4	29378,00 31427,00 17074,00	-880,3 -4945,9 -1087,3	1275,22 783,27* 3908,49*	0,00 4190,22*** 1031,47	20873,00*** 13970,00*** 3813,86***
	k ⁻¹	Guzerá Nelore Nel. M.	-1145,5 -5456,6 -1381,3	31689,00 23550,00 14369,00	-899,9 -4978,4 -1111,0	0,00 0,00 1,11E-14	8869,37 7082,24***	20720,00*** 13668,00*** 4261,88***
Richards Richards	a	Guzerá Nelore Nel. M.	-244,6 -1863,5 -714,9	40045,00 36079,00 24320,00	-44,70 -1453,0 -483,6	0,00 0,00 496,96	33664,00** 4523,87 10091,00***	0,91 18289,00*** 274,92
	k ⁻¹	Guzerá Nelore Nel. M.	-322,3 -2154,3 -828,2	298824,00 290039,00 190716,00	-45,0 -45,0 -1724,4 -587,2	0,00	0,00 0,00 172767,00***	51992,00** 279942,00*** 488,71
	m	Guzerá Nelore Nel. M.	-55,8 -556,3 -222,3	1,11 3,07 3,13	-10,5 -388,6 -169,4	0,17 0,00 0,07	1,15E-18 0,72** 3,18***	· ata
Logístico du Double logist	•	Guzerá Nelore	-910,9 -4228,2	4599,75 5073,73	-667,2 -3713,6	0,00 111,53	577,67 274,45	1539,82*** 2609,11***
	a2	Nel. M. Guzerá Nelore Nel. M.	-881,0 -950,7 -4409,0 -910,2	3640,25 7543,64 8256,06 5254,70	-642,6 -715,2 -3939,8 -654,1	298,76 0,00 0,00 0,00	818,07* 0,00 0,00 65,75	752,73** 4759,55*** 5862,82*** 1998,33***

Continua na próxima página...

Modelo sob análise Model under analysis Somente μ Completo Only μ Full σ_F^2 $\sigma^2_{{
m Re}\,p\atop (Sire)}$ σ_e^2 σ_e^2 Equação Parâmetro Raça AIC **AIC** (Dam) EquationParameter Breed1801,36*** b1 Guzerá -882,2 1020,85* 3218,84 -673,4 0,00 1112,82*** Nelore -3813,5 1662,03 -3449,8 0,00 246,64* 2039,06 -644,82^{*} 643,45* Nel. M. -835,0 -626,8 442,46 3158536,00*** b2 Guzerá 303157,00 -1442,4 3388200,00 -1114,7 175244,00 9548,47*** 11469,00 -4112,4 0,00 Nelore -4531,1 312,97 5715,40*** 3368,17** Nel. M. 990,6 14448,00 -746,4 1780,84 7477,52*** a1+a2Guzerá -1013,2 16390,00 -742.3 0,00 0,00 9258,10*** Nelore -4697,7 17956,00 -4127,1 192,74 801,38 1576,45** 1288,43** Nel. M. -975,1 11878,00 -680,1 815,24 0,38E-4*** k Guzerá 563,9 0,51E-4 401.8 9,97E-8 0,00 0,17E-4*** Nelore 2928,9 0,19E-4 2627,1 9,33E-8 7,33E-7 0,10E-2*** Nel. M. 292,8 0,14E-2 227,1 0,00 1,07E-7

Tabela 13 - Valor de F para a influência dos efeitos fixos sobre os parâmetros estimados para as equações não-lineares Table 13 - F values for fixed effects influence on non-linear equations parameters estimates

