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Abstract
Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, 
given the increase of life expectancy and occasional vicious life style. Despite the fact that the 
mechanisms of such diseases are far from being completely understood, a large number of studies 
that derive from both the basic science and clinical approaches have contributed substantial data 
in that direction. In this review, it is discussed several frontiers of basic research on Parkinson´s 
and Alzheimer´s diseases, in which research groups from three departments of the Institute of 
Biomedical Sciences of the University of São Paulo have been involved in a multidisciplinary effort. 
The main focus of the review involves the animal models that have been developed to study 
cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, 
insulin signaling and proteomic analyses, among others. We anticipate that this review will help 
the group determine future directions of joint research in the field and, more importantly, set 
the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for 
Applied Neuroscience Research that are mostly involved with clinical research in the same field.
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Introduction 
This review addresses the two most common neurodegen-
erative diseases: Parkinson’s and Alzheimer’s diseases, 
highlighting some aspects related to their etiological and 
therapeutical hypothesis from a basic research perspective. 
In this regard, it is mainly discussed a well-established animal 
model of Parkinson’s disease. We also comment on a recently 
proposed animal model of Alzheimer’s disease, which has also 
been the object of investigation in our laboratories.

Parkinson’s disease 
Parkinson’s disease (PD), first described in 1817 by James 
Parkinson in “An assay on the shaking palsy”,1 is the second 
most common neurodegenerative disorder, affecting around 
1-2% of the population above 60 years and up to 6 million 
people around the world.2 This disease is clinically character-
ized by motor dysfunctions, such as resting tremor, bradyki-
nesia, rigidity, and postural instability, due to a decrease of 
dopaminergic inputs to the striatum, as a result of neuronal 
degeneration of the substantia nigra pars compacta (SNc), in 
a rate of ca. 5% per year. In addition, there are cognitive and 
vegetative disturbances.3 Loss of dopamine concentration in 
the projection area promotes a reduction of thalamic activa-
tion, resulting in an excessive inhibition of motor responses.4 
The motor deficits manifest after a 40-60% of dopaminergic 
neuron loss and dopamine levels in the striatum.5

In addition to the neuronal degeneration of SNc, there 
is also a progressive neuronal loss in several other brain re-
gions, such as the brainstem, locus coeruleus, the reticular 
nucleus of the brainstem and the dorsal motor nucleus of 
the vagus, as well as in the Meynert basal nucleus, amygdala 
and hippocampal CA2 region. Another characteristic of the 
disease includes the presence of inclusions known as Lewy 
bodies or Lewy neurites, depending on its location (cytoplasm 
vs. neuronal processes), which are basically composed of  
α-synuclein. These protein inclusions are caused by a failure 
in the degradation system of the cell and are composed 
by normal protein aggregates, truncated proteins, and by 
proteins with conformational alterations, in addition to 
ubiquitin.2,6 Alpha-synuclein belongs to a family of proteins 
composed by α, β e γ-synucleins, widely expressed in the 
brain, with uncertain physiological function, but apparently 
presenting roles in neurotransmission, such as regulating the 
size of synaptic vesicles, recycling and plasticity processes.7

The cognitive deficits were neglected for several years. 
However, they affect almost 60% of the PD patients8 and 
may be due to Lewy bodies.9 Furthermore, approximately 
40% of PD patients exhibit anxiety and depression disorders 
symptoms10, as well as memory deficits as a consequence 
of alterations in the fronto-striatum-thalamic circuit after 
dopamine decrease11 and the death of the noradrenergic 
neurons in the locus coeruleus.12,13

The 6-hydroxydopamine animal model of 
Parkinson’s disease 

Since nigrostriatal neurodegeneration was recognized as a 
pathological hallmark of PD, research on the pathogenesis of 
the disease has relied on the development of animal models 
that reproduce the loss of dopaminergic neurons in the SNc. 

