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ABSTRACT - Finite mixture models are helpful for uncovering heterogeneity due to hidden structure; for example,

unknown major genes. The first part of this article gives examples and reviews quantitative genetics issues of continuous

characters having a finite mixture of Gaussian components. The partition of variance in a mixture, the covariance

between relatives under the supposition of an additive genetic model and the offspring-parent regression are

derived. Formulae for assessing the effect of mass selection operating on a mixture are given. Expressions for

the genetic correlation between a mixture and a Gaussian trait are presented. If there is heterogeneity in a

population at the genetic or environmental levels, then genetic parameters based on theory treating distributions

as homogeneous can lead to misleading interpretations. Subsequently, methods for parameter estimation

(e.g., maximum likelihood) are reviewed, and the Bayesian approach is illustrated via an application to

somatic cell scores in dairy cattle.

Key Words: Bayesian methods, dairy cattle, maximum likelihood, mixture distributions, quantitative

genetics, somatic cell scores

Introduction

Linear models with mixed effects have been

used extensively in animal breeding since the early
50´s (e.g., Henderson, 1973). An account of the theory

can be found in Searle et al. (1992), whereas Bayesian

treatments are in Gianola & Fernando (1986) and
Sorensen & Gianola (2002). Mixed linear models are

flexible and can be fitted in cross-sectional,

longitudinal, spatial or multi-response settings. In
animal breeding, these models are used to infer

genetic parameters such as heritability and genetic

correlations, linear combinations of fixed effects (e.g.,
diferences in mean value of cohorts born in

successive generations), and to predict breeding

values of candidates for selection. Animal breeding
implementations typically involve large data sets

and hundreds of thousands of correlated random

effects due to coancestry relationships between
animals (Gianola, 2001).

However, linear models do not accommodate

well discrete and censored variates and may not

be robust enough when there is “concealed”

structure in the data.

Finite mixture models, used in biology and in
genetics since Pearson (1894), are helpful for

uncovering heterogeneity due to hidden structure or

incorrect assumptions. The objective of this article
is to review some aspects related to analysis with

finite mixture models in animal breeding contexts.

The paper is organized as follows. First, examples
are presented where mixture models can play a useful

role, followed by some basic statistical and

quantitative genetics issues. Subsequently, maximum
likelihood estimation of parameters of a mixture is

discussed. Since use of Bayesian methods is

exploding in biology, a brief account of a Bayesian
application of mixtures to dairy cattle data is presented.

The paper ends with concluding remarks.

Examples

Arguably, finite mixture models can play an

increasingly important role in animal breeding. To
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illustrate, consider four problems arising in animal

genetics. Unknown loci with major effects can

create “bumps” (sometimes quite subtle) in a
phenotypic distribution, and this heterogeneity

may be resolved by fitting a mixture, i.e., by

calculating conditional probabilities that a datum
is drawn from one of the several potential, yet

unknown, genotypes. A brief review of the use of

mixtures for uncovering major genes is in Lynch
& Walsh (1998). Also, many quantitative trait loci

(QTL) detection procedures are based on ideas

from mixture models (Haley & Knott, 1992).
Basically, given marker and phenotypic data, one

computes the probability that an individual has

genotype QQ; Qq or qq at a putative QTL.
The second example is from dairy cattle

breeding. Mastitis is an infammation of the

mammary gland of cows associated with bacterial
infection. Genetic variation in susceptibility to the

disease exists, and genetic selection for resistance

is a feasible strategy (Heringstad et al., 2000).
However, routine recording of mastitis events is

not conducted in most nations. Instead, milk

somatic cell scores (SCS) measured in cows have
been used as a proxy for the disease in genetic

evaluation of artificial insemination bulls (with

Gaussian mixed effects models), much as the
prostate specific antigen is treated as a proxy for

prostatic cancer. It is not obvious how SCS

information should be treated optimally in genetic
evaluation, because normal, clinical and different

types of subclinical cases are hidden. Some of the

challenges may be met using finite mixture
models, as suggested by Detilleux & Leroy (2000),

