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Addressing scope of inference for global genetic evaluation of livestock
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ABSTRACT - Genetic evaluations should become more accurate with the advent of whole genome selection (WGS) based
on high density SNP panels. The use of WGS should then accelerate genetic gains for production traits given likely decreases
in generation interval due to the greater intent to select more animals based just on their genotypes rather than phenotypes.
However, past and current genetic evaluations may not generally connect well to the intended scope of inference. For example,
estimating haplotype effects from the data of a single reference population does not bode well for the use of WGS in other
diverse environments since the scope of inference is too narrow; conversely, WGS based on estimates, for example, derived
from daughter yield deviations of dairy bulls may be too broad to infer upon genetic merit under any one particular environment.
The treatment of contemporary group effects as random rather than as fixed, heterogeneous variances, genotype by
environment interaction, and multiple trait analyses are all important scope of inference issues that are discussed in this review.
Management systems and environments have and will continue to change; hence, it is vital that genetic evaluations are as
robust and scope-appropriate as is possible in order to optimize animal adaptation to these changes.

Key Words: Bayesian inference, genotype by environment interaction, heterogeneous variances, mixed effects models,
multiple traits, random effects

Direcionamento do ambito de inferéncia para avaliacdo genética global dos
animais

RESUMO - As avaliacOes genéticas devem se tornar mais precisas com o advento da selecdo pelo genoma inteiro (WGS),
com base em painéis SNP de alta densidade. O uso da WGS deve, portanto, acelerar os ganhos genéticos para caracteristicas
de producdo, em razdo da provavel diminuicdo do intervalo de geracdo, pela maior intencdo de selecionar animais com base
apenas nos seus genotipos, em vez de fen6tipos. Contudo, as avaliacGes genéticas passadas e atuais podem, de forma geral,
ndo se adaptar bem com o ambito de inferéncia pretendida. Por exemplo, estimar efeitos de haplétipo a partir do uso de uma
Unica populagédo de referéncia nédo traz boa predigdo para uso geral da WGS em outros ambientes diversos, ja que o ambito de
inferéncia é muito restrito; contrariamente, WGS baseada em estimativas derivadas dos desvios de produgdo das filhas de
touros leiteiros podem ser muito generalizadas para inferir sobre o mérito genético em qualquer ambiente em particular. O
tratamento dos efeitos de grupo contemporaneo, como fixo ou aleatdrio, varidncias heterogéneas, interacdo gendtipo-
ambiente e as andalises de caracteristicas multiplas sdo questdes importantes no ambito da inferéncia e sdo discutidas nesta
revisdo. Os sistemas de manejo e os ambientes tém mudado e continuardo a mudar; deste modo, é essencial que avaliacGes
genéticas sejam tdo robustas e adequadas ao contexto quanto possivel, a fim de otimizar a adaptacdo dos animais a essas mudancas.

Palavras-chave: caracteristicas multiplas, efeitos aleatérios, inferéncia Bayesiana, interacdo gendtipo-ambiente,
modelos de efeitos mistos, variancias heterogéneas

Introduction (Mader et al., 2009) and recent biofuel energy policies

(Schmitetal., 2009). Hence, it seems vitally important that

Livestock production has been recently characterized
by the assertion that “management systems and
environments are changing more rapidly than animal
populations can adapt to such changes through natural
selection” (Hohenboken et al., 2005). Future changes
would appear to be only just as dramatic given emerging
issues such asthose, for example, driven by climate change
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the germplasm pool for all currentand potentially economically
important livestock species is sufficiently diverse to
accommodate these and other unforeseen changes.
Genetic improvement of livestock itself has been
transformed by a confluence of reproductive, statistical,
and molecular genetic technologies. For example in dairy
cattle, artificial insemination and embryo transfer followed
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by estrus synchronization technologies has facilitated
unprecedented global exchanges of livestock genetics.
Genetic change is expected to accelerate given the increasing
use of whole genome selection (WGS), which uses
genotypes provided by high density single nucleotide
polymorphism (SNP) marker panels to further augment the
use of phenotype and pedigree information in providing
more accurate genetic evaluations (Meuwissenetal., 2001).