The first animal model of PD was generated in 1968, when 
Ungerstedt demonstrated that the injection of 6-hydroxydo-
pamine (6-OHDA) into striatum or SNc it was able to deplete 
dopamine content in nerve terminals and cell bodies, respec-
tively.14 Ever since, several other animal models to study 
PD were developed, employing distinct compounds capable 
to produce selective dopaminergic lesions accompanied by 
parkinsonian symptoms, such as the heroin contaminant 
1-methyl-4-phenyl-1,2,3,6-tetrahidropiridine (MPTP), pesti-
cides (rotenone, paraquat and maneb), lipopolysaccharide, 
and manganese.15 However, the 6-OHDA model is still the most 
commonly used to produce nigrostriatal lesions.16

Six-OHDA is a hydroxylated analogue of dopamine found 
in the brains of PD patients.17 Since this neurotoxin does 
not cross the blood brain-barrier, it is directly injected in 
the central nervous system, specifically into the striatum, 
SNc or even in the medial forebrain bundle. As a result of 
its uptake by dopamine and noradrenergic transporters, 
6-OHDA selectively destroys the catecholaminergic systems, 
and promotes a PD-like loss of dopaminergic neurons that 
initiates immediately after the injection, becoming stable 
after two weeks.18,19 The injection of 6-OHDA in the central-
lateral portion of the striatum is the animal model that 
most resembles the human disease20,21, as it produces a slow 
evolution of symptoms, and seems to be more suitable for 
studies that aim therapeutic strategies.16

The effects of 6-OHDA are mainly related to the massive 
oxidative stress caused by the toxin that, once accumulated 
in the cytosol, seems to be auto-oxidated, promoting a high 
rate of free radical generation21 and interruption of the 
mitochondrial respiratory chain (complexes I and IV).1,21 The 
oxidation of 6-OHDA directly generates hydrogen peroxide 
and superoxide, both critical in propagating its oxidation, 
and para-quinones, which seem to inactivate critical en-
zymes such as catechol-O-methyltransferase and tyrosine 
hydroxylase.22 Furthermore, 6-OHDA oxidation is associated 
with the production of the hydroxyl radical, a powerful oxi-
dizing agent that can react at a high rate with organic and 
inorganic molecules.23

Associated to neurochemical and molecular analysis, 
behavioral tests are usually employed to evaluate the extent 
of the 6-OHDA injury site in that animal model. A classical 
test applied to rats with unilateral lesion of the nigrostriatal 
pathway is the rotational behavior, induced by the dopamine 
agonist apomorphine, which induces rotation contralaterally 
to the injury side.16 

NADPH oxidase and Parkinson’s disease 

The NADPH (nicotinamide adenine dinucleotide phosphate-
oxidase) oxidases (Nox) represent a family of multi-subunit 
enzymes that transfer electrons across biological membranes 
and produce superoxide via a single electron reduction. 
All the seven Nox isoforms described so far (Nox1-5 and 
Duoxes 1-2) contain at least six transmembrane domains 
and cytosolic FAD (flavin adenine dinucleotide) and NADPH-
binding domains. Each Nox family member has specific 
cytosolic components, activation mechanisms, subcellular 
localizations, and tissue distribution.24 Nox2 was the first 
to be discovered and still represents the most extensively 
studied Nox isoform, being essential to innate host defense. 
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It is comprised of subunits localized in the cell membrane 
(p22phox and gp91phox – forming the heterodimeric flavoprotein 
cytochrome b558) and in the cytoplasm (p40phox, p47phox, and 
p67phox). Activation of a low-molecular weight G protein (Rac1 
or Rac2) and phosphorylation of p47phox initiate migration of 
the cytoplasmic elements to the plasma membrane, where 
they associate with cytochrome b558, generating the func-
tional enzyme. The electron from cytoplasmic NADPH travels 
first to FAD, then through the Nox heme groups, and finally 
across the membrane and it is transferred to oxygen.25 Similar 
to Nox2, Nox1 interacts with p22phox, p47phox and p67phox, or 
its homologs, NoxO1 and NoxA1, respectively. Nox3 activa-
tion is less well-defined, but it seems to involve Rac, p47phox, 
and NoxA1. Nox4 is constitutively active, requiring only 
p22phox. Nox5 and Duoxes are regulated by calcium through 
its EF-hand domains in the cytosol.26 Among the Nox isoforms 
described in the nervous tissue are: Nox1, Nox2, Nox 3 and 
Nox4.27,28 However, Nox2 appears to play a predominant role 
in neurodegenerative conditions.

