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Inclusion of genomic information 
in estimation of genetic parameters 
for body weights and visual scores 
in Nelore cattle

ABSTRACT - The aim of this study was to evaluate genomic information inclusion in 
genetic parameter estimation of standardized body weight at birth and at 240, 365, and 
450 days of age, and visual scores for body structure, precocity, and body muscularity, 
measured as yearlings in Nelore cattle. We compared genetic parameters, (co)variance 
components (estimated from Bayesian inference and Gibbs sampling), breeding value 
accuracies, genetic trends, and principal component analysis (PCA) obtained through 
traditional GBLUP and ssGBLUP methods. For all traits analyzed, part of the phenotypic 
variation was explained by the additive genetic effect, thus indicating the capacity of traits 
to respond to the selection process. Estimates of genetic correlation, in both methodologies, 
between body weights and visual scores were, in general, high and positive, showing that 
the selection for visual scores can lead to heavier animals. Genetic trends showed genetic 
progress, both when estimated breeding values and genomic estimated breeding values 
were used. The PCA, genetic trends, and accuracy estimates on breeding values showed 
that inclusion of single nucleotide polymorphism information contributed towards 
slightly better estimates of the genetic variability of evaluated traits. Genomic information 
did not bring greater gains in genetic estimates, due to redundancy of kinship information 
from the pedigree, which already had complete animal kinship data. 
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1. Introduction

The use of genomic information for evaluating production animals makes it possible to obtain genetic 
gains more rapidly compared with the use of information obtained only through phenotype records 
(Meuwissen et al., 2016). Incorporating genomic information within genetic improvement can also 
include gains in accuracy regarding the genetic breeding values for selection candidates and reduction 
of the generation interval, which enables selection of younger animals. Given that the amount of 
genotype data available for Nelore breed commercial cattle herds is relatively small in comparison 
with the volume of pedigree data, the best manner for using the genomic data on these animals is 
to combine genomic, pedigree, and phenotype information, through single-step genomic best linear 
unbiased prediction (ssGBLUP) (Haile-Mariam et al., 2013). This methodology consists of using 
genomic information to correct the pedigree relationship matrix and ascertain the genetic breeding 
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values of ungenotyped animals in relation to the genetic values of genotyped animals, thus resulting in 
a pedigree-genomic relationship matrix H (Legarra et al., 2009).

Selection for growth traits has advantages over selection for reproductive traits, considering the ease of 
measurement and the possibility of doing it at different ages (Moreira et al., 2015). Body weight (BW) 
measurements made during an animal’s initial development phase are important for determining the 
economic efficiency of any beef cattle rearing system (Zuin et al., 2012). Heritability estimates (h2) 
for BW traits indicate that a high proportion of phenotypic variance is attributed to additive genetic 
variance. Therefore, these traits tend to be used as a selection criterion in genetic improvement  
programs because of its favorable genetic correlation with several traits of economic interest (Araújo  
et al., 2014), especially for visual score traits (Abreu et al., 2018).

Beef cattle evaluation by visual scores has been shown to be important to selection for meat production. 
Like BW, this can be obtained simply and at low cost (Paterno et al., 2017). Through visual scores, 
it is possible to identify animals with better weight development and better morphological proportions, 
thus indicating animals with earlier development and finishing (Koury Filho et al., 2010) and also 
favoring sexual precocity (Abreu et al., 2018; Freitas et al., 2020).

One multivariate technique that is used to explore data variability, when working with several 
correlated traits, is principal component analysis (PCA). This analysis can assist in interpretation of 
the genetic variation of economically important traits (Buzanskas et al., 2013) and in exploring genetic 
relationships between animals and their breeding values (Vargas et al., 2018). This technique has been 
used in genome-wide association studies to improve quantitative trait loci detection (Zhang et al., 
2018) and prospect for candidate genes associated with growth, carcass, conformation, and fatty acid 
composition traits (Vargas et al., 2020).

Therefore, the benefit of using visual scores in genetic breeding programs relies on the association between 
visual scores and BW. The objective of this study was to evaluate genomic information inclusion in genetic 
parameter estimation of standardized BW at birth (BWB) and at 240 (BW240), 365 (BW365), and 450 
(BW450) days of age, visual scores for body structure (BS), precocity (FP), and body muscularity (MS), 
measured in yearling Nelore cattle. We compared genetic parameters, (co)variance components (estimated 
from Bayesian inference and Gibbs sampling), breeding value accuracies, genetic trends, and PCA obtained 
through traditional best linear unbiased prediction (BLUP) and ssGBLUP methods to verify whether 
genotyping animals brought gain in genetic estimate accuracies that guide the selection of superior animals. 

2. Material and Methods

2.1. Ethics statement

The use that was made of the animals in this study, including their welfare and husbandry,  
experimental procedures, and blood samples collected, was under the responsibility of the Associação 
Nacional de Criadores e Pesquisadores (ANCP; Ribeirão Preto, SP, Brazil).

2.2. Phenotypic and pedigree datasets

Pedigree data from 192,483 animals of the Nelore breed that were born between 1934 and 2016, along 
with 80,114 phenotype records and 8,652 genotype records, were obtained through the programa 
Nelore Brasil, which is from ANCP. We studied traits of BWB, BW240, BW365, and BW450 (Table 1), 
along with visual scores of BS, FP, and MS, based on the morphological evaluation system (Table 2), 
measured in yearlings. To these visual scores, conceptual scores relating to the management group 
were attributed on a scale of 1 to 6, in which 6 was the best trait expression and 1, the worst. This was 
done through a consensus reached among three evaluators.

The animals had been reared within a pasture-grazing system, with weaning at the age of 6-8 months. 
Reproductive management consisted of the use of a mounting season of 60-120 days, with use of 
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artificial insemination or controlled natural mounting. Contemporary groups (CG) were created in 
relation to all the traits in accordance with the effects of sex, birth year, farm of origin, management 
group, and trimester of birth. Each CG had a minimum of five animals and a maximum of 894, 544, 500, 
and 461 animals per group for BWB, BW240, BW365, and BW450, respectively, and a maximum of 
360 animals with regard to visual score traits.

