Variabilidade e herdabilidade de caracteres qualitativos relacionados à qualidade de forragem de clones de capim-elefante na Zona da Mata de Pernambuco¹

Antônio Luiz Cordeiro da Silva², Mércia Virginia Ferreira dos Santos^{3,6}, Rinaldo Luiz Caraciolo Ferreira^{5,6}, José Carlos Batista Dubeux Júnior^{3,5}, Mario de Andrade Lira^{4,6}, Márcio Vieira da Cunha⁷, Antonio Vander Pereira⁸, Gherman Garcia Leal de Araújo⁸

- ¹ Financiado parcialmente pela EMBRAPA-IPA e realizado pelo Convênio IPA-UFRPE.
- ² Escola Agricola de Vitória de Santo Antão, estudante de Pós-graduação da UFRPE.
- ³ Departamento de Zootecnia-UFRPE.
- ⁴ Pesquisador do IPA.
- ⁵ Departamento de Ciência Florestal-UFRPE.
- ⁶ Bolsista do CNPq.
- ⁷ Unidade Acadêmica de Serra Talhada-UFRPE
- ⁸ EMBRAPA.

RESUMO - Objetivou-se avaliar a variabilidade e herdabilidade de caracteres quantitativos relacionados à qualidade de forragem de 32 clones de capim-elefante (três testemunhas locais, da Zona da Mata de Pernambuco, e os demais provenientes da RENACE/CNPGL). Utilizou-se delineamento inteiramente casualizado com testemunhas adicionais e aplicou-se a análise de variância por meio do procedimento de famílias com testemunhas intercalares. A avaliação foi realizada no período seco, aos 60 dias de crescimento. Foram observadas diferenças significativas entre os clones para as características fibra em detergente ácido de lâmina foliar e matéria orgânica no colmo, com médias de 34,05 e 78,83%, respectivamente. De maneira geral, a herdabilidade dos caracteres qualitativos foi baixa, inclusive com valores nulos para proteína bruta e fibra em detergente neutro de lâmina foliar e digestibilidade *in vitro* da MS da lâmina e do colmo. A composição química e a digestibilidade dos clones avaliados foram similares. Há poucas possibilidades de ganho na seleção de caracteres qualitativos, tendo em vista a baixa variabilidade e herdabilidade dos caracteres estudados.

Palavras-chave: colmo, digestibilidade, fibra, folha, Pennisetum purpureum

Variability and heritability of qualitative traits related to forage quality of Pennisetum clones in Zona da Mata in Pernambuco

ABSTRACT - The objective of this research was to evaluate variability and heritability of quantitative traits related to forage quality of 32 clones of elephant grass (three local controls, from Zona da Mata de Pernambuco, and the remaining from RENACE/CNPGL). A complete randomized design was used with additional controls and analyses of variance was applied by using the procedure of families with controls between rows. Evaluation was performed during the dry period, at 60 days of growth. It was observed significant differences among clones for the traits acid detergent of leaf blade and stem organic matter, with means of 34.05 and 78.83%, respectively. In general, heritability of qualitative traits was low, including null values for crude protein and neutral detergent fiber of leaf blade and *in vitro* digestibility of dry matter of leaf blade and stem. Chemical composition and digestibility of evaluated clones were similar. There are few possibilities of gain in selection for qualitative traits considering the low variability and heritability of the studied characters.

Key Words: digestibility, fiber, leaf, Pennisetum purpureum, stem

Introdução

As plantas forrageiras desempenham papel preponderante nos sistemas de produção bovina, fontes primárias de energia para crescimento, manutenção e produção de animais ruminantes. Entre as forrageiras, as gramíneas têm grande diversidade genética, portanto maior variabilidade adaptativa a

diferentes temperaturas e regimes de pluviosidade em comparação a qualquer outra família de angiospermas (Nelson & Moser, 1994).

O *Pennisetum purpureum* Schum é uma gramínea de origem tropical que se destaca por sua adaptação a uma grande diversidade de ambientes (Kollet et al., 2006) e caracteriza-se por elevada quantidade de matéria seca produzida por unidade de área (Santos et al., 2010). Tem

sido bastante estudada com o intuito de selecionar genótipos superiores aos atualmente cultivados, adaptados a cada realidade ambiental do país (Mello et al., 2006).

Segundo Kozloski et al. (2003), a principal limitação à produção animal nos trópicos é a baixa qualidade da maioria das gramíneas tropicais. Programas de melhoramento vegetal têm desenvolvido cultivares altamente produtivos, no entanto, o desempenho animal sob muitos desses materiais tem sido baixo (Macoon et al., 2002). Dessa forma, o conhecimento da qualidade de clones de *Pennisetum* é importante para fornecer subsídios para seleção genética de materiais superiores e contribuir à otimização da alimentação animal (Queiroz et al., 2000). A seleção de genitores para os programas de melhoramento e o manejo da variabilidade nos bancos de germoplasma dependem da disponibilidade de informações precisas sobre o grau de divergência genética entre os acessos (Pereira et al., 2008).

De acordo com Pereira et al. (2000), a qualidade da espécie forrageira pode variar entre espécies e cultivares, em função dos efeitos genéticos, ambientais e da interação desses fatores, e o conhecimento da variabilidade de caracteres qualitativos pode orientar, de acordo com o interesse de utilização, na escolha do clone, uma vez que quanto maior a proporção das causas genéticas na variabilidade, maiores a herdabilidade e o ganho esperado.

Conhecer a relação entre caracteres utilizados no melhoramento da espécie de interesse é fundamental, uma vez que se objetivam ganhos não apenas para um único caráter, mas para um conjunto deles (Daher et al., 2004). Além disso, a combinação de caracteres na planta pode ser necessária para distinguir acuradamente acessos dentro das coleções de germoplasma (Steiner & Santos, 2001).