Under physiological conditions, Nox-derived reactive oxy-
gen species (ROS) are signaling molecules that influence many 
physiological processes. However, several studies using animal 
models and human post-mortem brains have consistently 
implicated Nox proteins over-activation in a wide variety of 
neurodegenerative conditions such as Alzheimer’s disease and 
PD, but the mechanisms involved are poorly understood. Here, 
we review the most recent studies regarding Nox activation 
in the 6-OHDA-PD model. Most of the data was provided by in 
vitro observations and indicate a major involvement of Nox2 
in dopaminergic neurotoxicity. For instance, it has been dem-
onstrated in rat primary mesencephalic cultures that 6-OHDA 
induced a significant increase of gp91phox and p47phox immuno-
labeling, indicating increased activation of Nox2. Microglial 
activation and O2

·− generation in dopaminergic neurons were 
also significantly reduced by apocynin, a Nox inhibitor.29 By 
using the same in vitro model, the same authors were also able 
to show a significant increase of the mRNA levels of gp91phox 
as well as p47phox, 12h after cell treatment with 6-OHDA.30 In 
another study, it was shown that 6-OHDA also induced increase 
of gp91phox expression in human dopaminergic neuroblastoma 
cells.31 These results are in consonance with our in vivo ob-
servations. In fact, the membrane protein levels of p67phox 
were markedly elevated in the SNpc of 6-OHDA-lesioned mice, 
which is suggestive of Nox2 activation. Tyrosine hydroxylase 
immunolabeling indicated that gp91phox-/- mice appear to be 
protected from dopaminergic cell loss in the SNc and from 
dopaminergic terminal loss in the striatum. Moreover, wild 
type mice treated with apocynin and gp91phox-/- mice all ex-
hibited significantly ameliorated apomorphine-induced rota-
tional behavior after 6-OHDA lesion. Therefore, despite the 
established autooxidation-derived ROS and the contribution of 
mitochondrial inhibition mechanisms to dopaminergic neuro-
degeneration in the 6-OHDA-induced PD model, altogether, the 
above data indicate that Nox-derived ROS are also importantly 
involved in that PD model.

Parkinson’s disease and neuroprotective effects 
of exercise 

Exercise and behavioral stimulation can trigger plasticity 
processes in the nervous system. Animal data have shown 
that exercise can increase neuronal survival and resistance 

to brain insult, promotes angiogenesis and neurogenesis, 
enhances learning, and contributes to cognitive function 
during aging.32 Thus, there is an agreement that a possible 
neuroprotection can be achieved by physical exercise.

Physical exercise has been shown to be inversely related 
to neurodegenerative diseases, because it contributes to the 
functional process that involves recovery, maintenance, and 
prevention against brain damage in animals and humans.33,34 
Studies with animal models of PD employing distinct para-
digms of exercise have attempted to explain the molecular 
mechanisms of exercise-induced changes in the pathophysi-
ology of PD, as the extent of the lesion and the type of the 
exercise (voluntary or forced) may affect the degree of neu-
roprotection and behavioral improvement.33,34 These studies 
have shown angiogenesis,35 increased anti-inflammatory36 
and decreased inflammatory responses,37 improvement of 
mitochondrial functions,38 neurogenesis in the striatum39 
and in the SN.40