Ødegård et al. (2003, 2005), Gianola et al. (2004)

and Boettcher et al. (2005, 2007).
Another example is from transcriptional

analysis and genomics. In microarray studies,

messenger RNA samples are collected from 2 target
tissues, converted into complementary DNA,

labelled with dyes of different colors (typically red

and green), and hybridized against thousands of
known pieces of DNA (genes) spotted in a slide. If

a gene is expressed in the targets, hybridization is

detected via fluorescence. Some spots are green,
others red, plus every color in between! Image

analysis is used for quantitating the extent of

hybridization and differential expression. Observed
expression may not reflect true differential

expression, however. One can think in terms of a

mixture of at least 2 distributions:

1) if there is differential expression, the

distributions of measurements in the red

and green channels for a given gene would

have different parameters, and

2) in the absence of differential expression,
these parameters should be equal.

The fourth example is that of assessing genetic
change in populations of animals subject to

artificial selection. Animals are born, die or are

culled at any point in time, so generations overlap.
Since many such animals have unknown parents,

it is difficult to give a crisp definition of

“generation”. Animal breeders “group”

individuals into more or less arbitrary cohorts

(Quaas, 1988; Westell et al., 1988). However, the

“true” group structure might be finer or coarser.
An alternative to arbitrary grouping is to assume

that unobservable genetic effects of unknown

parents are drawn from a mixture of distributions.

Statistical and quantitative genetic
ISSUES 100

Density, mean and variance. A random variate
y (the distinction between variables and realized

values is ignored in the notation) is drawn from

one of K mutually exclusive and exhaustive
distributions (groups), without knowing which of

these underlies the draw. For instance, the observed

SCS in the milk of a cow may be from a healthy
or from an infected animal; if the disease is

mastitis, the case may be clinical or subclinical.

In the absence of a precise veterinary diagnosis,
there is uncertainty about to which group the

observed SCS score pertains to. Here, K = 3 and

the underlying groups are: uninfected, clinical

and sub-clinical. The density of y can be written

as

where
K (assumed known) is the number of

components of the mixture; Pi is the probability

that the draw is from the ith component; pi (y|θθθθθi) is
the density of the distribution of y under

component i; θθθθθi  is a parameter vector indexing

such distribution, and θθθθθ = [θθθθθ´1, θθθθθ´2, ..., θθθθθ´K, P1, P2, ..

PK]´ is the collection of all distinct parameters,
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respectively, where   is the residual or

environmental variance. Informally,

 is the part of the

environmental variance contributed by population
heterogeneity.

Assume that the genetic effect ai is also drawn

from the mixture with GA components

       (6)

subject to . In general, y may be either scalar

or vector valued, or may be discrete. Here, we
consider the situation where component

distributions are Gaussian. In what follows, the

notation N (y|µ,σ2) will denote a univariate normal
distribution or density with mean µ and variance

σ2; whereas N (y|µµµµµ,Σ) pertains to a multivariate

normal setting, where µµµµµ is the mean vector and Σ is
the variance covariance matrix.

The mean and variance of a finite mixture of K

Gaussian distributions, with now θθθθθ = [P1, P2, ...,

PK, µ1, µ2..., µK,  , , ... , ]´, are

                                           (1)

 and

          (2)

The first term in (2) can be construed as the

average variance, whereas 

measures dispersion between group means; if the
µ´s are equal, this second term is null. Note that

the variance of the mixture depends not only on

the group variances, but on the group means as
well.

The additive genetic mixture model
The quantitative genetics of characters

distributed as mixtures has not been studied
extensively, although the idea underlies work of,

e.g., Latter (1965) and Kimura & Crow (1978).

What follows is a summary of results in Gianola
et al. (2006). Suppose an observable random

variable (yi; phenotype of individual i) is drawn from

the finite mixture of GE Gaussian components

,      (3)

and

           (5)

where  is a vector containing the mixing

proportions  (summing to 1); µe and  are each

GE  x 1 vectors of means and variances with typical

elements µk and , respectively; ai is the genetic

value of i. The mean and variance of this conditional

(given the genetic effect) distribution are

                     (4)
k= 1

e e

where

pa = [
1aP , ..., 

AGaP ]´; ααααα = [α1,... AGα ]´, and

 = [ , ... ]´ are the vectors of mixing

proportions, component means and component

variances, respectively.