Modelo <i>Model</i>	Variável <i>Variable</i>	Raça Breed	Efeito <i>Effect</i>						
			Sexo Sex	Prop <i>Herd</i>	Ano nasc Year	Mes nasc Month	Regim Manag.	Regim*Sexo* Sex Manag.	
Brody	a	Guzerá Nelore	1,83 2,79	2,28 1,90	0,87 2,64*	1,26 1,60	0,37 1,96	0,03 0,03	
	k ⁻¹	Nel. M. Guzerá Nelore Nel. M.	35,03*** 2,21 0,58 7,50**	3,64 1,24 1,02 2,81	5,05* 0,66 2,53* 2,66	2,73 0,79 2,70* 1,65	6,94** 2,37 2,26 1,90	0,63 0,38 0,12 0,12	
Gompertz	a	Guzerá Nelore	4,61 28,62***	1,86 2,97***	0,46 5,97***	0,95 0,97	3,91 12,57***	0,10 1,72	
	k ⁻¹	Nel. M. Guzerá Nelore Nel. M.	56,20*** 1,77 5,80** 14,50**	2,08 2,02 1,25 2,17	3,22 1,10 4,61*** 3,60*	2,31 0,72 1,61 2,69	10,03** 5,60 3,12** 3,70	1,10 0,52 0,59 0,00	
Logístico	a	Guzerá Nelore	11,09 36,40*** 39,27***	1,58 2,53*	1,03 4,09**	0,67 1,08	6,14 8,84*** 17,88**	0,12 0,66	
	k ⁻¹	Nel. M. Guzerá Nelore Nel. M.	nc 7,93** 17,89**	3,69 nc 1,68 2,87	2,62 nc 2,90* 3,58	3,64 nc 1,83 6,46*	17,88 nc 4,60** 4,02	2,12 nc 0,63 0,19	
Mitscherlich	a	Guzerá Nelore Nel. M.	0,53 10,33*** 32,15***	2,52 3,99***	0,98 2,96*** 3,32	1,82 1,70	4,80 10,21*** 11,74**	0,13 0,40	
	k ⁻¹	Guzerá Nelore Nel. M.	0,22 4,44** 5,43*	3,09 3,11 1,96** 1,99	1,76 3,40*** 1,74	2,19 1,29 0,98 2,15	0,55 1,07 0,03	0,23 0,21 2,14 1,12	

^{*} P<0,10, ** P<0,05, *** P<0,01, Teste Z. * P<0.10, ** P<0.05, *** P<0.01, Z test.

Continuação da Tabela 13...

Modelo Model		Raça Breed	Efeito <i>Effect</i>						
	Variável Variable		Sexo Sex	Prop <i>Herd</i>	Ano nasc Year	Mes nasc Month	Regim Manag.	Regim*Sexo* Sex Manag.	
von Bertala	nffy a	Guzerá	5,19	2,38	0,74	1,14	3,54	0,08	
		Nelore	36,33***	3,28***	4,38***	1,80*	6,40***	0,07	
		Nel. M.	37,74	2,78	4,60*	3,91*	10,30**	1,90	
	k ⁻¹	Guzerá	3 27	2,26	0,76	0,72	4,21	0,26	
		Nelore	7,68***	1,09	4,39***	1,97*	4,31**	0,53	
		Nel. M.	6,37*	2,45	3,42	3,75	4,32	2,36	
Richards	a	Guzerá	0,01	0,93	0,88	0,92	1,97	0,41	
		Nelore	1,42	2,13	1,23	1,19	3,51	0,84	
		Nel. M.	20,57**	1,86	5,72	4,49	11,13*	0,00	
	k ⁻¹	Guzerá	55,82	75,27	52,07	72,82	144,78	102,28	
		Nelore	0,39	0,65	1,80	0,42	0,74	0,44	
		Nel. M.	1,71	2,74	7,43	3,06	3,89	0,63	
	m	Guzerá	0,31	0,98	2,82	1,84	0,39	1,50	
		Nelore	0,32	15,45**	0,66	0,86	0,17	0,18	
		Nel. M.	1,56	6,54	3,41	3,04	0,66	1,48	
Logístico duplo al		Guzerá	0,25	3,39	4,23	1,64	18,37	0,14	
	•	Nelore	1,52	4,03***	2,94**	2,85**	38,48***	1,54	
		Nel. M.	8,43	1,58	2,30	1,14	7,20	0,62	
	a2	Guzerá	10.18	4.86	0,98	1,70	5.49	1,94	
		Nelore	14,82***	3,23**	3,41**	2,29*	4,85**	0,16	
		Nel. M.	33,24**	0,93	2,23	2,11	2,48	0,41	
	b1	Guzerá	0,00	2,19	1,53	2,39	4,87	2,30	
		Nelore	0,17	2,42*	1,91	2,31*	9,15***	3,84*	
		Nel. M.	1,62	0,92	2,92	0,87	2,49	1,39	
	b2	Guzerá	0,10	0,69	1,04	1,74	0,74	0,00	
		Nelore	0,49	2,35*	2,12	4,38**	0,28	0,02	
		Nel. M.	1,66	3,18	3,45	1,56	0,82	0,66	
a1+a2		Guzerá	8.94	5.78	2,41	2,98	16.68	1,59	
		Nelore	12.50***	4,28***	3,91**	2,96**	24,53***	0,24	
		Nel. M.	62,92**	1,48	2,87	2,15	13,02*	1,04	
	k	Guzerá	1,78	4,14	1,17	1,46	3,57	0,77	
		Nelore	0,37	1,31	1,32	3,52**	2,42	1,75	
		Nel. M.	0,27	5,49	8,28	38,79	13,00	14,19	