However, current statistical inference strategies for
providing genetic evaluations as intended for breedstock
selection may be generally misrepresenting the allowable
scope of inference for the population and environments
intended, in part because of the design structure dictated
by livestock populations and because of the heterogeneity
in genetic architecture as influenced by various
environments and management conditions. As a classic
example, most current genetic evaluations are based on
the generally unstated assumption that genotype by
environment (G*E) interaction is non-existent. This, in
turn, assumes that the published estimated breeding value
(EBV) of ananimal is deemed to be equally relevant to all
markets that the breeder wishes to target. This issue has
been partly mitigated with international comparisons of
dairy bulls using, for example, the multiple-across-country-
evaluation (MACE) procedure of Schaeffer (1994) as
currently adapted by Interbull (www.interbull.org). This
procedure essentially models G*E by estimating and
utilizing genetic correlations between breeding values of
the same bull in different countries; these estimates
typically tend to be somewhat substantially less than
unity. Nevertheless, even the adaptation of MACE in this
manner does not clearly recognize that G*E is likely to be
a greater problem within countries than between countries
(Hammamietal., 2009).

Mixed effects models have been predominantly used as
the statistical engine for providing genetic evaluations
(Hendersonetal., 1959), including the recent extensions for
determining genomic estimated breeding values (GEBV)
under WGS. Although the primary use of mixed models by
statistical geneticists has been for inference on variance
components (to determine heritabilities) and prediction
(BLUP) ofrandom EBV/GEBV, proper use of mixed effects
models can also help to delineate different scopes of
inference (Mclean et al., 1991), even as it pertains to
quantitative genetics. Hierarchical Bayesian extensionsto
mixed effects models (Sorensen & Gianola, 2002) have
further partitioned scope of inference when the classical
assumptions of the Henderson linear mixed model (e.g.,
homogeneous genetic and residual variances across

environments) are not valid, as is typically true in
quantitative genetics. For example, standard computations
of EBV/GEBYV provide a broad inference scope for an
average or typical environment that might not necessarily
be applicable when one wishes to select genotypes for a
particular environment; i.e., narrow scope.

It is the intent of this paper to better connect
quantitative genetic models and analyses with intended
scope of inference in order to ensure that resulting
inferences provide the appropriate direction that breeders
and breed organizations need for germplasm maintenance
and/or improvement for awide range of currentand future
environments. Within this broad theme, | consider a few
issues that are pertinent to this general concern, including
the treatment of contemporary groups (CG) as random
rather than as fixed, accounting for heterogeneous variances
across environments, G*E, WGS, and the increasing
importance of multiple trait analysis and selection.

Implications of treating contemporary groups as fixed
versus random effects

“Itis safe to say that improper attention to the presence
of random effects is one of the most common and serious
mistakes in the statistical analysis of data” (Littell et al.,
2002). Although this statementwas likely directed towards
experimental scientists entrusted to analyze their own data,
it may be quite relevant to quantitative geneticists as well.
One issue that should be revisited yet again is whether or
not contemporary groups (CG) should be treated as fixed or
random. Historically, CG have been treated as fixed as
animal breeders were amply warned by Henderson (1975)
that treating CG as random effects lead to sire genetic
evaluations being biased by selection bias due to non-
random sire by CG associations. However, as Visscher &
Goddard (1993) among several others have shown since
then, precision on sire genetic evaluations can generally
improve with random CG effect specifications. Infact, the
issue for treating CG as random should not be treated as a
matter of choice, but rather of necessity in genetic evaluation
programs, as illustrated later with several examples.

Firstly, however, it needs to be emphasized and
appreciated that treating CG as random automatically
increases the estimates of phenotypic variance since
phenotypic variance is now defined as including variation
across CG rather than within CG. This may seem to pose a
potential ‘public relations’ nightmare if the CG variance is
estimated to be large, as generally expected, since the
resulting estimated heritabilities would then be expected to
plummet, compared to previously reported within-herd
estimates. Nevertheless, inanage of greater global exchange
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of germplasm, these heritabilities would more properly
reflect what proportion of all variation, intra-CG and inter-
CG, is due to genetics and hence transmissible across a
range of environments; i.e., the corresponding estimates
are broader in scope than classical within-herd estimates.