Then,   and

 

                                                  (7)

where  is the genetic variance, and

    is  interpretable as

variance between genetic means. In Gaussian
linear models the distribution of the random genetic
effects is often taken to be N ; where

  is the additive genetic variance, so it may be

reasonable to introduce the restriction 

in the mixture (Verbeke & Lesaffre, 1996). The joint
density of ai and yi is obtained by multiplication of
(3) and (6), yielding

(8)

which is a finite mixture of GE x GA bivariate normal

distributions, with mixing proportion  for the
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kmth component; note that   From

standard Gaussian linear models theory, given the
km component (let the indicator δkm = 1 denote

such situation)

where N2 (.|.,.) denotes a bivariate normal

distribution. Further

where

and

Under the standard additive genetic model, this

regression of “genotype on phenotype” bkm is the

heritability of the character under the kmth

component of the bivariate mixture. The joint

density (8) is also expressible as

                                                                           (9)

The marginal density of yi is arrived at by

integrating (9) over ai; yielding

 

(10)

This is a finite mixture of GE x GA univariate

normal distributions with mixing proportions

. The mean and variance of the phenotypic

distribution are

(11)
and

                                  (12)

A standard problem in quantitative genetics is

that of inferring genetic values from phenotypes.
From (9) and (10), the density of the conditional

distribution of ai given yi is

       (13)

where

Hence, the conditional distribution of ai given

yi is a mixture of the GE x GA normal distributions,

 where the mixing

proportion is Qkm, the conditional probability that

the datum is drawn from

; given the observation

yi. The best predictor of genetic value is the
conditional expectation function (Henderson 1973;

Bulmer 1980; Fernando & Gianola 1986).

 

(14)

which is a weighted average of the conditional

expectations peculiar to each of the GE x GA

components of mixture (13). This result is important:
the regression of genotype on phenotype is not

linear in yi. Therefore, standard linear models give

less than optimal predictions of genetic effects for
traits distributed as mixtures. Further, the variance

of the conditional distribution
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      (15)

In the standard additive genetic linear model,
the variance of the conditional distribution of

genotypes given phenotypes is , where

h2 is the coefficient of heritability; this conditional

variance is homogeneous and does not depend
on the data. In a mixture model, however, the

dispersion about the regression function is

heteroscedastic and non-linear on the phenotypic
value. Hence, both point and interval prediction of

genetic value in mixtures involve strikingly different

formulae.

Truncation selection
Consider the standard truncation selection

setting in which individuals kept as parents are
such that yi > t; with the proportion of individuals

selected being Pr (yi  > t) = γ. From (10), the

distribution of phenotypic values within selected
individuals has density

,

(17)
where ikm is the selection intensity factor under

the kmth component and

are relative weights summing to 1. The phenotypic

superiority of selected individuals, or selection

differential (S) is given by the difference between
(17) and (11). Further, the mean genetic value of

selected parents is

where

(16)

Above, γkm is the proportion selected within
the kmth mixture component and Φ (.) is the

standard normal distribution function. The

proportion selected γ is, thus, a weighted average
of the individual component selection proportions

γkm. Since the threshold is fixed, the components

that are most prevalent, have largest means and are
most variable, will be influential.

The mean value of selected individuals is

This expression cannot be evaluated

analytically, because it is a highly nonlinear
function of the phenotypic values. Finally, the

genetic superiority of accepted parents over the

unselected population is

The expected fraction of the selection
differential that is realized can be assessed as

∆a/S; and this will differ from what could be

expected from the regression of offspring on mid
parent, because of non-linearity.