^{nc} Algoritmo não convergiu.

Em termos gerais, os efeitos fixos que mais influenciaram os parâmetros estimados para as equações não-lineares, em ordem de importância, foram sexo, propriedade, ano e mês de nascimento e regime alimentar, com, respectivamente, 23, 18, 16, 11 e 11 valores significativos (Tabela 13). A interação de sexo*sistema de criação influenciou

apenas o parâmetro b₁ do modelo Logístico Duplo, para a raça Nelore. Os parâmetros estimados pelo modelo de Richards sofreram pouca influência dos efeitos fixos, demonstrando pouca variabilidade, e foram seguidos do modelo Brody. Os modelos de maior variabilidade foram o Logístico Duplo e o von Bertalanffy.

nc Algorithm not converged.

* P<0,10, ** P<0,05, *** P<0,01, Teste F; - Sem possibilidade de realizar o teste F.

* P<0,10, ** P<0,05, *** P<0,01, F test; - Without possibility to use F test.

Conclusões

A análise dos dados de crescimento corporal dos animais por meio de modelos não-lineares depende diretamente da correta observação e do acompanhamento de observações de peso-idade, de modo que a falta de observações em idades mais avançadas pode prejudicar as estimativas da curva e seus parâmetros. A verificação da convergência da equação não garantiu que os parâmetros estimados se mantivessem nos limites biologicamente aceitáveis. Portanto, deveriam ser observados criteriosamente quais seriam passíveis de uma análise, para estudo da influência de efeitos fixos e aleatórios. O modelo logístico duplo foi considerado o mais satisfatório computacionalmente, enquanto os modelos de Richards e o Brody, os melhores biologicamente.

A influência dos efeitos fixos colaborou com a noção de que o manejo e a correta nutrição poderiam influenciar o desenvolvimento corporal, além dos componentes genéticos. A variabilidade dos efeitos aleatórios possibilitaria o planejamento da modificação da curva de crescimento por meio da exploração de indivíduos mais qualificados, selecionados a partir de um programa de melhoramento genético.

Literatura Citada

- BATSCHELET, E. Introdução à matemática para biocientistas. São Paulo: EDUSP, 1984. 596p.
- von BERTALANFFY, L. Quantitative laws in metabolism and growth. **Quarterly Review of Biology**, v.32, p.218, 1957.
- BRODY, S. **Bioenergetics and growth**. New York: Rheinhold Pub. Corp., 1945. 645p.
- BROWN, J.E.; FITZHUGH JR., H.A.; CARTWRIGHT, T.C. A comparison of nonlinear models for describing weight-age relationships in cattle. **Journal of Animal Science**, v.42, n.4, p.810-818, 1976.
- DOREN, P.E.; BAKER, J.F.; LONG, C.R. et al. Estimating parameters of growth curves of bulls. **Journal of Animal Science**, v.67, p.143-1445, 1989.
- FITZHUGH JR., H.A. Analysis of growth curves and strategies for altering their shape. **Journal of Animal Science**, v.42, n.4, p.1036- 1051, 1976.
- GOONEWARDENE, L.A.; BERG, R.T.; HARDIN, R.T. A growth study of beef cattle. Canadian Journal of Animal Science, v.61, p.1041-1048, 1981.
- HOFFMAN, R.; VIEIRA, S. **Uma introdução à econometria**. 3.ed. São Paulo: HUCITEC. 1998. 379p.
- KOENEN, E.P.C.; GROEN, A.F. Genetic analysis of growth patterns of black and white dairy heifers. **Journal of Dairy Science**, v.79, p.495-501, 1996.
- KROLL, L.B.; TORNERO, M.T.T. Modelo de Gompertz com sazonalidade e autocorrelação nos erros para ajuste do crescimento ponderal em vaca leiteira. **Pesquisa Agropecuária Brasileira**, v.29, n.5, p.707-711, 1994.