In spite of this sober realization, however, reported
EBV/GEBV would generally have greater precision by
treating CG as random in genetic evaluation models. Ithas
been well established in incomplete block designs that
treating blocks, in this case CG, as random allows for a
borrowing of information across CG (Tempelman, 2004),
resulting in subsequently better precision on estimates of
CG effects that would not be otherwise possible if CG were
treated as fixed. Thisis particularly true when CG sizes are
small. However, even more importantly, greater precision
is also incurred for inferences on other effects being
compared between blocks such as genetic merit. Particular
benefits should be realized for genetic evaluations of
animalsin different CG that are less genetically connected
relative to other CG. That is, lower standard errors of
prediction and greater accuracies would be generally
expected on EBV/GEBV even though, paradoxically,
reported estimates of heritability are lower by treating CG
as random as opposed to fixed.

There are other justifications that further require that
CG be treated as random, particularly for multi-breed
populations. Ithasbeenargued (Legarraetal., 2007; Sanchez
et al., 2008) that without incorporating literature-based
priors on heterosis effects, it is virtually impossible to
estimate these effects as many CG have only one breedgroup
represented; that is, there is complete confounding between
some CG and breedgroup effects. These arguments are
predicated on treating CG effects as fixed. Inferences on
heterosis effects were then shown to be very sensitive to
prior distributional assumptions on heterosis effects in
such models. Given the “design” structure generally
provided by the beef cattle industry in many countries, one
mighteffectively argue that some CG serve as experimental
units for heterosis effects when only one breedgroup is
predominantly represented in each such CG, whereas other
CG serve asthe blocking factors when several breedgroups
are each well represented withinsuch CG. Thatis, CG needs
to be treated as random in order to properly account for the
between-CG variability and the industry design structure in
terms of how they both influence precision of heterosis
effects; otherwise the standard errors on any such effects
are badly understated since they only reflect within-CG
variability. Furthermore, treating CG as random then
facilitates estimability of heterosis effects that would not

otherwise be possible (Cardosoetal., 2005), as is generally
true for inferences on treatment effects in incomplete block
designs (Tempelman, 2004).

It does need to be clearly realized, however, that the
error degrees of freedom for any classical mixed model
inferences on heterosis effects from highly unbalanced
data structures is not necessarily straightforward. That is,
the degrees of freedom cannot be simply determined using
the classical animal breeding specification of n—rank(X) for
n being the number of phenotypes and X being the fixed
effects design matrix. That specification may not properly
reflect the complicated design structure when some CG
serves as blocks whereas other CG serves as experimental
units for estimating heterosis effects. Currently, there are
mixed model procedures available to estimate error degrees
of freedom for unbalanced data structures such as those
available using SAS mixed model software (Littell, 2002).
Nevertheless, it should be quickly pointed out that the
determination of degrees of freedom is not a requirement
with the use of hierarchical Bayesiananalysis, again provided
that CG are treated as random (Cardoso et al., 2005).

It is also absolutely imperative to treat CG effects as
random for the threshold mixed model analysis of binary
health or reproduction data if some CG have just either one
or the other type (0 or 1) of response (Tempelman, 1998).
Also, based on the fact that CG are typically based on herd-
year-season combinations, it might be advisable to consider
the adjacent year-seasons within the same herd as having
a greater correlation than year-seasons further apart from
each other intime. This can be accommodated with the first
order autoregressive correlation structure proposed by
Wade & Quaas (1993) as currently considered in some
multi-breed evaluations (Pollak, 2006).