Contemporary groups containing fewer than five animals were disregarded. Connectedness analysis 
among the groups for each trait was performed using the AMC software. This analysis consists of 
verifying direct genetic links (DGL) among CG, due to common sires and dams, or any common ancestor, 
weighted according to the corresponding additive relationship. A minimum DGL value is used by the 
software for CG to be considered connected (Roso and Schenkel, 2006). Connectedness analysis was 
done to ascertain whether any groups were disconnected from the dataset and, thus, reject them  
from the analyses. It was found that 5, 14, and 15 CG were disconnected regarding traits of BW240, 
BW365, and BW450 and six groups regarding traits of BS, FP, and MS, respectively.

The fixed effects that were considered in the genomic prediction models were determined using the 
least-squares method using the GLM function available for the R 3.4.1 statistics software (R Core Team, 
2018). For all traits studied, the fixed effect of the CG was significant (P<0.05) and was, therefore, included 
in the model. For all the BW studied and BS, the linear quadratic effect of the covariable of age of cow 
at calving was included, since this was shown to be significant (P<0.05) in the analyses on these traits. 
For the other scores (FP and MS), only the linear effect of the covariable of age of cow at calving was 
significant (P<0.05), and this was considered in the models. The assumptions for analysis of variance 
on the normality of the residuals and for homogeneity of variance were met for all the traits. Residuals 
from the observations that were more than +3.0 standard deviations above or more than −3.0 standard 
deviations below the average were considered to be outliers and were excluded from the dataset.

2.3. Quality control for genomic dataset

The genomic dataset in this study comprised 7,008 animals, 2,446 males and 4,562 females. The 
dataset came from an initial dataset of 8,652 animals and was subjected to quality control using the 

Table 1 - Descriptive statistics on body weight among Nelore cattle

Weight (kg)
Number

Mean SD Max Min CV (%)
Animals Bulls Cows CG

BWB 49,800 1,988 32,607 492 33.93 4.45 49.00 19.00 13.11

BW240 38,932 1,990 29,761 1,045 201.60 28.21 295.00 81.00 14.00

BW365 31,322 1,724 24,011 908 262.10 43.35 409.00 110.00 16.53

BW450 26,493 1,557 20,834 846 304.50 52.18 481.00 130.00 17.14

BWB - weight at birth; BW240 - weight at 240 days of age; BW365 - weight at 365 days of age; BW450 - weight at 450 days of age;  
CG - contemporary groups; SD - standard deviation; Max - maximum value; Min - minimum value; CV - coefficient of variation.

Table 2 - Number and proportion (between parentheses) of animals per score for visual scores in yearlings 
Trait Number (proportion) of animals per score

Visual scores 1 2 3 4 5 6

BS 273 (0.04) 841 (0.13) 1,355 (0.21) 1,858 (0.28) 1,538 (0.24) 629 (0.10)

FP 213 (0.03) 826 (0.13) 1,434 (0.22) 1,731 (0.27) 1,524 (0.23) 766 (0.12)

MS 334 (0.05) 973 (0.15) 1,561 (0.24) 1,598 (0.25) 1,330 (0.20) 698 (0.11)

Trait Number

Visual scores Animals Bulls Cows CG

BS/ FP/ MS 6,494 525 5,214 102

BS - structure; FP - precocity; MS - muscularity; CG - contemporary groups.
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R/Bioconductor package snpStats (Clayton, 2020). This consisted of removal of the single nucleotide 
polymorphism (SNP) markers using alleles of frequency lower than 5% and call rate lower than 95%. 
Animals with a call rate lower than 93% were removed. After this quality control step, there remained 
456,241 SNP and 7,008 genotyped animals. 

Among the 8,652 animals (original dataset), 960 bulls were genotyped using a high-density (HD) 
panel (Illumina Bovine HD BeadChip), while 1,000 animals were genotyped using a medium-density 
panel (50k) (Illumina BovineSNP50 BeadChip) and were subsequently imputed to the HD panel. 
Furthermore, 6,692 animals were genotyped using a low-density panel (12k) (Clarifide Nelore 2.0) and 
were subsequently imputed to the 50k panel and then to the HD panel. Thus, all the animals considered 
in the genomic analyses were imputed to the HD panel.

2.4. Variance component estimation

The prediction of estimated breeding values (EBV) was obtained through the traditional BLUP 
methodology. Genomic EBV (GEBV) were obtained through ssGBLUP. (Co)variance components were 
estimated from Bayesian inferences and Gibbs sampling. Bayesian inferences enabled to establish 
regions of credibility (intervals of higher a posteriori density, HPD) for each parameter or combination 
of parameters, constructed from the Gibbs sampling. (Co)variances, EBV, and GEBV presented in 
this study were estimated using THRGIBBS1F90 (Misztal et al., 2014; Tsuruta and Misztal, 2006).  
For the multi-trait models, initial variance values were obtained from single-trait models: estimates 
obtained using the GIBBS2F90 software (Misztal et al., 2014) for linear traits and THRGIBBS1F90  
for categorical traits. Multi-trait analyses were performed considering combinations of each BW with 
the three visual scores. The posteriori estimates for variance components were obtained through the 
POSTGIBBSF90 software (Misztal et al., 2014). The general model can be represented as follows:

y = Xβ + Za + e,                                                                              (1)

in which y is the phenotype vector, β is the vector of systematic effects of CG, a is the vector of random 
additive genetic effects, e is the vector of random residual effects, and X and Z are the incidence 
matrices that correlate the observations to the systematic and random effects, respectively. The model 
assumptions were presented as follows:

E
Ga⊗A        0
    0         R⊗Ir

y
a
e

xβ
0
0

= =
a
eand Var  ,                                                (2)

in which Ga is the matrix of (co)variances of additive genetic effects, A is the relationship matrix, R is 
the matrix of residual (co)variances, Ir is the identity matrix, and ⊗ represents the direct Kronecker 
product between two matrices. The relationship matrix H is used when ssGBLUP was considered and 
is presented as follows:

H–1 = A–1 +
0          0
0   G–1 – A–

2
1
2

 ,                                                                 (3)

in which A−1 is the inverse of the numerator relationship matrix, G−1 is the inverse of the genomic 
relationship matrix, and A–

2
1
2 is the inverse of the pedigree-based relationship matrix for  

genotyped animals.