Heritability
The fraction of variance attributable to additive

genetic effects (usual definition of heritability) is

location invariant for a Gaussian trait, i.e., it does

not involve mean values. In a mixture, heritability

becomes

(18)

The partition of variance depends on
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component-specific variances (  and ), on

mixing proportions (  and ) and on mean values
(µk and αm) as well. In the simpler case in which the

genetic distribution is the homogeneous process

N (ai|0, ); “heritability” becomes

(19)

situations with different additive genetic variance

( ) and distances between means (∆) in the two

distributions of the mixture: 1)   = 1, ∆ = 1;
2)  = 1,  ∆ = 2;  3)  = .10, ∆ = 1, and

4)  = .10, ∆ = 2. Situations (1) and (2) correspond

to a trait with a heritability of .50 under homogeneity,
while (3) and (4) are for a lowly heritable trait

(h2 

≈

.09). In (1) and (2), the regression β decreases

from 0.25 to about 0.22 and 0.17; respectively,
representing relative decreases in heritability of 12

and 32%. The relative decreases in heritability are

18 and 47% in cases (3) and (4), respectively. In
brief, heritability in heterogeneous or admixed

populations depends on the mixing proportion, on

the mean difference between mixture components
and on the “homogeneous situation” heritability.

Correlations with a Gaussian trait
Correlations between a mixture trait and a

normally distributed character (ω) may be of

interest. For example, the mixture trait

could be SCC in dairy cattle, with
several component distributions

corresponding to different unknown

statuses of mammary gland disease.
The Gaussian trait could be milk yield

of a cow. Is the genetic correlation between the

two traits affected by heterogeneity of somatic cell
count?

The effect of  on the genetic correlation is

illustrated next for a 2-component mixture.

Let  be a heteroscedasticity factor,

where , the genetic variance under the first

component of the mixture,  is viewed as “baseline”

genetic variance, i.e., a measure of variability in

the absence of heterogeneity. Then, it can be
shown that under some simplifying assumptions

and this is expected to be lower than in a

homogeneous population because fixed effects

contribute to variance.

Offspring-parent regression.
The standard formula for the regression of the

phenotypic value of a progeny (O) on that of a
parent (P) gives

If the distribution of genetic effects is
homogeneous, this simplifies to

       (20)

The consequences are clear: if there is

heterogeneity either in the distribution of sampling

model residuals or of genetic effects, then βOP is
affected by the mixing proportions and by the

means µk. To illustrate, suppose that the genetic

distribution is homogeneous; let GE = 2, take µ1 =

0 as origin, µ2 =  and  Then (20)

is expressible as

When Pe = 1; the formula gives half of heritability,

which is a standard result. The function is

symmetric with respect to Pe; since Pe (1 - Pe) is
maximum at ; the regression is minimum at

this value. As an example, consider the offspring-

parent regression as a function of Pe for four

where  is the genetic correlation in the

absence of a mixture and   is

the factor by which  is modified by

heterogeneity. Since the sign of  is invariant

with respect to , it suffices to examine its values

only under positive . Figure 1 displays the

relationship between the genetic correlation and
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for two values of   (0.7 and 0.3) and of λ
(1.5 and 2). As  increases, the proportion of the

component with the smaller genetic variance (m =

1) to increase. The genetic correlation increases

monotonically with , the less variable

component, and more rapidly so at the largest value

of genetic heteroscedasticity. Similar algebra and

considerations hold for the environmental
correlation between traits.

Figure 1 - Genetic correlation (Rho) between a
Gaussian character and a mixture trait for a two-
component mixture, as a function of the mixing
proportion ( ), for different combinations of

 = genetic correlation in absence of mixture
and λ= heteroscedasticity factor. From top to
bottom: 1)  = 0.7, λ= 1.5 (open squares); 2)

= 0.7, λ = 2 (dotted line); 3)  = 0.3,  λ =
1.5 (solid line); 4)  = 0.3,  λ= 2 (open circles).

Summary remarks
If there is heterogeneity in a population either

at the genetic or environmental levels, then genetic

parameters based on theory treating distributions as

homogeneous can lead to misleading interpretations.
Some peculiarities of mixture characters are:

heritability depends on the mean values of the

populations, the offspring-parent regression is
non-linear, and genetic or phenotypic correlations

cannot be interpreted devoid of the mixture

proportions and of the parameters of the
component distributions.