Scope of inference for whole genome selection

A common paradigm for WGS is based on the protocol
that estimated SNP haplotype effects be based on estimates
derived from the use of reference populations such that
these estimates are extrapolated to provide GEBV to help
make breeding decisions on other animals (Schaeffer, 2006;
Goddard & Hayes, 2007; Calus, 2010). Essentially then,
estimated haplotype effects derived from the reference
population are assumed to be general population estimates
and not specific to any one condition. However, consider
the implications of this strategy if one were to design an
experiment to infer upon the effects of haplotypes for any
one particular locus. If one cluster of animals is randomly
chosen as the reference population, yet it was intended that
any inferences on haplotype effects were to apply to all
other clusters of animals even within the same breedgroup
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as the reference population, then there is really no true
replication based on the use of one reference cluster
(Tempelman, 2009). Hence one should then not be surprised
when estimated effects are not reproduced elsewhere (Van
Eenennaametal., 2007), particularly inthe presence of G*E
(Lillehammer et al., 2008). In other words, the statistical
scope of inference based on the use of a single reference
population is strictly narrow (Mclean et al., 1991;
Tempelman, 2009); i.e., all inferences are specific to that
reference population only! Conversely, the scope of
inference is rather broad for dairy bull GEBV based upon
daughter yield deviations averaged across many herds or
environments (Vanraden, 2008); nevertheless, this breadth
of scope may not be applicable to inferring upon genetic
merit within any one particular herd when G*E is present
(Lillehammeretal., 2009a).

Considerasimple linear model for WGS modelingonn
animals, each animal having only one record for a particular
phenotype:

y,=xp+zg+u+e;i=12,....n. [1]

Here b is the vector of fixed effects with x; being the
corresponding known incidence row vector,
z,=(z, 7, 7, ... z,,] is a vector of SNP/haplotype-
specific covariatesonanimaliand g=[g, 9, 9, K g,]'
isthe random effects vector of additive genetic substitution
effects formmarker loci. Furthermore, u ={u,} istypically
a subset of a g x 1 random effects vector (i.e., g > n) of
polygeniceffects u*=[u" u,']' where u, pertains to genetic
effects of relatives (ancestors or juveniles) without records.
Typically, we assume u*~ N (0, Aaj) for A being the g x
gnumerator relationship matrixand g ~ N (O,IO';) forWwGS
using BLUP. Of course, model [1] could be further modified
toinclude other random effects; e.g., CG specified asrandom
rather than fixed. Note for g being BLUP of g and u
being BLUP of u, that GEBV foranimaliis z.g +(, .

The absolute necessity of borrowing information across
random effects using shrinkage estimation procedures like
BLUP or Bayesian inference in mixed models has been
historically exploited inanimal breeding for inference onu
using classical animal models (Equation [1] excluding z;g ),
particularly asq>n. This property continues to be further
exploited using BLUP for WGS models like Equation [1]
since, typically, m>>n. However, shrinkage estimation has
even been further extended using Bayesian inference in
WGS by specifying not only elements of g as (normal)
random effects but also their variances, o; =var(gj), as
(scaled inverted chi-square) random effects as in BayesA
(Meuwissenetal.,2001). The resulting marginal Student
t-distribution on elements of g provides a heavier-tailed

distributional flexibility if some SNP effects are unusually
distant relative to other SNP effects as based on a normal
distribution. A useful mixture model extension to BayesA
is BayesB whereby a large proportion (p) of the SNP
effects are deemed to have no effect on the trait
(Meuwissenetal., 2001).

There are, nevertheless, additional scope of inference
issues with BayesA or BayesB that go beyond the
extrapolation of inferences from a single reference
population to animals managed under other
environments. For example, any of the commonly used
prior distributional assumptions of g in BLUP, BayesA,
and BayesB, are based on the assumption of linkage
equilibrium (LE) between all loci even though there should
be obvious linkage disequilibrium (LD) relationships
between SNP within the same linkage group. It mightbe
wise to specify meaningful yet computationally tractable
LD specifications between SNP. Our group (Yang &
Tempelman, 2010) has proposed first order
antedependence specifications between SNP as an
extension to BayesA. Suppose that the subscripts of the
elements of g specify the relative order of the SNPs on
linkage groups such that the following antedependence
structure is considered: g, =d;, g, = t,;9; + d,, g3 =
t320, +d3, oo, Oy =ty m-19m-1 + Oy The random effects
vector t=[t, t, t, K t ] specifies LD associations
using a heterogeneous first order antedependence
structure. For markers specifying demarcations between
different linkage groups, the corresponding elements of t
would be set to 0. Furthermore, the elements of
[6, 6, 6, K &,] are specified to be normally and
independently distributed with null mean and SNP specific
variances: o2, 0%, oiy K o3, ], which in turn are
specified to have scaled inverted chi-square priors, similar
to BayesA. We have determined substantial increases in
accuracy of GEBV using this modified BayesA procedure
in simulation studies. A very pertinent extension of this
application would be the ability to use GEBV in multibreed
populations where itis highly likely that differencesin LD
associations between SNPs exist across different
breedgroups (Toosi et al., 2009) or even differences in
recombination rates between families are heritable (Dumont
et al., 2009). We believe our antedependence model
provides a framework to model these phenomena; that is,
to allow a scope of inference that is more appropriately
fine-tuned (narrower scope) to a specific breedgroup, yet
would efficiently borrow information across breedgroups
as inherent with mixed model or Bayesian inference
procedures.
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Heterogeneous variances