Assim, objetivou-se com este trabalho avaliar a variabilidade e herdabilidade de caracteres quantitativos relacionados à qualidade de forragem de clones de capimelefante na Zona da Mata de Pernambuco.

Material e Métodos

O experimento foi realizado na Estação Experimental de ltambé, Pernambuco, pertencente ao Instituto Agronômico de Pernambuco (IPA), localizado nas coordenadas geográficas 07° 25' 00" de latitude (S) e 35° 06' 00" de longitude (SWGr), na microrregião fisiográfica da Mata Seca de Pernambuco, a 190 m de altitude, onde a precipitação anual média é de 1.200 mm e a temperatura anual média é de 25°C (CPRH, 2003).

A pluviosidade total anual durante o período experimental foi de 723,6 e 1733,1 mm, para o ano de 1999 e

2000, respectivamente. Os solos predominantes na Estação Experimental são classificados como Podzólicos Vermelho-Amarelo Tb Distrófico, com horizonte A proeminentes de textura média/argilosa, fase floresta tropical subcaducifólia e relevo suave ondulado (Jacomine, 2001). Amostras do solo apresentaram o seguinte perfil químico: pH (em água) = 5,08; fósforo (Mehlich – I) = $11,00 \, \text{mg/dm}^3$; K^+ = $2,55 \, \text{meq}/100 \, \text{cm}^3$; Na^+ = $0,06 \, \text{meq}/100 \, \text{cm}^3$; Ca^{++} = $4,30 \, \text{meq}/100 \, \text{cm}^3$; Mg^{++} = $1,65 \, \text{meq}/100 \, \text{cm}^3$; Al^{+++} = $0,10 \, \text{meq}/100 \, \text{cm}^3$; H^+ = $9,79 \, \text{meq}/100 \, \text{cm}^3$; S= $8,56 \, \text{meq}/100 \, \text{cm}^3$; CTC= $18,45 \, \text{meq}/100 \, \text{cm}^3$ de solo; V= $46,40\% \, \text{em}$ =1,15%.

Foram cultivados 54 clones de capim-elefante: três testemunhas locais (Cameroon, Mineirão e Roxo de Botucatu) e os demais provenientes da Rede Nacional de Avaliação de Capim-Elefante (RENACE), sob coordenação da EMBRAPA/CNPGL. Algumas introduções da RENACE foram perdidas por falta de adaptação desses materiais às condições edafoclimáticas durante o período experimental, por isso, foram caracterizados qualitativamente apenas 29 materiais, além das testemunhas locais (Tabela 1).

Utilizou-se delineamento inteiramente casualizado com testemunhas adicionais, com número desigual de repetições. As comparações entre clones foram feitas por meio das

Tabela 1 - Relação dos clones de capim-elefante avaliados em Itambé, Zona da Mata Norte de Pernambuco

Itambe, Zona da Mata Norte de Pernambuco			
Tratamento	Clone		
1	CNPGL94F52.2		
3	CNPGL94F1 3.1		
4	CNPGL94F58.2		
5	CNPGL93F06.1		
6	CNPGL93F41.1		
8	CNPGL9IF27.1		
9	CNPGL91F27.5		
12	CNPGL94F43.2		
14	CNPGL94F07.2		
16	CNPGL9I F25.1		
17	CNPGL91F06.2		
20	CNPGL91F02.5		
21	BAG 66		
23	CNPGL94F26.2		
24	CNPGL93F08.1		
28	CNPGL92F79.2		
30	CNPGL93F32.2		
32	CNPGL92F97.3		
33	CNPGL92F41.1		
34	CNPGL92F66.3		
38	CNPGL91F28.1		
39	CNPGL91F06.3		
40	CNPGL91F11.2		
46	CNPGL92F133.3		
47	CNPGL92F190.1		
48	CNPGL92F198.7		
50	CNPGL94F44.3		
51	CNPGL94F49.6		
C	Cameroon		
M	Mineirão		
R	Roxo de Botucatu		

médias, de modo que cada um foi representado uma única vez nas parcelas, e as testemunhas repetidas cinco vezes. A finalidade dessas testemunhas foi prover estimativas das variações ambientais a serem extrapoladas como componente da variação fenotípica entre clones e proporcionar correções dos valores fenotípicos dos clones, admitindo-se que as fileiras adjacentes a cada grupo de testemunhas foram beneficiadas ou prejudicadas pelo mesmo efeito ambiental (Cruz, 2001).

O solo da área experimental foi preparado mecanicamente por meio de aração e gradagens. Foram realizadas a calagem e adubação de fundação com fórmula 60-40-20 kg/ha de N, $\rm P_2O_5$ e $\rm K_2O$, conforme resultados da análise do solo. O plantio foi realizado em maio de 1999 utilizando-se frações de colmo distribuídas ao longo de 5 m contínuos no sulco, espaçados lateralmente em 0,5 m, assim, a área útil da parcela experimental correspondeu a 2,5 m².

Os clones foram submetidos a cinco cortes: dois de uniformização (agosto de 1999 e junho de 2000) e três de avaliação (novembro de 1999, agosto de 2000 e outubro de 2000). Vale ressaltar a severidade do período seco de 1999/2000, período em que ficaram suspensos os cortes de avaliação, entre os meses de novembro de 1999 a maio de 2000, visando não concorrer com a perda total dos materiais em estudo.

Após o primeiro e o segundo corte de uniformização, foi realizada adubação de cobertura nas quantidades de 100 e 80 kg de N/ha, 0 e 30 kg de P_2O_5 /ha e 100 e 120 kg de K_2O /ha, respectivamente, conforme análise do solo. A frequência de corte foi de 60 dias e a altura, rente ao solo.