Maximum likelihood estimation

Motivation
Detilleux & Leroy (2000) pointed out

advantages of a mixture model for analysis of SCS

in dairy cows. The mixture model can account for

effects of infection status on SCS and produce an
estimate of prevalence of infection, plus a

probability of status (infected versus un-infected)

for individual cows, given the data and values of

the parameters. Detilleux & Leroy (2000) proposed
a 2-component mixture model, which will be referred

to as DL hereafter. Although additional

components may be required for finer statistical
modelling of SCS, our focus will be on a 2-

component specification, as a reasonable point of

departure. An important issue is that of parameter
identification. In likelihood inference this can be

resolved by introducing restrictions in parameter

values, although creating computational
difficulties. In Bayesian settings, proper priors

solve the identification problem. A Bayesian

analysis with Markov chain Monte Carlo
procedures is straightforward, but priors must be

proper. However, many geneticists are refractory

to using Bayesian models with informative priors,
so having alternative methods of analysis available

is desirable. Hereafter, a normal mixture model with

correlated random effects is presented from a
likelihood-based perspective.

Hierarchical DL
The mixture model is developed hierarchically.

Let P be the probability that a SCS is from an
uninfected cow. Unconditionally to group

membership, but given the breeding value of the

cow, the density of observation i (i = 1, 2, ..., n) is

Mixing proportion Pal

Rho

where yi and ai are the SCS and additive genetic
value, respectively, of the cow on which the record

is taken, and β= [β´0; β´1]´. The probability that

the draw is made from distribution 0 is supposed
constant from individual to individual.

Assuming that records are conditionally

independent, the density of all n observations,
given the breeding values, is

(21)

The joint density of y and a is then
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(22)
and the marginal density of the data is

(23)

When viewed as a function of the parameters

´ (23) is Fisher´s likelihood.

This can be written as the product of n integrals

only when individuals are genetically unrelated;

here,  would not be identiable. On the other

hand, if ai represents some cluster effect (e.g., a
sire’s transmitting ability), the between-cluster

variance can be identified.

DL assume normality throughout and take

 and

  Here, x’0i and

x’1i are known incidence vectors relating fixed
effects to observations. The assumption about the

genetic effects is a|A, ~ N (0,A ). Let now zi ~

Bernoulli (P), be an independent (a priori) random

variable taking the value zi = 0 with probability P if

the datum is drawn from process N0; or the value
zi = 1 with probability 1 - P if from N1. Assuming all

parameters are known, one has

(24)

Thus, 
is the probability that the cow belongs to the

infected group, given the observed SCS, her

breeding value and the parameters.
A linear model for an observation (given zi) can

be written as

A vectorial representation is

where Diag(zi) is a diagonal matrix with typical

element zi; X0 is an n x p0 matrix

with typical row x’0i; X1 is an n  x

p1  matrix with typical row x’1i; a
= {ai} and e = {ei}. Specific forms

of β0 and β1 (and of the corresponding incidence

matrices) are context-dependent, but care must be
exercised to ensure parameter identifiability and to

avoid what is known as label switching. For example,

DL take X0β0= 1µ0 and X1β1= 1µ1.

EM Algorithm

One can extremize (23) with respect to 

θθθθ

 via

the expectation-maximization algorithm, or EM. An
EM version with stochastic steps was developed

by Gianola et al. (2004). The EM algorithm augments

(22) with n binary indicator variables zi (i = 1, 2, ...,
n), taken as independently and identically

distributed as Bernoulli; with probability P. If  zi= 0;

the SCS datum is generated from the uninfected

component; if zi= 1; the draw is from the other

component. Let z = [z1, z2, ..., zn]´ denote the realized

values of all z variables. The complete data is the
vector [a´, y´, z´]´, with [a´, z´]´ constituting the

missing part and y representing the observed fraction.