(Co)variance components were estimated by Bayesian inference, via Gibbs sampling. A prior normal 
distribution was considered in the single- and multi-trait models. In the implementation of Gibbs 
sampling from Monte Carlo and Markov sequences (MCMC), an initial chain of 500,000 iterations 
was used. The first 50,000 cycles were discarded (burn-in), and samples were removed after 
each 100 cycles (thinning interval), thus totaling 4,500 samples. For the convergence analysis, the 
convergence assessment criteria proposed by Heidelberger and Welch (1983) and Geweke (1992) 
were used. Convergence between the chains was ascertained using the R BOA package (Smith, 2005). 
The Heidelberger and Welch test considered that the sample values came from stationary distribution 
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for the null hypothesis (Heidelberger and Welch, 1983). A half-amplitude test was performed together 
with the Heidelberger and Welch test, with calculation of the 95% confidence interval for the mean 
using the fragment of the chain that went through the stationary test. Geweke’s convergence diagnostics 
are based on a test for equality of means between the first and last portions of the Markov chain. For 
Geweke’s diagnostic test, 10% of the initial samples and 50% of the last samples were used. Heritability 
estimates, genetic correlations, phenotype correlations, and environmental correlations were  
obtained from the mean values of the respective samples a posteriori. 

The accuracies (ac) of EBV and GEBV were calculated considering the following equation: 

ac = 1 –
σ2

e

σ2
a

,                                                                             (4)

in which σ2
e is the predictive variance of the error of genetic value estimates and σ2

a is the additive 
genetic variance (BIF, 2018). Animals were divided into classes of EBV and GEBV accuracy to verify 
the symmetry data distribution. These classes were divided into proportions of animals with accuracy 
levels as follows: proportion of animals with EBV and GEBV accuracy values less than 0, between 0 and 
0.4 (not including accuracy values of 0.4), between 0.4 and 0.6 (including accuracy values of 0.4 and  
not including values of 0.6), between 0.6 and 0.8 (including accuracy values of 0.6 and not including 
values of 0.8), and greater than 0.8 (including accuracy values of 0.8).

2.5. Principal component analysis and genetic trends

Principal component analysis was performed using the statistics package, available for the software 
R 3.4.1 (R Core Team, 2018), which uses the decomposition of singular values of the data matrix 
(centralized and scaled). In this analysis, the Kaiser criterion (Kaiser, 1960) was used to explain variable 
variance, such that more relevant proportions of the data variance were explained when eigenvalues 
were greater than 1. This was done by considering the means for the EBV and GEBV estimates, for the 
traits studied, which were estimated from multi-trait analyses. Through this analysis, the interaction 
between traits could be seen. The proportion of the animals’ genetic variability that was explained 
through PCA was observed upon including SNP information from the animals in GEBV estimates. 

Genetic trends were estimated from linear regression on EBV and GEBV, as a function of the animals’ 
birth year. This was done using the statistics package, available for the software R 3.4.1 (R Core Team, 
2018). The significance of the regression coefficient b was tested using the t test. The genetic trends 
were ascertained to determine whether there had been any genetic progress regarding the traits 
studied. Bias in predicting genetic breeding values was verified according to Yoshida et al. (2019). 
To avoid unbiased estimates, the angular coefficient of the statistical linear regression model for GEBV 
as a function of EBV needs to be 1. Values above 1 indicates inflated estimates and values below 1, 
deflated estimates.

3. Results

Convergence was achieved based on at least one of the convergency criteria, for all the variance 
components that imply reliability in the results obtained. Heritability estimates for the traits evaluated 
in ssGBLUP and BLUP ranged from 0.31±0.04 to 0.81±0.01 and 0.31±0.02 to 0.82±0.01, respectively. 
For all the traits analyzed, part of the phenotypic variation was explained by the additive genetic 
effect (Table 3), thus indicating the capacity of the traits to respond to selection. A slight increase in h2 
estimates was observed when genomic information for BW240, BW365, and B2450 was considered. 
The BW240 trait was the one that most presented gain when using ssGLBUP, increasing from 0.33±0.02 
(traditional BLUP) to 0.38±0.02. The gain in the estimates was due to better knowledge of the 
relationship coefficients among related animals when molecular information was used.

The genetic variability could also be observed in the PCA (Table 4 and Figure 1). Principal components 
1 and 2 (PC1 and PC2, respectively) were considered to represent the variability of the data analyzed 
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as they passed the Kaiser criterion (ssGBLUP: 4.6255 and 1.1721 for PC1 and PC2, respectively; 
traditional BLUP: 4.5318 and 1.1801 for PC1 and PC2, respectively). In the present study, by using 
ssGBLUP, PC1 was capable of explaining 66.1% of the variability of the data, while PC2 explained 16.7% 
(Figure 1 b). In turn, through the use of BLUP, PCA was capable of identifying 64.74 and 16.86% of the 

Table 3 - Mean heritability, additive genetic variance, and residuals of body weight and visual scores traits

Trait h2 (SD) σ2
a (SD) [95% HPD] σ2

e (SD) [95% HPD]

ssGBLUP

BWB (kg) 0.81 (0.01) 4.70 (2.17) [4.27; 5.16] 7.40 (2.72) [7.08; 7.71]

BW240 (kg) 0.38 (0.02) 179.31 (13.39) [159.90; 198.50] 295.21 (17.18) [281.80; 309.90]

BW365 (kg) 0.34 (0.02) 226.20 (15.04) [201.10; 251.20] 432.48 (20.80) [413.20; 450.90]

BW450 (kg) 0.35 (0.02) 280.10 (16.74) [245.60; 312.30] 509.64 (22.58] [484.40; 532.80]

BS 0.31 (0.04) 0.60 (0.77) [0.44; 0.76] 1.06 (1.03) [0.94; 1.18]

FP 0.38 (0.05) 0.64 (0.80) [0.47; 0.82] 1.05 (1.02) [0.91; 1.18]

MS 0.39 (0.05) 0.71 (0.84) [0.51; 0.90] 1.09 (1.04) [0.94; 1.22]

Traditional BLUP

BWB (kg) 0.82 (0.01) 4.67 (2.16) [4.25; 5.12] 7.41 (2.72) [7.10; 7.73]

BW240 (kg) 0.33 (0.02) 156.80 (12.52) [137.40; 176.60] 312.14 (17.67) [296.50; 326.20]