The plasticity responses improve the neurochemical defi-
cits, especially tyrosine hydroxylase levels, and both cogni-
tive and motor symptoms.37-39,41,42 For instance, the treadmill 
exercise for 14 consecutive days during 30 minutes in rats 
submitted to 6-OHDA model of PD is capable of improving 
the tyrosine hydroxylase expression in striatum and SNc and 
motor performance in the rotation test with apomorphine.41 
On the other hand, voluntary exercise in wheel running pro-
tocol that began 2 1/2 weeks before intracerebral 6-OHDA 
infusion in rats, and continued for up to 4 weeks after the 
neurotoxin infusion, improved the animals’ performance 
in behavioral tests related to forelimb asymmetry without 
tyrosine hydroxylase and dopamine transporter changes.42

In addition to the data derived from animal models, clini-
cal studies have shown exercise-dependent improvement of 
motor control and equilibrium, which results in decreased 
falling frequency of the patients, and increase of life quality 
and gait.33,34,43 

It is possible that the neuroprotective effects of exercise 
in 6-OHDA injected rats described above are promoted by 
neurotrophins, such as the brain-derived neurotrophic factor 
(BDNF) and glial derived neurotrophic factor (GDNF).38,39 In 
fact, Nguyen and collaborators44 showed that BDNF has neuro-
protective effects against a neurotoxic stimulus in vitro that 
activates apoptotic pathways. In vivo data obtained with a 
treadmill exercise protocol for 4 weeks before the injection 
of the lipopolysaccharide (LPS) in mice showed that exercise 
completely prevented the LPS-induced loss of DA neurons, 
the reduction of dopamine levels and dysfunction of motor 
movement loss, as well as restored the LPS-reduced BDNF 
signaling.37 In addition, the blockade of the BDNF receptor 
abolished the exercise-induced protection against LPS-
induced dopamine neuron loss. Furthermore, BDNF is capable 
of indirectly activating the antioxidant enzymes and, thus, 
decreasing the oxidative damages induced by 6-OHDA.1,45 

Parkinson’s disease and cannabinoid system 

The cannabinoid system consists of the lipophilic endogenous 
compounds such as N-arachidonoylethanolamide (anan-
damide) and 2-arachidonoylglycerol (2-AG), their synthetic 
and degradation enzymes, and their receptors CB1 and CB2. 
Most of central cannabinoid effects are believed to be medi-
ated by CB1 receptors which have a predominant presynaptic 
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localization, suggesting their retrograde signaling in axon 
terminals by modulating neurotransmitter release. More re-
cently, it has also been shown that cannabinoids can bind to 
other kinds of receptors, such as transient receptor potential 
vanilloid-1 (TRPV1)46 and peroxisome proliferator-activated 
receptor (PPAR) family of nuclear receptors.47

CB1 receptor is one of the most abundant metabotropic 
receptor in the central nervous system48 and they are espe-
cially found in high amounts in the basal ganglia,49 located 
mainly in the terminal of the γ-aminobutyric acid (GABA)-ergic 
and glutamatergic neurons. High densities of CB1 are observed 
in the striatum, external and internal globus pallidus and 
substantia nigra pars reticulata (SNpr).50 Moreover, both 
endocannabinoids, anadamide and 2-AG, are largely con-
centrated in the striatum.49 

In the last decade, much attention has been given to the 
involvement of the cannabinoid system in numerous patholo-
gies, as the constitutive elements of this system have been 
found to be altered in numerous pathologies, either in the 
central nervous system or in the periphery.51 In the nervous 
system, the cannabinoid system has also been implicated in 
neuronal death/survival processes.52 In this context, several 
groups have focused efforts in understanding the relation 
between PD and the cannabinoid system, which has led to 
prospects for cannabinoid therapies.