Como algumas introduções da RENACE foram perdidas por falta de adaptação desses materiais às condições edafoclimáticas durante o período experimental, esses materiais foram gradativamente substituídos pela variedade Roxo de Botucatu, objetivando evitar o efeito clareira entre os clones que permaneceram em avaliação.

A seleção pelos caracteres qualitativos dos clones foi realizada com base em amostras de lâmina foliar e de colmo (colmo+bainha), colhidas no primeiro corte de avaliação, novembro de 1999, período seco na região. As amostras foram enviadas ao Laboratório de Nutrição Animal do Departamento de Zootecnia da Universidade Federal Rural de Pernambuco (UFRPE) para análises bromatológicas e determinação dos teores de matéria seca, proteína bruta, fibra em detergente neutro, fibra em detergente ácido e matéria orgânica das frações lâmina foliar e colmo, segundo metodologia descrita por Silva & Queiroz (2002).

Realizaram-se análises de digestibilidade *in vitro* da matéria seca de lâmina foliar e de colmo, segundo metodologia proposta por Tilley & Terry e modificada por Tinnimit & Thomas (1976), no Laboratório de Nutrição do

Centro de Pesquisa Agropecuária do Trópico Semi-Árido-CPATSA/EMBRAPA, Petrolina, Pernambuco.

A análise de variância foi realizada com base na média dos cortes por meio do procedimento "Famílias com Testemunhas Intercalares" do programa computacional GENES, versão para Windows (Cruz, 2001). As médias foram comparadas por meio do teste Tukey, a 5% de probabilidade.

A herdabilidade no sentido amplo foi estimada por meio do quociente entre a variância genética e a variância fenotípica (variância genética + variância ambiental), conforme metodologia descrita por Shimoya et al. (2002). Assim, a variância individual das testemunhas locais correspondeu à variância ambiental e a variância entre os demais clones, à variância fenotípica.

Resultados e Discussão

A matéria seca de lâmina foliar apresentou diferença significativa (P<0,05) entre os clones 17 e 33, com médias de 37,07 e 21,54%, respectivamente (Tabela 2). No entanto, esses materiais não diferiram dos demais, cuja média para essa característica foi de 29,03% de MS. A matéria seca de colmo não sofreu diferença (P>0,05) entre os clones (Tabela 2) e variou de 11,58 a 18,57% entre os clones 24 e 51, respectivamente.

As médias para MS de lâmina foliar e de colmo neste trabalho foram superiores a observada por Freitas et al. (2004) em pesquisa realizada na mesma região, no entanto com capim-elefante sob pastejo aos 104 dias de crescimento. O maior teor de MS aos 60 dias de crescimento pode estar associado ao efeito do estresse hídrico sob os clones da RENACE e as testemunhas locais, uma vez o que o material foi colhido em novembro, período seco da região. O teor de MS de lâmina foliar foi maior, cerca de 13 pontos percentuais, que o de colmo. Esse comportamento também foi observado por Hillesheim (1988) e provavelmente ocorreu pelo fato de que, nesta pesquisa, a fração colmo também continha bainha foliar.

O teor de MS da parte aérea não diferiu (P>0,05) entre os clones, com amplitude de 17,30 e 23,05% para os clones 5 e 33, respectivamente. A média desse caráter foi 20,61%, superior à obtida por Silva et al. (2008), que observaram que os híbridos interespecíficos de capim-elefante com milheto foram superiores à geração F_1 de cruzamentos intraespecíficos, bem como à progênies oriundas de autofecundação, entretanto, em todos os tipos de progênies avaliadas, houve variabilidade no teor de MS aos 35 dias de crescimento, o que indica a possibilidade de seleção de materiais com alto teor de MS. Materiais com maior teor de MS podem ser boa alternativa para ensilagem, pois dispensam pré-murchamento.

Tabela 2 - Porcentagem de matéria seca na lâmina foliar, no colmo e na parte aérea, conforme os clones de capim-elefante avaliados

Clone	Lâmina foliar	Colmo	Parte aérea
1	28,39ab	17,77a	21,18a
3	26,90ab	14,81a	19,64a
4	27,60ab	14,18a	20,71a
5	31,88ab	16,99a	23,05a
6	31,24ab	17,13a	21,35a
8	25,92ab	13,22a	20,99a
9	30,86ab	15,73a	20,95a
12	31,52ab	17,78a	22,71a
14	26,24ab	15,69a	22,03a
16	26,43ab	14,31a	19,00a
17	37,07a	16,95a	22,25a
20	28,56ab	15,42a	19,70a
21	31,34ab	15,25a	21,57a
23	25,43ab	12,01a	18,60a
24	24,12ab	11,58a	19,36a
27	28,02ab	14,48a	19,03a
28	29,13ab	13,86a	19,79a
30	28,95ab	15,84a	20,21a
32	29,53ab	16,36a	21,42a
33	21,54b	15,42a	17,30a
34	30,96ab	16,96a	21,56a
38	29,50ab	15,32a	21,67a
39	30,90ab	16,63a	20,55a
40	24,40ab	13,20a	19,57a
46	28,24ab	14,11a	19,20a
47	27,95ab	15,46a	20,37a
48	24,64ab	14,42a	19,15a
50	32,27ab	17,38a	21,59a
51	30,69ab	18,57a	21,33a
C	29,62ab	15,95a	20,02a
M	31,35ab	15,87a	21,91a
R	28,48ab	15,49a	19,99a
Média	29,03	15,52	20,61
CV (%)	7,13	8,80	5,82

Médias seguidas por igual letra na coluna não diferem (P>0,05) pelo teste de Tukey. Comparações entre clones e testemunhas e entre clones.