BW365 (kg) 0.31 (0.02) 88.46 (9.40) [176.90; 227.60] 450.78 (21.23) [430.30; 469.80]

BW450 (kg) 0.32 (0.02) 252.29 (15.88) [220.40; 287.20] 530.72 (23.04) [505.30; 556.50]

BS 0.32 (0.05) 0.54 (0.73) [0.37; 0.70] 1.11 (1.05) [0.98; 1.23]

FP 0.37 (0.05) 0.64 (0.80) [0.45; 0.81] 1.05 (1.02) [0.91; 1.19]

MS 0.38 (0.05) 0.70 (0.84) [0.50; 0.90] 1.10 (1.05) [0.94; 1.24]

BLUP - best linear unbiased prediction; ssGBLUP - single-step genomic best linear unbiased prediction; BWB - weight at birth; BW240 - weight 
at 240 days of age; BW365 - weight at 365 days of age; BW450 - weight at 450 days of age; BS - structure; FP - precocity; MS - muscularity; 
h2 - heritability estimate; σ2

a - estimate of additive genetic variance; σ2
e - estimate of residual genetic variance; 95% HPD - estimates of higher  

a posteriori density.

Table 4 - Eigenvalues for each principal component (PC), proportion, and accumulated proportion of the total 
additive genetic variance

PC Eigenvalue Proportion of total additive  
genetic variance (%)

Accumulated proportion of total  
additive genetic variance (%)

ssGBLUP

PC1 4.6255 66.08% 66.08%

PC2 1.1721 16.74% 82.82%

PC3 0.7396 10.56% 93.39%

PC4 0.1784 2.55% 95.94%

PC5 0.1598 2.28% 98.22%

PC6 0.0799 1.14% 99.36%

PC7 0.0445 0.64% 100.00%

Traditional BLUP

PC1 4.5318 64.74% 64.74%

PC2 1.1801 16.86% 81.60%

PC3 0.7455 10.65% 92.25%

PC4 0.2149 3.07% 95.32%

PC5 0.1802 2.58% 97.83%

PC6 0.1007 1.44% 99.33%

PC7 0.0467 0.67% 100.00%

BLUP - best linear unbiased prediction; ssGBLUP - single-step genomic best linear unbiased prediction.
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variability of the data, in PC1 and PC2, respectively. Therefore, by using the ssGBLUP method, it was 
possible to identify a slightly higher proportion of the genetic variability. This was achieved through 
incorporation of SNP information into the prediction model, which enabled better identification of  
the genetic relationships among the animals. 

The greater proximity between the vectors for the mean genetic breeding values of BWB and BS  
(Figure 1) corroborated the estimates for genetic correlations (Table 5). The estimate for genetic 
correlation between BWB and BS was greater than the estimates between the other visual scores. The 

BLUP - best linear unbiased prediction; ssGBLUP - single-step genomic best linear unbiased prediction.

Figure 1 - Two-dimensional principal-component graph on principal components 1 and 2 (PC1 and PC2) of the 
means for estimated breeding values (EBV) from traditional BLUP and genomic EBV (GEBV) from the 
ssGBLUP methodology, for traits of body weight at birth (BWB), 210 days (BW210), 365 days (BW365), 
and 450 days (BW450) and visual scores measured in yearlings for structure (BS), precocity (FP), and 
muscularity (MS), along with the contributions (contrib) of each genetic value to the PCA.

(a) ssGBLUP

(b) Traditional BLUP
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proximities between the vectors for mean genetic breeding values relating to BW and visual scores for 
FP and MS can also be explained through the high estimates for genetic correlations between these traits. 
Genetic correlations between visual scores and BW were positive according to both methodologies, 
ranging from 0.20±0.09 between BWB and MS to 0.88±0.02, between FP and MS, obtained through 
traditional BLUP. Through ssGBLUP, genetic correlation estimates ranged from 0.24±0.10 between 
BWB and FP to 0.89±0.02 between FP and MS (Table 5). Genetic correlations were positive and high 
between BW measured after 240 days of age and visual scores, in both methodologies. 

Estimates for GEBV were generally higher than those for EBV for all traits (Table 6). The differences 
between GEBV and EBV increased with increasing age among animals and with increasing BW 
measurements. The greatest proportion of animals presented accuracy of genetic breeding values 
within the class going from greater than or equal to zero to less than 0.4 (Table 7). Through the use of 
the ssGBLUP method, there was a slight increase in the proportion of animals with accuracy estimates 
greater than or equal to 0.4 and a reduction in the proportion with accuracy less than zero, primarily for 
BW traits, compared with accuracy estimates from the traditional BLUP methodology. This indicated 
that inclusion of the SNP information enabled estimates of greater accuracy regarding genetic breeding 
values of animals, thus providing greater confidence in these estimates.

In the present study, all the angular coefficient values of the linear regression between GEBV and EBV, 
for all traits, were close to 1 (ranging from 1.02 for BWB to 1.12 for BW240), thus indicating that there 
was little bias in GEBV estimates in relation to EBV. The genetic trends showed the mean changes for 
GEBV and EBV estimates. The angular coefficient of the mean genetic breeding values per birth year 
was significant (P<0.05) for all the traits, thus showing genetic progress was occurring both for GEBV 
and EBV estimates (Figures 2 and 3).

For all the genetic trends, the coefficient of determination (R2) showed that the model used was 
adequate for explaining the variation of genetic breeding values as a function of birth year. For visual 

Table 5 - Genetic correlations for body weight and visual scores using ssGBLUP and traditional BLUP
Trait BWB BW240 BW365 BW450 BS FP MS

BWB - 0.52±0.09 0.20±0.09 0.21±0.09

BW240 - 0.72±0.06 0.68±0.06 0.69±0.06

BW365 - 0.72±0.05 0.67±0.06 0.73±0.05

BW450 - 0.74±0.04 0.74±0.05 0.78±0.04

BS 0.60±0.07 0.79±0.04 0.78±0.04 0.80±0.03 - 0.37±0.09 0.47±0.08

FP 0.24±0.10 0.73±0.04 0.70±0.05 0.74±0.05 0.42±0.07 - 0.88±0.02

MS 0.29±0.09 0.73±0.05 0.76±0.05 0.79±0.04 0.51±0.07 0.89±0.02 -

BLUP - best linear unbiased prediction; ssGBLUP - single-step genomic best linear unbiased prediction; BWB - weight at birth; BW240 - weight 
at 240 days of age; BW365 - weight at 365 days of age; BW450 - weight at 450 days of age; BS - structure; FP - precocity; MS - muscularity.
Above the diagonal: estimates obtained through traditional BLUP; below the diagonal: estimates obtained through ssGBLUP.