A recent study with humans has shown a marked decrease 
of CB1 in the SN of PD patients, concomitant with a slight 
increase in dopaminergic projection areas.53 Studies with the 
6-OHDA model of PD also reinforce the idea of the variation 
in the CB1 expression, as well as in the concentration of 
endogenous cannabinoids in the basal ganglia. For example, 
CB1 receptor-mRNA levels were increased in the striatum of 
rats 7-10 weeks after unilateral 6-OHDA injection, although 
no significant changes in CB1 receptor binding was found.54 
On the other hand, a more recent study showed a decrease 
in the CB1 receptor in the SNpr, only when the 6-OHDA was 
injected in the striatum and not in the medial forebrain 
bundle.55 In contrast, Casteels and colleagues56 did not ob-
serve any changes in CB1 expression into SN after 6-OHDA 
injection. Those heterogeneous results may depend on the 
6-OHDA injection site or, more importantly, on the periods 
analyzed after the lesion.57

Increased levels of anandamide were observed in 6-OHDA-
injected rats, accompanied by a reduction of the enzyme 
that metabolizes endocannabinoids (mainly anandamide), the 
fatty acid amide hydrolase and the anandamide transporter.58 
Furthermore, a study with the PC12 cell line exposed to 
6-OHDA and treated with anandamide described a neuro-
protective effect which was CB1-independent.59 It has been 
suggested, for example, that enhancement of the endocan-
nabinoid tone provides an anti-levodopa-induced dyskinesia 
effect in the 6-OHDA model.60

Exogenous cannabinoids have also demonstrated po-
tential neuroprotective effect, and, more recently, special 
attention has been given to the antioxidant properties de-
scribed for some cannabinoid compounds. For example, the  
Δ(9)-tetrahydrocannabinol (THC), the main psychoactive 
constituent in Cannabis, promotes a reduction in the dopa-
minergic neuron death and reverts decrease in the dopami-
nergic transmission in the basal ganglia of rats lesioned by 
6-OHDA.61 The same study also observed a neuroprotective 

effect of cannabidiol, which was attributed to its antioxidant 
properties. Another study supports the idea that only the can-
nabinoids with antioxidant properties, such as AM 404, unlike 
those with affinities for cannabinoid receptors, reduces the 
toxicity caused by 6-OHDA.62 We cannot exclude, however, 
the participation of CB2 receptors in protective effects ob-
served in the 6-OHDA model, as an induction/upregulation 
of these receptors, mainly in reactive microglia, which can 
contribute to the neuroprotective properties of the canna-
binoid system in basal ganglia disorders.61

Therefore, regardless of the heterogeneous and some-
times apparently conflicting results described above, it seems 
that the cannabinoid system plays a role in compensatory 
mechanisms that counteract the imbalance in the physiology 
of basal ganglia which occurs in PD.50

Parkinson’s disease, proteomics and peptidomics 

Despite the several already identified mechanisms involved 
in PD, such as oxidative stress, mitochondrial dysfunction, 
abnormal protein aggregation, ubiquitin-proteasome dys-
function, glial proliferation, inflammatory responses and 
so on, its diagnosis is still dependent on the appearance of 
symptoms. In this context, biological markers are of great 
interest for early diagnosis and prevention, a field which has 
been explored using a proteomic approach.2,63

During a proteomic approach of PD using human cerebro-
spinal fluid, the expression of a protein that regulates the 
lipid metabolism and possibly protein deposition as observed 
for Lewy bodies, Apo A-I, was found to be down-regulated in 
PD patients in comparison to control groups.64 Other studies 
using A53T α-synuclein Drosophila model of PD highlighted 
the importance of α-synuclein in membrane transport and 
synaptic membrane biogenesis. Besides, heat shock protein 
cognate 3 (Hsc3p), which regulates protein folding and 
degradation, was also increased, indicating higher concen-
trations of misfolded proteins and, consequently, leading 
to endoplasmatic reticulum stress.65 In a proteomic study 
of 6-OHDA rat model of PD, more than 70 proteins were 
shown to be changed in the striatum and SN. Some of these 
altered proteins include 14-3-3 protein beta/alpha (Ywhab; 
upregulated), and other downregulated proteins such as 
calretinin (Calb2), NADH dehydrogenase 1 alpha (NDUFA10), 
ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) 
and prohibitin.66 Prohibitin is connected to mitochondrial 
complex I subunits, in particular with the NDUFS3 subunit 
(NADH-ubiquinone oxidoreductase 30kDa), which is involved 
in senescence mechanisms and also acts as a chaperone 
protecting complex I subunits before its generation. Co-
immunoprecipitation assays demonstrated the interaction 
between prohibitin and NDFUS3, and immuno-hystochemistry 
assays demonstrated that they are increased in dying dopa-
mine neurons. Besides, the absence of prohibitin in SH-SY5Y 
cells induced 6-OHDA cell death. All these data suggest 
their potential role in regulating mitochondrial function in 
dopaminergic cells.66