The joint density of a, y and z can be written as

(25)

Given z; the
component of the mixture

generating the data is

known automatically for
each observation. Now

for i = 1,2,...,n. Then, (25) becomes

(26)

The form of (26) leads to conditional

distributions needed for implementing the Monte
Carlo EM algorithm. Details (very tedious) are in

Gianola et al. (2004).
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Genetic evaluation for SCS could be based on

iâ

, the ith element of â, the mean vector of the

distribution 

While 2

e10 ,, σββ  and P follow from the maximum

likelihood procedure, â must be calculated more

conveniently using Monte Carlo methods. Another
issue is how the SCS information is translated into

chances of a cow belonging to the uninfected

group. A simple option is to estimate (24) as

(27)

assess which model was most appropriate for use
in genetic evaluation of SCS. A brief account of

this study is given here.

Data
Test-day records from primiparous Holstein

cattle in 105 large (>200 cows) herds primarily in

Wisconsin) were used. The somatic cell count

records had been converted to linear somatic cell
scores (SCS), using a standard log 2 transformation.

Because herds were well-

managed, the mean SCS of
around 2.20 was less than the

US national average of

approximately 3.00. The dataset analyzed included
177,846 records from 31,040 cows, daughters of

3,082 different sires. An additive relationships file

was created by tracing pedigrees at least 3
generations, including ancestors that were related

to at least 2 animals with records. The pedigree file

included 54,143 animals.

^ ^ ^ ^

^ ^ ^ ^

^ ^ ^ ^ ^
^

^

^ ^ ^ ^ ^ ^ ^

Statistically (27) does not take into account the
error of the maximum likelihood estimates of all

parameters. If the likelihood function is sharp and

unimodal (large samples), this is a minor concern.

Bayesian analysis with case study

Ødegård et al. (2003) developed a Bayesian
approach for analysis of a 2-component mixture

model for SCS with heterogeneous residual

variances, and applied it to simulated data. Their
model considered heterogeneity of variances for

residual effects only, and it was extended

subsequently, to derive a criterion suitable for
selection against putative mastitis by Ødegård et

al. (2005). If SCS is a trait that differs genetically

between infected and uninfected cattle, allowing
for heterogeneity of genetic and permanent

environmental (PE) variances may be appropriate.

Boettcher et al. (2007) allowed for heterogeneous
variances of genetic and PE effects, and, applied

the mixture models to data on SCS collected in US

Holsteins. Several models of increasing levels of
complexity were compared for fit, in an attempt to

Table 1 - Summary of the 5 models tested1.

Feature Model
1 2 3 4 5

Misture componentes 1 2 2 2 2
Residual variance Hom. Hom. Het. Hom. Het.
Genetic variance Hom. Hom. Hom. Het. Het.
Permanente environment Hom. Hom. Hom. Het. Het.

1 - Hom = Homogeneous variance; Het = Heterogeneous variance.

Figure 2 - Source: Boettcher et al. (2007).

Models
Five different models were fitted (Figure 2).

Model 1 was a standard test-day repeatability

model. Fixed effects of systematic non-genetic
factors and random additive genetic and PE effects

were fitted. The other 4 specifications were 2-

component Gaussian mixture models differing
according to the type of heterogeneity of variances

considered. All 3 variances (additive, PE, and

residual) were homogeneous for Model 2, whereas
all variances were heterogeneous for Model 5.

Analyses were based on previous work of Ødegård

et al. (2003), with some extensions to accommodate
Models 4 and 5.

For the mixture models, observations of SCS

were assigned to 1 of the 2 components, assumed
to be indicative of health status. Assignments were

defined by a (unknown) vector z, where zi= 0 for a

^ ^ ^
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record i from a healthy cow and zi = 1 for records

from infected cows. Following the notation used

by Ødegård et al. (2003), the equations for the
various models can be written, given z, as shown

in Figure 3. The fixed effects in β0 included 3

regression coeficients for effects of days in milk
on SCS, 17 effects of age at calving, and 3,361 herd-

test-day effects. Regression coefficients for days

in milk were based on the curve by Wilmink (1987).
Age-at-calving effects were one for each age from

20 through 36 months. The β1 vector included a

single element, the mean difference (shift) between
components 1 and 2. For the non-mixture model