Table 6 - Mean EBV and GEBV and their respective standard deviations for body weight and visual scores
Trait GEBV EBV

BWB (kg) 0.79±1.06 0.70±1.03

BW240 (kg) 6.40±7.80 4.17±7.00

BW365 (kg) 7.62±9.17 5.36±8.37

BW450 (kg) 9.05±9.96 6.56±9.10

BS 0.23±0.31 0.22±0.28

FP 0.14±0.30 0.06±0.27

MS 0.21±0.33 0.17±0.30

EBV - estimated breeding value; GEBV - genomic estimated breeding value; BWB - weight at birth; BW240 - weight at 240 days of age; BW365 - 
weight at 365 days of age; BW450 - weight at 450 days of age; BS - structure; FP - precocity; MS - muscularity. 
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scores measured as yearlings, genetic trend graphs showed that genetic gains occurred over the  
years both for GEBV and EBV. 

The R2 for the mean EBV had greater variation (0.57 for FP and 0.95 for BWB) compared with values 
obtained through regression of GEBV according to birth year. Like in the other results presented  
earlier, this increase can be attributed to use of genomic information in the prediction model.

Genetic trends for all the BW represented genetic progress through selection, especially after the year 
1990. Therefore, after the implementation of a breeding program for the Nelore breed by the ANCP, 
gradual genetic progress was observed for all the evaluated traits, which indicates that favorable  
and effective selection was achieved by the selection of these traits. 

4. Discussion

Heritability estimates in the present study (Table 3) were close to those found by Araújo et al. (2014) 
(0.36±0.03 and 0.31±0.01 for BW240 and BW365, respectively) by using only the pedigree matrix 
in evaluating the Nelore breed. Greater difference in heritability can be observed in relation to birth 
weight (0.37±0.02 for BWB, found by the cited authors). It is possible that the h2 observed for BWB 
was overestimated in the present study because of non-inclusion of the maternal genetic effect in 
the model. Initial BW (measured from birth up to 240 days of age) may be more influenced by the 
maternal genetic effect and may inflate h2 estimates for this trait when not considered in the analyses 
(Clément et al., 2001).

Heritability estimates for BW240 and BW365 similar to those obtained using the traditional BLUP in the 
present paper were observed by Zuin et al. (2012) (0.25±0.02 and 0.29±0.02 for BW240 and BW365, 
respectively). Those authors used a database that was part of the same database used in the present 
study. The authors did not consider the maternal permanent environmental effect for BW240 due to 
non-convergence when considering this effect in those models. They attributed this lack of convergence 
to the data structure, in which 49% of the mothers only had one offspring. The higher proportion of 
dams with only one offspring in the present study (78.68% on average) was due to the greater number 

Table 7 - Proportion (%) of animals according to accuracy class for body weight and visual scores
Trait/interval <0 0-0.4 0.4-0.6 0.6-0.8 >0.8

ssGBLUP

BWB 5.96 93.51 0.39 0.12 0.02

BW240 5.57 94.04 0.30 0.08 0.01

BW365 6.39 93.34 0.20 0.06 0.01

BW450 6.64 93.13 0.17 0.06 0.00

BS 8.15 91.78 0.05 0.01 0.00

FP 12.01 87.93 0.05 0.01 0.00

MS 11.28 88.65 0.05 0.01 0.00

Traditional BLUP

BWB 6.74 92.79 0.34 0.12 0.02

BW240 6.29 93.43 0.20 0.07 0.01

BW365 7.10 92.69 0.15 0.05 0.01

BW450 7.53 92.28 0.13 0.05 0.01

BS 9.33 90.62 0.04 0.01 0.00

FP 12.81 87.14 0.04 0.01 0.00

MS 12.35 87.59 0.04 0.01 0.00

BLUP - best linear unbiased prediction; ssGBLUP - single-step genomic best linear unbiased prediction; BWB - weight at birth; BW240 - weight 
at 240 days of age; BW365 - weight at 365 days of age; BW450 - weight at 450 days of age; BS - structure; FP - precocity; MS - muscularity.
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of individuals in the pedigree information compared with the pedigree used by Zuin et al. (2012). The 
non-convergence of the statistical models when considering the maternal permanent environmental 
effect (results not shown) in this study can be explained by the pedigree structure, which presented a 
high proportion of dams with only one offspring.

The gains in h2 and σ2
a estimates through inclusion of genotype information in constructing the H  

matrix (gains in h2 of 0.05, 0.03, and 0.03 for BW240, 365, and 450, respectively), along with the 
decrease in σ2

e, were concordant with estimates found by Veerkamp et al. (2011), who estimated  
genetic parameters in Holstein-Friesian heifers using different kinship matrices. The kinship matrices 
were constructed only using pedigree information (A), only using SNP information (G), and a 
combination of these two matrices (H). These authors reported that after combining the information 
on phenotype, genotype, and pedigree (using the H matrix), h2 estimates for BW, milk yield (MY), and 

EBV - estimated breeding value; GEBV - genomic estimated breeding value; BWB - body weight at birth; BW240 - weight at 240 days of age; 
BW365 - weight at 365 days of age; BW450 - weight at 450 days of age.
The angular coefficient was significantly different from zero according to the t test (P<0.05).

Figure 2 - Linear regression graphs for mean EBV (left) and GEBV (right) per birth year for body weights (a to h). 
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feed intake (FI), measured over the first 15 weeks of lactation, presented smaller standard errors  
(0.09, 0.08, and 0.09 for MY, FI, and BW, respectively) than when the A matrix was used (0.12, 0.11,  
and 0.12 for MY, FI, and BW, respectively).  