Many current genetic evaluation models are based on
various different assumptions about the nature of
heterogeneous variancesacross CG in dairy cattle breeding
(Mark, 2004) and multibreed beef cattle (Pollak, 2006;
Legarra et al., 2007). Most such implementations either
involve a scale adjustment or a data precorrection.
However, the implications of not correctly accounting for
heterogeneous variances can be potentially important, as
demonstrated more recently for reaction norm models
(Lillehammeretal., 2009Db).

Our group (Cardoso etal., 2005, 2007) has previously
demonstrated the utility of modeling both genetic and
residual variances as multifactorial functions of various
effectsin hierarchical Bayesian heteroskedastic outlier-
robust models. The need for specifications might seem
obviously important in multibreed populations as genetic
variances should depend not only upon breed groups
but also on recombination loss (Cardoso et al., 2005).
Based on a mixed effects model specification of
heterogeneous residual variances that included the fixed
effects of calf sex, breed proportion, heterozygosity, and
the random effects of CG for postweaning gain in Nelore-
Hereford crosses, we determined that F;’s had residual
variances that were 70% that of purebreds. This result
was partly expected due to homeostatic mechanisms
typically attributed to hybrid organisms. Perhaps more
importantly, however, we determined that the estimated
coefficient of variation of residual variances across CG
was 72%. Without specifying CG as random in this way,
it would have been virtually impossible to infer upon
CG-specific effects for heterogeneous variances. Yet,
their specification would be vital to ensure the herd-
appropriate scope of inference for genetic evaluations,
recognizing that EBV for animals from low heritability
CG (i.e., high residual variability) should be recognized
as be less reliable relative to high heritability CG and
hence shrunk closer to zero.

It then seems imperative then that allowances be
made for heterogeneous variances that depend upon
both fixed management effects and random CG effects,
particularly as sire rankings can be demonstrated to be
highly dependent upon them (Kizilkaya & Tempelman,
2005). Nevertheless, CG with normal residual outliers
should not be confused with high variance CG such that
heavy-tailed (e.g., t-error) heterogeneous variance models
should be employed to successfully delineate between
these two situations (Cardoso et al., 2005, 2007). From
atechnology transfer perspective, one might infer upon

management strategies that lead to increasing uniformity
which is important given current meat animal marketing
pressures; in fact, it may be possible to select for
genotypes that lead to greater uniformity as well
(Sorensen, 2009).

Genotype by environment interaction

In some respects, the issue of heterogeneous genetic
variances is closely tied to G*E in that environments with
larger/smaller genetic variances imply greater/smaller
differences in merit between genotypes; i.e., the scaling
effect. There has been substantial evidence of G*E in
cattle (Hohenbokenetal., 2005; Hammami etal., 2009), for
example, notonly as it pertains to additive genetic effects
butalso to non-additive genetic effects such as heterosis
by environment interaction (Bryant etal., 2007).

There have been three common strategies to specify
G*E in quantitative genetic models, including the
specification of 1) sire by herd interactions, 2) multiple
trait models and 3) reaction norm models (Hammamietal.,
2009; Cardoso et al., 2010). Models with sire by herd
interactions are generally considered to be not sensitive
for estimating G*E and can be very difficult to interpret
if heterogeneous variances are also present. MACE is an
example of the multiple trait model approach as applied
across countries. The unfortunate reality of the use of
the multiple trait model in this way is that the number of
environments (i.e., countries) need to be limited in order
to reasonably estimate the resulting genetic variance or
correlation parameters between environments with any
precision, or the data information for each environment
has to be substantial, as is generally true for MACE of
dairy bulls.