Silva et al. (2010), em estudo com esses mesmos clones, não observaram diferenças (P>0,05) no peso seco da parte aérea e de lâmina foliar entre os clones. Assim, na identificação de materiais superiores, devem ser incluídas diferentes características, além da produção e do teor de matéria seca. Conforme relatos de Santos et al. (2008), quando a forragem é fornecida picada no cocho, a capacidade do animal em selecionar folhas é limitada e, como a composição química da forragem ofertada depende principalmente da idade e do cultivar utilizado, deve-se priorizar cultivares de alta produtividade e com proporção equilibrada de caules e folhas. Silva et al. (2010) observaram que genótipos 48 (CNPGL92F198.7) e 50 (CNPGL 94F44.3) são promissores para utilização como progenitores na geração de novos materiais de capim-elefante, notadamente para uso sob pastejo, por apresentarem maior porcentagem de lâminas foliares e melhor relação lâmina foliar:colmo.

Não houve efeito significativo (P>0,05) dos clones sobre teor de PB na lâmina foliar, cujos valores oscilaram de 10,51 a 13,29% nos clones 6 e 23, respectivamente (Tabela 3). A média geral obtida foi de 11,64%, superior às observadas por Queiroz Filho et al. (2000) e Soares et al. (2004), determinadas aos 60 dias de crescimento, e à observada por Nascimento et al. (2008) com o cultivar Cameron sob diferentes alturas de resíduo.

Em relação ao teor de FDN de lâmina foliar, os clones 3 e 40 apresentaram 67,04% e 75,70%, respectivamente (Tabela 3). A média geral foi de 71,95% de FDN na lâmina foliar, inferior à observada por Lima et al. (2004) e superior à obtida por Santos et al. (2003), com valor de 68,08% para o cultivar pioneiro, porém em capineira manejada com frequência de corte de 35 dias. Valor próximo deste trabalho foi constatado por Santos et al. (2001), na ordem de 71,13% de FDN, no período chuvoso para o cultivar Roxo, também aos 60 dias de crescimento.

O teor de FDA da lâmina foliar apresentou diferença significativa (P<0,05) entre os clones. Os materiais 34 e 30 foram diferentes entre si, com médias de 21,96 e 36,78%, respectivamente (Tabela 3). A média geral foi de 34,05%, inferior à obtida por Soares et al. (2004), de 35,79%, e superior à obtida por Silva et al. (2011) aos 60 dias crescimento sob corte.

Não houve efeito significativo (P>0,05) dos clones sobre sobre os teores de PB, FDN e FDA de colmo, cujas médias foram de 12,62; 61,63 e 31,65%, respectivamente (Tabela 3). O valor de PB observado para fração colmo pode ser considerado elevado, nesse sentido o período de crescimento avaliado coincidiu com o período seco da região, o que pode ter levado a menor velocidade de crescimento e menor redução do conteúdo celular, onde a proteína estaria presente.

Silva et al. (2010) observaram que os clones avaliados neste trabalho não apresentaram diferença significativa de altura de planta, o que indica que não houve diferenciação de alongamento do caule entre os genótipos avaliados, o que pode ter contribuído para não diferenciação de PB, FDN e FDA do colmo dos clones avaliados nesta pesquisa.

O teor de PB, tanto na lâmina foliar quanto no colmo, foi superior a 7%, nível crítico para o atendimento das necessidades de ruminantes, conforme Minson & Wilson (1994). A maior seletividade da forragem e ingestão de proteína bruta também dependerá da forma de uso do capimelefante, capineira ou pastagem. Os valores de PB observados são altos para gramíneas tropicais, principalmente se considerados a idade de corte utilizada, 60 dias, o período do ano e o uso de adubação.

Tabela 3 - Composição proteica e de fibras da lâmina foliar e do colmo de clones de capim-elefante

Clone		Lâmina foliar			Colmo	
	PB	FDN	FDA	PB	FDN	FDA
1	12,15a	71,00a	35,02a	11,48a	59,85a	30,94a
3	11,14a	67,04a	36,59a	11,24a	57,60a	31,49a
4	11,75a	71,35a	33,87ab	12,35a	63,58a	35,70a
5	11,79a	70,74a	35,37a	12,92a	63,76a	31,43a
6	10,51a	71,88a	35,56a	10,21a	64,48a	33,75a
8	11,60a	70,69a	34,00ab	11,71a	61,17a	32,81a
9	11,87a	74,93a	34,93a	11,39a	70,42a	35,69a
12	12,21a	70,85a	33,01ab	11,24a	66,53a	33,85a
14	11,40a	71,38a	36,03a	10,68a	64,79a	32,41a
16	12,38a	69,29a	34,99a	12,65a	64,67a	30,07a
17	10,87a	70,91a	34,83a	13,85a	61,89a	31,75a
20	10,91a	71,65a	31,07ab	12,53a	61,81a	31,76a
21	11,36a	74,99a	34,15ab	11,33a	63,83a	35,15a
23	13,29a	71,06a	33,53ab	14,70a	59,41a	29,94a
24	11,29a	68,94a	33,99ab	12,75a	60,41a	28,99a
27	12,86a	69,16a	34,09ab	11,80a	63,61a	34,86a
28	11,35a	69,77a	35,18a	12,34a	60,69a	32,44a
30	12,81a	71,38a	36,78a	14,92a	61,13a	29,69a
32	10,86a	69,25a	26,96ab	10,25a	58,65a	31,65a
33	11,96a	71,86a	35,04a	13,26a	57,91a	33,58a
34	11,25a	72,96a	21,96b	12,53a	61,97a	27,30a
38	12,04a	70,37a	31,28ab	12,77a	66,60a	34,75a
39	11,67a	71,33a	33,54ab	12,65a	56,44a	28,03a
40	10,61a	75,70a	36,18a	10,43a	61,43a	33,77a
46	12,10a	73,60a	35,65a	13,04a	60,27a	30,55a
47	12,05a	74,72a	33,65ab	13,09a	60,09a	32,34a
48	13,03a	73,33a	35,79a	16,27a	61,30a	32,50a
50	11,32a	72,06a	35,33a	14,02a	55,50a	28,04a
51	11,56a	69,99a	34,02ab	13,16a	61,83a	32,78a
C	11,15a	74,73a	34,52ab	13,98a	61,17a	31,12a
M	11,83a	73,89a	34,90a	11,97a	66,01a	30,96a
R	11,32a	70,40a	33,79ab	13,18a	61,95 a	30,56a
Média	11,64	71,95	34,05	12,62	61,63	31,65
CV (%)	7,28	3,69	5,32	7,41	4,19	6,81