The traits that did not show gains in h2 estimates (BWB and visual scores) when using information 
from genotypes of animals in the ssGBLUP methodology, possibly presented redundancy of information 
in relation to other sources that were already considered in the model. This may have led to no gains  
or only slight gains in the estimates of genetic parameters, and this may also have affected some EBV 
accuracy gains. Gordo et al. (2016) estimated genetic parameters for visual score traits and observed 
results that were similar to those from both methodologies proposed in the present study. Those  
authors attributed their results to the greater number of phenotypes (13,524 for visual scores of 
conformation, finishing precocity, and muscling) than of genotypes (1,634 genotyped animals after 
quality control) present in their study. The same may have occurred in the present study.

The genetic correlation results in this study (Table 5) are consistent with results estimated by 
Paterno et al. (2017), who worked with Nelore cattle and their database was part of the data used in 
the present study. They estimated genetic correlations for BS, FP, and MS visual scores measured in 
yearlings with BW measured at 210 (W210) and 450 (W450) days of age. Genetic correlation estimates 
between visual scores and BW in the present study was high and positive, similar to those found by the 
above authors (0.93±0.01, 0.74±0.01, and 0.80±0.02 for BS, FP, and MS, in relation to W210, respectively; 
and 0.89±0.01, 0.73±001, and 0.77±0.01 for BS, FP, and MS, in relation to W450, respectively). In the 
present study, the genetic correlation was higher between FP and MS than among the other visual score 
traits. Similar results were observed by Paterno et al. (2017) (0.48±0.03, 0.92±0.01, and 0.52±0.03 
between BS and FP, FP and MS, and MS and BS, respectively).

EBV - estimated breeding value; GEBV - genomic estimated breeding value; BS - body structure; FP - precocity; MS - muscularity.
The angular coefficient was significantly different from zero according to the t test (P<0.05).

Figure 3 - Linear regression graphs for mean EBV (left) and GEBV (right) per birth year for visual scores traits (a to f). 
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The genetic correlation estimates in the present study showed that a substantial proportion of additive 
action genes influenced these traits in the same direction, i.e., positive estimates would indicate that 
selection for one trait would influence another trait in the same direction as the selection. By selecting 
animals from visual score traits, animals with higher BW will also be selected. Direct selection for 
yearling visual score traits may promote indirect selection for BW, such that visual scores would be 
an indicator of the animal’s biotype. These results are consistent with the results reported in the  
literature (Bertipaglia et al. (2012), with genetic correlation results of 0.77, 0.75, and 0.58 for BS, FP, 
and MS, with BW at 18 months of age, respectively; and Paterno et al. (2017)).

The results from the genetic trend analyses using both methodologies for visual scores were 
concordant with those of Koetz Júnior et al. (2017). These authors evaluated 186,293 visual score 
records for conformation, precocity, and musculature in yearling Nelore cattle. They observed 
genetic gains ranging from 1.46±0.007 to 9.90±0.002 per year and, as in the present study, they 
showed that genetic progress existed for these traits. The results from the present study are also 
concordant with those of Abreu et al. (2017), who evaluated visual score traits for BS, FP, and MS in 
a Guzerat breed and observed that the genetic gains per year were small (0.004, 0.0013, and 0.0039, 
for BS, FP, and MS, respectively) but significant. The genetic progress observed in relation to all  
BW in the present study corroborates the results presented in the literature for different BW among 
Nelore cattle (Laureano et al., 2011; Silva et al., 2013) and among other cattle breeds (Mucari  
and Oliveira, 2003; Abreu et al., 2017).

A slight improvement in breeding value estimate accuracy (Table 7) was noted when the ssGBLUP 
method was used, through better identification of genetic association among the animals, especially 
with regard to later-appearing BW (BW365 and BW450). The slight gains in accuracy obtained 
through both methods may have been due to the lower amount of genotype information compared 
with the phenotype records. The pedigree structure of this work may have influenced the small 
gains in the estimates with the addition of animal genotypes. The high values of the genetic breeding 
value standard deviations indicate the high data variation, and this may have occurred because 
these estimates came from animals of all pedigrees, i.e., animals born between 1934 and 2016. 
Environmental effects may have become better controlled after the beginning of the genetic breeding 
program, which started in 1988. The proportion of animals in the accuracy class of less than zero was 
greater for visual score traits, probably because of the smaller number of observations compared 
with the number related to BW traits.

5. Conclusions

The principal component analysis, genetic trend, and accuracy estimates on the genetic and genomic 
breeding values show that inclusion of information from single nucleotide polymorphism contributes 
towards slightly better estimates of the genetic variability of the studied traits. With inclusion  
of animal genotype information, genetic values for the later-appearing traits are estimated with 
slightly greater accuracy. The genomic information does not bring greater gains in the estimates,  
due to redundancy of kinship information from the pedigree, which already had complete animal 
kinship data. Genetic trends show genetic progress, both when estimated breeding values and  
when genomic estimated breeding values are used.

Conflict of Interest 

The authors declare no conflict of interest.

Author Contributions

Conceptualization: R.N. Watanabe, P.A. Bernardes and D.P. Munari. Formal analysis: R.N. Watanabe, 
R.M. Costa and D.P. Munari. Investigation: R.N. Watanabe, G.B. Nascimento, R.M. Costa, R.B. Lôbo, F. 
Baldi and D.P. Munari. Methodology: R.N. Watanabe, G.B. Nascimento, F. Baldi and D.P. Munari. Project 



R. Bras. Zootec., 50:e20200077, 2021

Inclusion of genomic information in estimation of genetic parameters for body weights and visual scores...
Watanabe et al.

13

administration: R.N. Watanabe. Supervision: R.N. Watanabe, P.A. Bernardes and D.P. Munari. Validation: 
R.N. Watanabe, G.B. Nascimento, P.A. Bernardes, R.B. Lôbo and D.P. Munari. Visualization: R.N. Watanabe, 
G.B. Nascimento, P.A. Bernardes, R.B. Lôbo and F. Baldi. Writing-original draft: R.N. Watanabe, P.A. 
Bernardes, R.M. Costa and D.P. Munari. Writing-review & editing: R.N. Watanabe, G.B. Nascimento, P.A. 
Bernardes, R.M. Costa and R.B. Lôbo.