The reaction norm model isarandom regression model
that has emerged as an attractive alternative to modeling
G*E. Itis based on a random regression of genotypes or
polygenic effects on environmental covariates that might
drive G*E. We can extend Equation [1] to allow for reaction
norms in WGS as follows:

yi =xB+z (g+dg,)+u +du,, +e;i=12,...,n

[2]
Here d; is an environmental covariate observed on animal
i, g = {gb‘j} represents the vector of SNP-specific random
slopes on the environmental covariate for the m SNP
markers with g, ; ~ N (0,05,1.) whereas U, ; represents the
random polygenic slope on the d; with u,; ~ N (0,05). In
pre-WGS reaction norm animal models, pairwise
covariances were expressed between polygenic effects
and slopes (o, =cov{ui,ubvi}) to model the relationship
between the polygenic merit in a reference environment
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(“intercept”) and the rate of divergence in genetic merit
with improving environments. Pairwise covariances
between elements of g with corresponding elements of g,
can also be specified (o, ; = cov{gj,gb,j} ) such that larger
positive values of oy, ; imply greater environmental
sensitivity whereas negative values of imply greater
environmental robustness for SNP marker j (Lillehammer
etal.,2009a).

The issue of heterogeneous genetic variances is clearly
related to reaction norm models since random regressions
on environmental covariates automatically imply
environment specific polygenic variances and/or
environment-specific SNP marker variances thatare driven
by the value of d;. Whether or not one truly account for all
heterogeneous genetic variances using reaction norm
models depends on whether all responsible environmental
covariates can be identified and/or whether or not the
random regression isappropriately specified (e.g., random
nonlinear rather than linear coefficients). Another issue
with reaction norm models is properly accounting for
uncertainty when the covariate value itself needs to be
inferred (Suetal., 2006).

Multiple trait analysis

Multiple trait inference has recently attained greater
importance given that rapidly changing management
systems and genotypes will require better informed multiple
trait modeling and selection. Although we have
undoubtedly increased livestock production in
conventional environments, we have become justifiably
concerned with concomitant losses in fitness, ability to
reproduce and ability to adapt to different environments.

Although a great deal of research has been directed
towards heterogeneous variances and G*E modeling in
single trait analyses, extensions of this work to multiple
trait models appears to be lacking. Our group has recently
reassessed the heterogeneity in non-genetic
relationships between production and reproduction in
Michigan dairy cattle using hierarchical Bayesian
specifications (Bello et al., 2010) to model the residual
and CG correlations between the two traits. Interestingly
we have determined that not only are the general sign and
magnitude of the relationships between random CG
effects for the two traits different from those of the
residual effects but that there are important systematic
management factors that influence these relationships
aswell. We plan to consider similar extensions to WGS
models to model SNP-specific components of genetic
correlation and to determine whether they may depend
upon environmental covariates as well.

Conclusions

Quantitative geneticists should be cognizant of
inference of scope when providing genetic evaluations for
the various livestock industries. For example, genetic
evaluations based on across-herd daughter yield deviations
may be too broad in scope when applied to the comparison
of sire daughters within a particular environment.
Conversely, estimates of SNP effects from a particular
reference population may be too narrow in scope when
applied to WGS for animals from all other environments
sincethisignores G*E. Furthermore, fromadesign viewpoint,
G*E is the experimental error term for estimating genetic
effects if environments are defined as random effects.
Arguably, the need to genotype animals in as many diverse
environments as possible might be deemed too costly using
current high density SNP panels; however, it may be
reasonable with cheaper low density panels that are being
currently developed.

There are anumber of different and obviously related
issues that affect scope, including heterogeneous
variances and G*E interaction, such that inferences on
breeding values can be readily tailored to specific
environments by extending genetic models accordingly.
Greater attention to these issues should also be considered
in multiple traitanalyses. Even within these same models,
however, broad space inferences are possible and even
encouraged, particularly for those genotypes that show
low environmental sensitivity and/or only scale differently,
but not rank differently, for their haplotypes across
environments. However, it would be only possible for
quantitative geneticists to extend genetic evaluation
modelsaccordingly if CG effects are specified as random.
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