Médias seguidas por igual letra na coluna não diferem (P>0,05) pelo teste de Tukey. Comparações entre clones e testemunhas e entre clones.

No colmo, os teores de FDN variaram de 55,50 a 70,42% para os clones 50 e 9, respectivamente, enquanto os de FDA foramde 27,30% a 35,70% para os clones 34 e 4, respectivamente. Os baixos valores de FDN e FDA, principalmente na fração colmo, podem estar relacionados à presença das bainhas foliares, contribuindo para a menor proporção de componentes fibrosos. O período de crescimento das plantas foi de 60 dias durante o início do período seco e resultou provavelmente em pequenas mudanças na relação folha: caule. Assim, considerando que o alongamento do caule é acompanhado por aumento do teor de fibra, com consequente diminuição da digestibilidade, pode-se supor que esse fato contribuiu para a semelhança entre os valores de FDN e FDA.

De acordo com Lima et al. (2002), os carboidratos estruturais contidos nos alimentos utilizados para nutrição de ruminantes são representados pela FDN e têm relação inversamente proporcional à densidade energética. Assim, valores de FDN acima de 60% correlacionam-se negativamente ao consumo de forragem (Mertens, 1996).

A variação entre os teores de matéria orgânica de lâmina foliar dos clones foi de 81,33 a 87,18% para os clones 32 e 50, respectivamente, no entanto, não foi observada diferença significativa (P>0,05) para essa característica, cuja média foi de 84,13% (Tabela 4). Os clones diferiram (P<0,05) apenas quanto ao teor de matéria orgânica de colmo, que foi menor no clone 48 (Tabela 4). A amplitude de variação desse caráter pode ser considerada alta e variou de 57,82 a 84,31% para os clones 47 e 48, respectivamente.

Não houve diferença (P>0,05) na digestibilidade *in vitro* da MS de lâmina foliar e de colmo (Tabela 4). A digestibilidade *in vitro* da MS de lâmina foliar oscilou de 52,42% a 63,20% nos clones 17 e 34, respectivamente. A média foi de 56,27%, inferior à encontrada por Lopes et al. (2004), de 58,3%, na extrusa de bovinos em pastagem de capim-elefante sob consumo seletivo proporcionado pelo pastejo. A digestibilidade *in vitro* da MS de colmo variou de 68,41% (clone 20) a 55,69% (clone 16), enquanto a média foi de 62,61%, superior àquela obtida por Restle et al. (2002),

Tabela 4 - Porcentagem de matéria orgânica na lâmina foliar e no colmo e digestibilidade *in vitro* da matéria seca de lâmina foliar e de colmo de clones de capim-elefante

Clone	Lâmina	foliar	Colmo		
	Matéria orgânica	Digestibilidade in vitro	Matéria orgânica	Digestibilidade in vitro	
1	82,22a	56,00a	82,63a	61,90a	
3	84,37a	55,59a	79,62a	68,21a	
4	83,67a	55,96a	78,12a	64,91a	
5	84,71a	54,57a	79,19a	63,91a	
6	85,28a	59,17a	79,89a	62,09a	
8	82,70a	54,95a	77,17a	62,56a	
9	84,07a	56,50a	81,30a	62,52a	
12	84,68a	56,06a	82,40a	63,55a	
14	84,01a	56,33a	78,05a	61,62a	
16	83,94a	56,92a	78,78a	55,69a	
17	85,11a	63,20a	79,36a	66,97a	
20	84,47a	55,18a	77,16a	68,41a	
21	83,73a	54,45a	83,85a	58,26a	
23	83,12a	53,75a	76,00a	61,42a	
24	81,97a	55,87a	76,66a	63,33a	
27	84,11a	56,95a	77,77a	59,33a	
28	85,08a	54,63a	78,05a	63,38a	
30	84,75a	57,12a	78,63a	66,44a	
32	81,83a	53,28a	81,25a	63,74a	
33	84,22a	55,43a	80,91a	63,80a	
34	85,13a	52,42a	79,62a	58,02a	
38	84,51a	53,11a	77,98a	62,59a	
39	84,81a	60,50a	78,65a	67,81a	
40	83,19a	56,05a	78,99a	63,32a	
46	83,57a	61,22a	77,58a	59,55a	
47	84,40a	54,78a	84,31a	60,47a	
48	82,74a	62,76a	57,82b	57,74a	
50	87,18a	56,96a	79,92a	67,50a	
51	84,14a	60,29a	76,23a	62,73a	
C	84,57a	57,43a	80,42a	63,53a	
M	84,56a	56,64a	79,11a	61,24a	
R	83,69a	54,01a	78,89a	61,86a	
Média	84,13	56,27	78,83	62,61	
CV (%)	1,14	7,48	2,56	5,86	

Médias seguidas por igual letra na coluna não diferem (P>0,05) pelo teste Tukey. Comparações entre clones e testemunhas e entre clones.

referente a 46,25%. Mello et al. (2006) observaram degradabilidades potencial e efetiva de 80,3 e 78,5% da matéria seca em um grupo formado por cinco genótipos de *Pennisetum* de alta de relação folha/colmo e de 69,5 e 68,4% em outro grupo de cinco genótipos de baixa relação folha/colmo, as quais não diferiram aos 60 dias de idade.