(Model 1), all elements of Mz were zero. For models

with homogeneous genetic and PE variances (i.e.,
Models 1, 2, and 3), a0 = a1 and p0 = p1. For these

models, a0 ~N(0, A ), where A is the numerator

relationship matrix and  is the additive genetic

variance, and p0 ~ N(0, I 2
pσ ), where I is an identity

matrix of order 31,040 and 2
pσ  is the permanent

environmental variance. When genetic and PE

effects were heterogeneous, expectations of a0, a1,

p0 and p1 where all zero. The covariance sctructure
of genetic and PE effects was as in Figures 4 and 5,

respectively. There, G is the variance-covariance

matrix between additive genetic values under the
healthy and diseased statuses Further, P is the

variance-covariance matrix between corresponding

PE effects. Conditionally on the breeding values
and PE effects, the variance matrix of the

observation vector (residual variance matrix) was

expressed as in Figure 6, where I is an identity

matrix of order n and  and are residual

variances for observations from the first and

second components, respectively. For models with

homogenous residual variance, (i.e., Models 1, 2,

and 4) Equation (4) simplifies to R = I .

Bayesian Analysis
Briefly, a Gibbs sampler was run in which all

unknown parameters and the indicator z were drawn

from their conditional posterior distributions. Five
sampling chains of 205,000 cycles each were

generated for each model. For each chain, the first

5,000 cycles were discarded as burn-in period so that
a total of 1,000,000 posterior samples were available

for each model. Convergence was assessed by the

approach of Gelman et al. (2004). Posterior
distributions of (co)variances were assessed based

on sampling every 20th cycle. Posterior means for

breeding values were obtained by averaging
realizations from every 500th cycle.

y = X0βββββ0 + MzX1βββββ1 + (I-Mz)Zaa0

+ MzZaa1 + (I-Mz)Zpp0 +MzZpp1 +e,

Figure 3 - Source: Boettcher et al. (2007).

where y = vector of n observations for test-day
SCS, β0 = vector of fixed effects commom to all
records; β1 = vector of fixed effects
corresponding to observation from infected
cows; I = identity matrix of order n; Mz = matrix
with diagonal elements corresponding to vector
z; a0 = vector of randon additive genetic effects

on SCS in the healthy state; a1 = vector of
random additive genetic effects on SCS in the
infected state; p0 = vector of random PE effectos

in the healthy state; p1 = vector of random PE
effects in the infection state; e = vecor of residual
effects; and X0, X1, Za and Zp = incidence
matrixes corresponding to fixed (X.) and random
(Z.) effects, respectively.

Figure 4 - Source: Boettcher et al. (2007).

where

Figure 5 - Source: Boettcher et al.(2007).

R = (I - Mz)σ2
e0 + Mzσ2

e1

Figure 6 - Source: Boettcher et al. (2007).
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Comparison of models
The models were compared based on the

Deviance information criterion (DIC) proposed by

Spiegelhalter et al. (2002). The model with the
lowest DIC is considered to be the most appropriate

model statistically.

Estimated breeding values (EBV) resulting from
the different models were evaluated for similarity.

The posterior means of additive genetic effects

(calculated by sampling every 500th cycle) were
used as EBV. Pearson correlation coefficients were

calculated between all pairs of the 7 sets of animal

solutions: 1 set of EBV from each of the 3 models
(1, 2, and 3) with homogeneous genetic variance

and 2 sets each from the 2 models (4 and 5) with

heterogeneous genetic variance. Correlation
coefficients were calculated for 2 sets of animals:

1) all animals, N = 54,143, and 2) only sires with at

least 10 offspring (N = 541). To examine changes in
rank, all sires with at least 10 offspring were sorted

in ascending order based on each of the 7 sets of

EBV. Then, the top and bottom 50 sires were
identified for each set. Finally, the number of animals

in common between each pair (high ranking with

high ranking and low vs. low) of these sets was
observed. Low numbers of mismatches were

assumed to indicate high similarity among

evaluation models.

for the diseased component of the mixture. No

obvious trend was observed for genetic variance

when comparing the standard model with the 4
mixture models. In Model 4, the estimates of genetic

and PE variances for the second component were

much larger than the variances obtained by either
of the other 3 mixture models. The genetic variance

of the second component was 2.41 in Model 4,

versus 0.52 for Model 5; corresponding PE
variances were 3.22 and 0.76, respectively.