Acknowledgments

We thank the Associação Nacional de Criadores e Pesquisadores (ANCP) for providing the data set 
used in this study. R. N. Watanabe and G. B. Nascimento received scholarship from the Coordenação 
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; finance code 001). R. M. Costa received 
scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – process 
number 165371/2018-8). P. A. Bernardes received scholarships from the Fundação de Amparo à 
Pesquisa do Estado de São Paulo (FAPESP - process numbers 2015/25096-6 and 2016/22940-3). 
F. Baldi and D. P. Munari held productivity research fellowship from CNPq.

References

Abreu, L. R. A.; Mota, L. F. M.; Ferreira, T. A.; Pereira, I. G.; Pires, A. V.; Villela, S. D. J.; Merlo, F. A. and Martins, P. G. M. 
A. 2017. Genetic evaluation of bodyweight, scrotal circumference, and visual appraisal scores in Bos indicus cattle.  
Animal Production Science 58:1584-1594. https://doi.org/10.1071/AN16548

Abreu, L. R. A.; Martins, P. G. M. A.; Mota, L. F. M.; Ferreira, T. A.; Ribeiro, V. M. P.; Vilella, S. D. J.; Merlo, F. A. and  
Pires, A. V. 2018. Genetic correlations between body weight, scrotal circumference and visual evaluation scores in  
Bos indicus cattle. Animal Science Journal 89:1223-1229. https://doi.org/10.1111/asj.12972

Araújo, C. V.; Lôbo, R. B.; Figueiredo, L. G. G.; Mousquer, C. J.; Laureano, M. M. M.; Bittencourt, T. C. B. S. C. and Araújo, 
S. I. 2014. Estimates of genetic parameters of growth traits of Nellore cattle in the Midwest region of Brazil. Revista  
Brasileira de Saúde e Produção Animal 15:846-853. https://doi.org/10.1590/S1519-99402014000400006

BIF - Beef Improvement Federation. 2018. Guidelines for uniform improvement programs. Available at:  
<https://beefimprovement.org/wp-content/uploads/2018/03/BIFGuidelinesFinal_updated0318.pdf>. Accessed on: 
Mar. 23, 2021.

Bertipaglia, T. S.; Carreño, L. O. D.; Machado, C. H. C.; Andriguetto, C. and Fonseca, R. 2012. Estimates of genetic  
parameters for visual scores and their correlation with production and reproductive traits in Brahman cattle. Revista 
Brasileira de Zootecnia 41:1407-1411. https://doi.org/10.1590/S1516-35982012000600013

Buzanskas, M. E.; Savegnago, R. P.; Grossi, D. A.; Venturini, G. C.; Queiroz, S. A.; Silva, L. O. C.; Torres Júnior, R. A. A.;  
Munari, D. P. and Alencar, M. M. 2013. Genetic parameter estimates and principal component analysis of breeding  
values of reproduction and growth traits in female Canchim cattle. Reproduction, Fertility and Development  
25:775-781. https://doi.org/10.1071/RD12132

Clayton, D. 2020. snpStats: SnpMatrix and XSnpMatrix classes and methods. R package version 1.38.0.

Clément, V.; Bibé, B.; Verrier, E.; Elsen, J. M.; Manfredi, E.; Bouix, J. and Hanocq, E. 2001. Simulation analysis to test the 
influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and 
maternal effects. Genetics Selection Evolution 33:369-395.  https://doi.org/10.1051/gse:2001123

Freitas, F. B.; Araújo, C. V.; Menezes, F. L.; Silva, F. G.; Araújo, S. I. and Ventura, H. T. 2020. Genetic association between  
visual scores, body weight and age at first calving in nellore breed cattle. Arquivo Brasileiro de Medicina Veterinária e 
Zootecnia 72:955-960. https://doi.org/10.1590/1678-4162-11593

Geweke, J. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments.  
p.169-193. In: Bayesian Statistics 4. Bernardo, J. M.; Berger, J. O.; Dawid, A. P. and Smith, A. F. M., eds. Oxford University 
Press, Oxford.

Gordo, D. G. M.; Espigolan, R.; Tonussi, R. L.; Júnior, G. A. F.; Bresolin, T.; Magalhães, A. F. B.; Feitosa, F. L.; Baldi, 
F.; Carvalheiro, R.; Tonhati, H.; Oliveira, H. N.; Chardulo, L. A. L. and Albuquerque, L. G. 2016. Genetic parameter  
estimates for carcass traits and visual scores including or not genomic information. Journal of Animal Science  
94:1821-1826. https://doi.org/10.2527/jas.2015-0134

Haile-Mariam, M.; Nieuwhof, G. J.; Beard, K. T.; Konstatinov, K. V. and Hayes, B. J. 2013. Comparison of heritabilities of  
dairy traits in Australian Holstein-Friesian cattle from genomic and pedigree data and implications for genomic 
evaluations. Journal of Animal Breeding and Genetics 130:20-31. 

Heildelberger, P. and Welch, P. D. 1983. Simulation run length control in the presence of an initial transient. Operations 
Research 31:1109-1144. https://doi.org/10.1287/opre.31.6.1109

https://doi.org/10.1071/AN16548
https://doi.org/10.1111/asj.12972
https://doi.org/10.1590/S1519-99402014000400006
https://doi.org/10.1590/S1516-35982012000600013
https://doi.org/10.1071/RD12132
https://doi.org/10.1051/gse:2001123
https://doi.org/10.1590/1678-4162-11593
https://doi.org/10.2527/jas.2015-0134
https://doi.org/10.1287/opre.31.6.1109


R. Bras. Zootec., 50:e20200077, 2021

Inclusion of genomic information in estimation of genetic parameters for body weights and visual scores...
Watanabe et al.