A digestibilidade *in vitro* da MS do colmo, de forma geral, é maior que os da lâmina foliar, provavelmente porque a bainha foi considerada no colmo. De acordo com Queiroz et al. (2000), a alta digestibilidade *in vitro* da MS da bainha foliar (em média 70,6% para setária, capim-elefante e jaraguá) está altamente correlacionada à presença de células parenquimáticas e pode estar associada à formação de lacunas nessas células. Além disso, após a expansão da folha, muitas vezes a bainha foliar ainda se encontra em crescimento, o que justificaria seu alto coeficiente de digestibilidade *in vitro* da MS, equivalente, ou mesmo superior, ao observado para a lâmina foliar.

Os valores de composição química e digestibilidade de lâmina foliar e colmo neste trabalho foram bastante próximos; o colmo apresentou em alguns casos valor nutritivo superior ao da lâmina foliar. Além do efeito provável da bainha sobre a qualidade do colmo, como já discutido, existe a possibilidade de os clones de capim-elefante terem sido afetados pelo estresse hídrico, uma vez que as amostras para análise laboratorial foram colhidas no período seco.

Buxton (1996) ressaltou que estresse hídrico moderado normalmente atrasa a maturação da planta, mantendo a qualidade da forragem. Dessa forma, é possível que os clones não tenham se desenvolvido o suficiente para que houvesse diferenças marcantes nos tecidos das folhas (lâmina+bainha) e dos colmos, evidenciando a variação entre idade cronológica e fisiológica das plantas. Deschamps et al. (1998) mostraram que a qualidade, no início do crescimento do capim-elefante, não difere entre as frações folhas e colmos.

De modo geral, os materiais da RENACE foram semelhantes aos cultivares locais quanto às características estudadas, o que indica pouca possibilidade de seleção de materiais superiores. Esse fato foi confirmado pela herdabilidade nula para o teor de PB e FDN da lâmina foliar e para a digestibilidade *in vitro* da MS de lâminas e colmos (Tabela 5), provavelmente devido à alta proporção da variação ambiental na expressão do fenótipo.

A herdabilidade para o teor de MS no colmo e na parte aérea e para teor de FDA na lâmina foliar e no colmo foi de baixa magnitude, e isso indica que as causas genéticas não são efetivas para explicar a variabilidade dos clones. Apenas constatou-se herdabilidade de média a alta magnitude para os caracteres teor de MS na lâmina foliar e teor de PB e FDN no colmo (Tabela 5). No entanto, embora colaborem com parte representativa na expressão desses caracteres nos clones, as causas genéticas não foram suficientes para promover diferenças entre eles.

Para o sucesso de um programa de seleção clonal, duas condições são essenciais: alta herdabilidade, que passa a ser a de sentido amplo, e a ocorrência de variabilidade (Resende, 2002). Neste trabalho, os caracteres de alta herdabilidade apresentaram baixa variabilidade, o que leva a ganhos de baixa magnitude ou mesmo nulos.

Silva et al. (2011), em pesquisa com clones de *Pennisetum* em Itambé, Pernambuco, observaram herdabilidade mais elevada para as varáveis qualitativas. A composição química de genótipos de capim-elefante é extremamente influenciada por fatores ambientais (Silva et al., 2002), o que provavelmente explica a maior influência do ambiente na herdabilidade da maioria dos caracteres estudados.

Pereira et al. (2002) ressaltaram que estimativas de herdabilidade são próprias do conjunto de genótipos avaliados para determinada condição ambiental e valores

Tabela 5 - Herdabilidade no sentido amplo (h²) de caracteres qualitativos em clones de capim-elefante na Zona da Mata de Pernambuco

Característica	Herdabilidade (%)
Teor de MS de lâmina foliar	56,62
Teor de MS de colmo	37,10
Teor de MS da parte aérea	20,59
PB de lâmina foliar	0,00
FDN de lâmina foliar	0,00
FDA de lâmina foliar	63,55
PB de colmo	37,00
FDN de colmo	79,86
FDA de colmo	11,37
Matéria orgânica de lâmina foliar	27,96
Digestibilidade in vitro de lâmina foliar	0,00
Matéria orgânica de colmo	80,19
Digestibilidade in vitro de colmo	0,00

mais elevados são esperados para características quantitativas oligogênicas. Esses autores verificaram ainda que a herdabilidade da MS de lâmina foliar e colmo varia conforme o ano e que dados de um único corte poderão prejudicar a comparação entre genótipos de capim-elefante, em decorrência do efeito ambiental.

Considerando os clones estudados, dificilmente a composição química e a digestibilidade do capim-elefante poderão ser modificadas por seleção. Contudo, este objetivo não deve ser descartado em vista dos resultados obtidos com outras espécies (Vogel & Sleper, 1994). É importante que sejam realizadas avaliações entre cortes e anos para que se possam obter estimativas da repetibilidade dos caracteres estudados, uma vez que esse parâmetro representa o valor máximo da herdabilidade (Shimoya et al., 2002).