According to the DIC, Model 4 was favored,

by far; recall that a model with the lowest DIC is
preferred. The DIC of Model 1 was twice as large

as for any of the mixture models. The correlations

among EBV from the different pairs of models
were all about 0.90. Despite high correlations

among EBV, the degree of sire re-ranking among

models indicated that the use of a mixture model
would lead to real changes in sire selection if

applied instead of the linear model. For all mixture

models (Models 2 through 5), the top 50 sires (low
SCS) differed by at least 10 sires (>20%) from the

top 50 identified by the linear model (Model 1).

Eleven sires were in common among the top 50,
and 13 were in common among the bottom 50.

Conclusion

Based strictly on statistical considerations,
mixture models are more appropriate for analysis

of, e.g., SCS data of dairy cattle than standard

linear models. In the case studied, a shuffling in
order of the highest ranked sires was observed,

demonstrating that practical differences would be

realized with the adoption of a mixture model for
genetic evaluation.

Although the statistical evidence supporting

the use of mixture models is strong, questions
remain about the biological ramifications of

applying a mixture model, and about the precise

meaning of the different EBV resulting from a
mixture model with heterogeneous genetic effects.

Another issue is how a genetic evaluation for SCS

can be translated into a selection criterion, as
discussed in Ødegård et al. (2005).

A challenge for scientists confronted with

massive data sets, such as those in animal breeding
and in gene expression analysis, is making the

computations needed for implementing the mixed

effects mixture models (MMM) feasible. Gianola

Results
Most models produced similar estimates of the

mixing proportion (p2), with around 5% of the

observations in the second component (presumably

associated with mastitis), and 95% in the healthy

group. Results from Model 4, however, were

strikingly different. First, the proportion of records

assigned to the second (high) component was
much greater, at about 8%, versus around 5% for

the other 3 mixture models. All mixture models (2 to

5) had much lower residual variance than did the
standard linear model (Model 1). Residual variance

was generally around 1.00 for the mixture models

(with the exception of a residual variance of 1.20
for the second component of Model 3), versus 1.60

for the linear Gaussian model. This difference is

due to the variability in means between the 2
components in the mixture models, which is

unaccounted for in the linear model specification.

When heterogeneous variance was allowed,
the residual variance estimate was somewhat larger
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et al. (2004) described a maximum likelihood

analysis of a Gaussian mixture with random effects

using the EM algorithm with a Monte-Carlo E-step.
Ødegård et al. (2003) presented a Gibbs sampling

scheme for a Bayesian hierarchical 2-component

mixture model (with thousands of random effects),
and retrieved accurate estimates of parameters in

simulation studies. While Markov chain Monte

Carlo may be the only way of carrying out a fully
Bayesian analysis, diagnosing convergence to the

equilibrium distribution is a serious problem for

models with thousands of unobservable random
effects. Similarly, non-Bayesian analysis may be

carried out more efficiently with algorithms based

on second derivatives than with EM; in the latter,
augmenting the likelihood with indicator variables

(so that the missing data fraction becomes very

large) can slowdown convergence painfully.
Standard models for quantitative traits can lead

to erroneous results if fitted to heterogeneous data.

If a mixture is suspected, two of the most suitable
methods for inferring unknown mixture

parameters are maximum likelihood and Bayesian

analysis. Procedures for likelihood or posterior-
based inference applied to mixtures are discussed

extensively in Titterington et al. (1985) and

McLachlan and Peel (2000), including situations
in which the component distributions are not-

normal, e.g., skewed survival processes.

Implementations suitable for fitting different
types of quantitative genetic mixture models have

been described and applied by Ødegård et al.

(2003, 2005), Gianola et al. (2004), and Boettcher
et al. (2005, 2007). Prediction of breeding values is

discussed in Gianola (2005). A convenient software

for the analysis of mixtures with random effects is
available in a forthcoming update of Version 6.0 of

the DMU package described in Madsen & Jensen

(2002).
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