14

Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educational and Psychological  
Measurement 20:141-151. https://doi.org/10.1177/001316446002000116

Koetz Júnior, C.; Roso, V. M.; Claus, L. A. M.; Oliveira, R. P. L.; Fávaro, P. C.; Borges, M. H. F.; Barcellos, J. O. J. and Ribeiro, 
E. L. A. 2017. Genetic trends for mature body weight, visual scores, and growth traits in Nellore cattle. Ciência Rural 
47:e20151506. https://doi.org/10.1590/0103-8478cr20151506

Koury Filho, W.; Albuquerque, L. G.; Forni, S.; Silva, J. A. ll V.; Yokoo, M. J. and Alencar, M. M. 2010. Estimativas de  
parâmetros genéticos para os escores visuais e suas associações com peso corporal em bovinos de corte. Revista  
Brasileira de Zootecnia 39:1015-1022. https://doi.org/10.1590/S1516-35982010000500011

Laureano, M. M. M.; Boligon, A. A.; Costa, R. B.; Forni, S.; Severo, J. L. P. and Albuquerque, L. G. 2011. Estimativas  
de herdabilidade e tendências genéticas para características de crescimento e reprodutivas em bovinos da raça 
Nelore. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 63:143-152. https://doi.org/10.1590/S0102-
09352011000100022

Legarra, A.; Aguilar, I. and Misztal, I. 2009. A relationship matrix including full pedigree and genomic information.  
Journal of Dairy Science 92:4656-4663. https://doi.org/10.3168/jds.2009-2061

Meuwissen, T.; Hayes, B. and Goddard, M. 2016. Genomic selection: A paradigm shift in animal breeding. Animal  
Frontiers 6:6-14. https://doi.org/10.2527/af.2016-0002

Misztal, I.; Tsuruta, S.; Lourenco, D.; Aguilar, I.; Legarra, A. and Vitezica, Z. 2014. Manual for BLUPF90 family of programs. 
Available at: <http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf>. Accessed on: July 21, 2018.

Moreira, H. L.; Buzanskas, M. E.; Munari, D. P.; Canova, E. B.; Lôbo, R. B. and Paz, C. C. P. 2015. Reproductive  
traits selection in Nelore beef cattle. Ciência e Agrotecnologia 39:355-362. https://doi.org/10.1590/S1413-
70542015000400006

Mucari, T. B. and Oliveira, J. A. 2003. Análise genético-quantitativa de pesos aos 8, 12, 18 e 24 meses de idade em  
um rebanho da raça Guzerá. Revista Brasileira de Zootecnia 32:1604-1613. https://doi.org/10.1590/S1516-
35982003000700009

Paterno, F. M.; Buzanskas, M. E.; Koury Filho, W.; Lôbo, R. B. and Queiroz, S. A. 2017. Evaluation of body weight  
and visual scores for genetic improvement of Nelore cattle. Tropical Animal Health and Production 49:467-473.  
https://doi.org/10.1007/s11250-016-1215-2

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria.

Roso, V. M. and Schenkel, F. S. 2006. AMC – A computer program to assess the degree of connectedness among  
contemporary groups. In: 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte, MG. 

Silva, R. M.; Souza, J. C.; Silva, L. O. C.; Silveira, M. V.; Freitas, J. A. and Marçal, M. F. 2013. Parâmetros e tendências  
genéticas para pesos de várias idades em bovinos Nelore. Revista Brasileira de Saúde e Produção Animal 14:21-28. 
https://doi.org/10.1590/S1519-99402013000100003

Smith, B. J. 2005. Bayesian Output Analysis program (BOA) version 1.1 user’s manual. Available at: <http://www.
publichealth.uiowa.edu/boa/BOA.pdf>. Accessed on: Oct. 22, 2018. 

Tsuruta, S. and Misztal, I. 2006. THRGIBBS1F90 for estimation of variance components with threshold-linear models.  
In: 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte, MG. 

Vargas, G.; Schenkel, F. S.; Brito, L. F.; Neves, H. H. R.; Munari, D. P.; Boligon, A. A. and Carvalheiro, R. 2018. Unravelling 
biological biotypes for growth, visual score and reproductive traits in Nellore cattle via principal component analysis. 
Livestock Science 217:37-43. https://doi.org/10.1016/j.livsci.2018.09.010

Vargas, G.; Schenkel, F. S.; Brito, L. F.; Neves, H. H. R.; Munari, D. P.; Albuquerque, L. G. and Carvalheiro, R. 2020.  
Genomic regions associated with principal components for growth, visual score and reproductive traits in Nellore cattle. 
Livestock Science 233:103936. https://doi.org/10.1016/j.livsci.2020.103936

Veerkamp, R. F.; Mulder, H. A.; Thompson, R. and Calus, M. P. L. 2011. Genomic and pedigree-based genetic 
parameters for scarcely recorded traits when some animals are genotyped. Journal of Dairy Science 94:4189-4197.  
https://doi.org/10.3168/jds.2011-4223

Yoshida, G. M.; Carvalheiro, R.; Rodríguez, F. H.; Lhorente, J. P. and Yañez, J. M. 2019. Single-step genomic evaluation 
improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow  
trout. Genomics 111:127-132. https://doi.org/10.1016/j.ygeno.2018.01.008

Zhang, W.; Gao, X.; Shi, X.; Zhu, B.; Wang, Z.; Gao, H.; Xu, L.; Zhang, L.; Li, J. and Chen, Y. 2018. PCA-based multiple-trait  
GWAS analysis: A powerful model for exploring pleiotropy. Animals 8:239. https://doi.org/10.3390/ani8120239

Zuin, R. G.; Buzanskas, M. E.; Caetano, S. L.; Venturini, G. C.; Guidolin, D. G. F.; Grossi, D. A.; Chud, T. C. S.; Paz, C. C. P.;  
Lôbo, R. B. and Munari, D. P. 2012. Genetic analysis on growth and carcass traits in Nelore cattle. Meat Science  
91:352-357. https://doi.org/10.1016/j.meatsci.2012.02.018

https://doi.org/10.1177/001316446002000116
https://doi.org/10.1590/0103-8478cr20151506
https://doi.org/10.1590/S1516-35982010000500011
https://doi.org/10.1590/S0102-09352011000100022
https://doi.org/10.1590/S0102-09352011000100022
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.2527/af.2016-0002
https://doi.org/10.1590/S1413-70542015000400006
https://doi.org/10.1590/S1413-70542015000400006
https://doi.org/10.1590/S1516-35982003000700009
https://doi.org/10.1590/S1516-35982003000700009
https://doi.org/10.1007/s11250-016-1215-2
https://doi.org/10.1590/S1519-99402013000100003
https://doi.org/10.1016/j.livsci.2018.09.010
https://doi.org/10.1016/j.livsci.2020.103936
https://doi.org/10.3168/jds.2011-4223
https://doi.org/10.1016/j.ygeno.2018.01.008
https://doi.org/10.3390/ani8120239
https://doi.org/10.1016/j.meatsci.2012.02.018