Conclusões

A qualidade dos clones de capim-elafnte da RENACE é semelhante à dos cultivares tradicionais, Mineirão, Cameroon e Roxo de Botucatu. Há baixa possibilidade de ganhos na seleção de caracteres qualitativos, em virtude da baixa variabilidade e herdabilidade dos caracteres estudados. Os genótipos de capim-elefante estudados em sua maioria são semelhantes entre si.

Agradecimentos

Aos pesquisadores Maria da Conceição Silva e Erinaldo Viana de Freitas, pelo apoio na realização da pesquisa.

Referências

BUXTON, D.R. Quality-related characteristics of forages as influenced by plant environment and agronomic factors.

Animal Feed Science Technology, v.59, p.37-49, 1996.

CRUZ, C.D. **Genes:** versão Windows; aplicativo computacional em genética e estatística. Viçosa, MG: UFV, 2001. 648p.

DAHER, R.F.; MALDONADO, H.; PEREIRA, A.V. et al. Estimativas de parâmetros genéticos e de coeficientes de repetibilidade de caracteres forrageiros em clones de capimelefante (*Pennisetum purpureum* Schum.). Acta Scientiarum, v.26, n.4, p.483-490, 2004.

DESCHAMPS, F.C.; EMMEL, A.; RAMOS, L.P. Modificações químicas observadas na parede celular do capim-elefante ao longo de 126 dias. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 35., 1998, Botucatu. Anais... Botucatu: SBZ, 1998. p.131-133.

FREITAS, E.V.; LIRA, M.A.; DUBEUX JÚNIOR, J.C.B. et al. Características produtivas e qualitativas de clones de capimelefante (*Pennisetum purpureum* Schum.) avaliados sob pastejo na Zona da Mata de Pernambuco. **Acta Scientiarum. Animal Sciences**, v.26, n.2, p.251-257, 2004.

HILLESHEIM, A. Manejo do gênero Pennisetum sob pastejo. In: SIMPÓSIO SOBRE MANEJO DA PASTAGEM, 1988, Piracicaba. Anais... Piracicaba: Fundação de Estudos Agrários Luiz de Queiroz, 1988, p.77-78.

JACOMINE, P.K.T. Evolução do conhecimento sobre solos coesos no Brasil. In: WORKSHOP COESÃO EM SOLOS DOS TABULEIROS COSTEIROS, 2001, Aracaju. Anais... Aracaju: Embrapa Tabuleiros Costeiros, 2001. p.19-46.

- KOLLET, J.L.; DIOGO, J.M.S.; LEITE, G.G. Rendimento forrageiro e composição bromatológica de variedades de milheto (*Pennisetum glaucum* (L.) R. BR.). **Revista Brasileira de Zootecnia**, v.35, n.4, p.1308-1315, 2006.
- KOZLOSKI, G.V.; PEROTTONI, J.; CIOCCA, M.L.S. et al. Potential nutritional assessment of dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) by chemical composition, digestion and net portal flux of oxygen in cattle. Animal Feed Science and Technology, v.104, p.29-40, 2003.
- LIMA, L.G.; NUSSIO, L.G.N.; GONÇALVES, J.R.S. et al. Fontes de amido e proteína para vacas leiteiras em dietas à base de capim elefante. **Scientia Agricola**, v.59, n.1, p.19-27, 2002.
- LIMA, M.L.P.; BERCHIELLI, T.T.; LEME, P.R. et al. Concentração de nitrogênio uréico plasmático (NUP) e produção de leite de vacas mestiças mantidas em gramíneas tropicais sob pastejo rotacionado. Revista Brasileira de Zootecnia, v.33, n.6, p.1616-1626, 2004.
- LOPES, F.C.F.; AROEIRA, L.J.M.; RODRIGUEZ, N.M. et al. Efeito da suplementação e do intervalo de pastejo sobre a qualidade da forragem e consumo voluntário de vacas Holandês × Zebu em lactação em pastagem de capim-elefante. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.56, n.3, p.355-362, 2004.
- MACOON, B.; SOLLENBERGER, L.E.; MOORE, J.E. Defoliation effects on persistence and productivity of four *Pennisetum spp.* genotypes. **Agronomy Journal**, v.94, p.542-548, 2002.
- MELLO, A.C.L.; LIRA, M.A.; DUBEUX JÚNIOR, J.C.B. et al. Degradação ruminal da matéria seca de clones de capim-elefante em função da relação folha/colmo. Revista Brasileira de Zootecnia, v.35, n.4, p.1316-1322, 2006.
- MERTENS, D. Using fiber and carbohydrate analyses to formulate dairy rations. Formulating dairy rations. In: INFORMATIONAL CONFERENCE WITH DAIRY AND FORAGE INDUSTRIES, 1996, Virginia. **Proceedings....** Virginia: US Dairy Forage Research Center, 1996. p.81-92,
- MINSON, D.J.; WILSON, J.R. Prediction of intake as on element of forage quality. In: FAHEY JUNIOR, G. (Ed.) Forage quality, evaluation, and utilization. Madison: American Society of Agronomy, 1994. p.533-563.
- NASCIMENTO, I.S.; MONKS, P.L.; SILVA, J.B. Efeito de cortes outonais e hibernais sobre o desempenho produtivo do capim elefante cv. *Cameroon*. **Revista Brasileira de Ciências Agrárias**, v.3, n.2, p.191-196, 2008.
- NELSON, C.J.; MOSER, L.E. Plant factors affecting forage quality. In: FAHEY JUNIOR, G. (Ed.) Forage quality, evaluation, and utilization. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science of America, 1994. p.115-154.
- PEREIRA, A.V.; CRUZ, C.D.; FERREIRA, R.P. et al. Influência da estabilização de genótipos de capim-elefante (*Pennisetum purpureum* Schum.) sobre a estimativa da repetibilidade de características forrageiras. **Ciência e Agrotecnologia**, v.26, n.4, p.762-767, 2002.
- PEREIRA, A.V.; FERREIRA, R.P.; PASSOS, L.P. et al. Variação da qualidade de folhas em cultivares de capim-elefante (*Pennisetum purpureum*) e híbridos de capim-elefante x milheto (*P. purpureum x P. glaucum*), em função da idade da planta. Ciência e Agrotecnologia, v.24, n.2, p.490-499, 2000.
- PEREIRA, A.V.; MACHADO, M.A.; AZEVEDO, A.L.S. et al. Diversidade genética entre acessos de capim-elefante obtida com marcadores moleculares. **Revista Brasileira de Zootecnia**, v.37, n.7, p.1216-1221, 2008.
- QUEIROZ FILHO, J.L.; SILVA, D.S.; NASCIMENTO, I.S. Produção de matéria seca e qualidade do capim-elefante (Pennisetum purpureum Schum.) cultivar roxo em diferentes