KVÅLSETH, T.O. Cautionary note about R². **The American Statistician**, parte 1, v.39, n.4, p.279-285, 1985.

- LAWRENCE, T.L.J.; FOWLER, V.R. **Growth of farm animals**. New York: CAB International, 1997. 330p.
- LUDWIG, A.; SILVA, M.A.; OLIVEIRA, L.M. Ajustamento de modelos estatísticos exponenciais ao crescimento de gado nelore. **Pesquisa Agropecuária Brasileira**, v.16, n.2, p.297-302, 1981.
- MAZZINI, A.R.A. Análise da curva de crescimento de machos Hereford considerando heterogeneidade de variâncias e autocorrelação dos erros. Lavras: Universidade Federal de Lavras, 2001. 94p. Dissertação (Mestrado em Experimentação Agrícola) Universidade Federal de Lavras, 2001.
- NELDER, J.A. The fitting of a generalization of the logistic curve. **Biometrics**, v.17, p.89-94, 1961.
- NOBRE, P.R.C.; ROSA, A.N.; SILVA, L.O.C. et al. Curvas de crescimento de gado nelore ajustadas para diferentes frequências de pesagens. **Pesquisa Agropecuária Brasileira**, v.22, n.9/10, p.1027-1037, 1987.
- OLIVEIRA, H.N.; LÔBO, R.B.; PEREIRA, C.S. Comparação de modelos não-lineares para descrever o crescimento de fêmeas da raça Guzerá. **Pesquisa Agropecuária Brasileira**, v.35, n.9, p.1843-1851, 2000.
- PEARSON, A.M.; DUTSON, T.R. Growth regulation in farm animals. London: Elsevier Applied Science, 1991. 629p.
- PEROTTO, D.; CUE, R.I.; LEE, A.J. Comparison of nonlinear functions for describing the growth curve of three genotypes of dairy catle. **Canadian Journal of Animal Science**, v.72, p.773-782, 1992.
- PEROTTO, D.; CUE, R.I.; LEE, A.J. et al. Additive and non-additive genetic effects of growth-curve parameters of Holstein, Ayrshire and crossbreed females. **Canadian Journal of Animal Science**, v.74, p.401-409, 1994.
- PEROTTO, D.; CASTANHO, M.J.P.; CUBAS, A.C. et al. Efeitos genéticos sobre as estimativas dos parâmetros das curvas de crescimento de fêmeas bovinas Gir, Holandês x Gir e Holandês x Guzerá. **Revista Brasileira de Zootecnia**, v.26, n.4, p.719-725, 1997.
- RICHARDS, F.J. A flexible growth function for empirical use. **Journal of Experimental Botany**, v.10, n.29, p.290-300, 1959.
- ROSA, A.N.; SILVA, M.A.; MILAGRES, J.C. et al. Mudança da curva de crescimento de animais da raça Nelore mediante uso de índices de selção. **Revista Brasileira de Zootecnia**, v.8, n.4, p.610-621, 1979.
- RUTLEDGE, J.J.; ROBISON, O.W.; EISEN, E.J. et al. Dynamics of genetic and maternal effects in mice. **Journal of Animal Science**, v.35, p.911-915, 1972.
- STATISTICAL ANALYSES SYSTEM SAS. **SAS/STAT** User's guide. Version 8.2. 4.ed. v.2. Cary: 2000.
- TALLIS, G.M. Selection for na optimum growth curve. **Biometrics**, v.24, n.1, p.169-177, 1968.
- TRENKLE, A.; MARPLE, D.N. Growth and development of meat animals. **Journal of Animal Science**, v.57, supl.2, p.273-283, 1983.
- WINSOR, C.P. The Gompertz curve as a growth curve. **Proceedings of the National Academy of Science**, v.18, p.1-17, 1932.

Recebido em: 13/04/04 **Aceito em**: 15/07/05