- idades de corte. **Revista Brasileira de Zootecnia**, v.29, n.1, p.69-74, 2000.
- QUEIROZ, D.S.; GOMIDE, J.A.; MARIA, J. Avaliação da folha e do colmo de topo e base de perfilhos de três gramíneas forrageiras. 2. Anatomia. **Revista Brasileira de Zootecnia**, v.29, n.1, p.61-68, 2000.
- RESENDE, M.D.V. Genética biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação Tecnológica. 975p. 2002.
- RESTLE, J.; ROSO, C.; AITA, V. et al. Produção animal em pastagem com gramíneas de estação quente. **Revista Brasileira de Zootecnia**, v.31, n.3, p.53-60, 2002.
- SANTOS, E.A.; SILVA, D.S.; QUEIROZ FILHO, J.L. Composição química do capim-elefante cv. roxo cortado em diferentes alturas. Revista Brasileira de Zootecnia, v.30, n.1, p.18-23, 2001.
- SANTOS, M.V.F.; DUBEUX JÚNIOR, J.C.B.; SILVA, M.C. et al. Produtividade e composição química de gramíneas tropicais na Zona da Mata de Pernambuco. **Revista Brasileira de Zootecnia**, v.32, n.4, p.821-827, 2003.
- SANTOS, M.V.F.; LIRA, M.A.; DUBEUX JÚNIOR, J.C.B. et al. Formação e manejo de capineiras de capim-elefante. Recife: Instituto Agronômico de Pernambuco - IPA, 2008. 23p. (Documentos, 33).
- SANTOS, M.V.F.; DUBEUX JÚNIOR, J.C.B.; MELLO, A.C.L.. Formação e manejo de capineiras. In: LIRA, M.L.; SANTOS, M.V.F.; DUBEUX JUNIOR, J.C.B. et al. (Eds.). Capimelefante: fundamentos e perspectivas. Recife: IPA-UFRPE, 2010. p.145-162.
- SHIMOYA, A.; CRUZ, C.D.; FERREIRA, R.P. et al. Divergência genética entre acessos de um banco de germoplasma de capimelefante. Pesquisa Agropecuária Brasileira, v.37, n.7, p.971-980, 2002.
- SILVA, D.J.; QUEIROZ, A.C. Análise de alimentos (métodos químicos e biológicos). Viçosa, MG: UFV, 2002. 235p.
- SILVA, M.C.; SANTOS, M.V.F.; LIRA, M.A. et al. Ensaios Preliminares sobre autofecundação e cruzamentos no melhoramento do capim-elefante. **Revista Brasileira de Zootecnia**, v.37, n.3, p.401-410, 2008.
- SILVA, A.L.C.; SANTOS, M.V.F.; DUBEUX JUNIOR, J.C.B. et al. Variabilidade e herdabilidade de caracteres morfológicos em clones de *Pennisetum* na Zona da Mata de Pernambuco. **Revista Brasileira de Zootecnia**, v.39, n.10, p.2132-2140, 2010.
- SILVA, M.A.; LIRA, M.A.; SANTOS, M.V.F. et al. Rendimento forrageiro e valor nutritivo de clones de *Pennisetum* sob corte, na Zona da Mata seca de Pernambuco – Brasil. **Revista Archivos de Zootecnia**, 2011 (prelo).
- SILVA, M.M.P.; VASQUEZ, H.M.; SILVA, J.F.C. et al. Composição bromatológica, disponibilidade de forragem e índice de área foliar de 17 genótipos de capim-elefante (*Pennisetum* purpureum Schum.) sob pastejo, em Campos dos Goytacazes, RJ. Revista Brasileira de Zootecnia, v.31, n.1, p.313-320, 2002 (supl.).
- SOARES, J.P.G.; BERCHIELLI, T.T.; AROEIRA, L.J.M. et al. Estimativas de consumo do capim-elefante (*Pennisetum purpureum* Schum), fornecido picado para vacas lactantes utilizando a técnica do óxido crômico. **Revista Brasileira de Zootecnia**, v.33, n.3, p.811-820, 2004.
- STEINER, J.J.; SANTOS, G.G. Adaptive ecology of *Lotus corniculatus* L. genotypes. I. Plant morphology and RAPD marker characterizations. **Crop Science**, n.41, p.552-563, 2001.
- TINNIMIT, P.; THOMAS, J.W. Forage evaluation using various laboratory techniques. **Journal of Animal Science**, v.43, n.5, p.1059-1675, 1976.
- VOGEL, K.P.; SLEPER, D.A. Alteration of plants via genetics and plant breeding. In: FAHEY JR, G.C.; MOSER, L.E.; MERTENS, D.R. et al. (Eds.) Forage quality, evaluation and utilization. Madison: ASA/CSSA, 1994. p.891-921.