Another approach using the 6-OHDA model revealed five 
altered proteins, namely αβ-crystalin, gamma-enolase, gua-
nidoacetate methyltransferase, vinculin, and proteasome α-2 
subunit. These proteins are related to the upsurge of L-DOPA 
induced dykinesias, a side effect of chronic use of L-DOPA 
in PD treatment.67
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A two-dimensional electrophoresis, in combination with 
MALDI-TOF MS study of hemiparkinsonian rats induced by 
6-OHDA, revealed five upregulated proteins, namely amy-
loid precursor-like protein 2 (APLP2), kininogen, glucoki-
nase (GK), tropomyosin alpha chain, type brain-1 (TMBR) 
and calpactin I light chain. APLP2 presented a 5.35-fold 
increase at 2-week post-lesion. This protein disappeared 
from the SNc after 6-OHDA lesion and increased in striatal 
APLP2-positive neurons, which may indicate its presence 
in pre- and postsynaptic neurons of the nigrostriatal 
system.68 This finding suggests the role of this protein 
in synaptogenesis and/or re-organization of synapses in 
the striatum. The authors also discuss that the increase 
of APLP2 may be the result of a higher number of cells 
expressing the protein (neurogenesis) or a differentiation 
of these neurons in response to injury.68

Peptides also play an important role in neurological 
disorders and are considered to be good biomarkers. In 
the rat 6-OHDA PD model, the L-DOPA-induced dyskinesia 
was related to increased levels of Dyn B (dynorphin B) and 
aNeo (alpha-neoendorphin) in SN. MALDI imaging analysis 
revealed that the dynorphin metabolite Tyr-Gly-Gly-Phe-
Leu-Arg was high and Dyn B peak intensities were low in SN, 
where there is high receptor binding specificity for delta 
opioid receptors.69

PACAP (pituitary adenylate cyclase activating polypep-
tide) acts as a neurotransmitter and neuromodulator and is 
present in the amygdala, thalamus and spinal cord. PACAP 
has been shown to present neuroprotective effects in the 
6-OHDA-induced rat model, decreasing dopaminergic neu-
ronal loss by 50% as well as preventing the resultant hypoki-
nesia due to neurotoxicity of 6-OHDA.70 Another important 
peptide is VIP (vasoactive intestinal peptide), which presents 
potent antioxidant, anti-inflammatory and anti-apoptotic 
effects. Beneficial effects have also been demonstrated in 
motor function, probably due to increased GABA levels in the 
thalamus. VIP reduces lipid peroxidation, DNA fragmentation 
and NO production.71

Therefore, the role of peptides in neurological disorders 
such as Parkinson’s disease has become a prominent research 
field that should be carefully investigated when searching 
for biological markers.

Alzheimer’s disease 
Alzheimer’s disease (AD) is the leading cause of dementia 
in elderly people and is associated with progressive dam-
age in brain functions including memory, language, spatial 
orientation, behavior, and personality. It is estimated that 
there are currently 36 million people worldwide living with 
AD, and this number is expected to increase dramatically 
over the next decades.72 AD is a multifactorial pathology 
and about 99% of the cases have a sporadic occurrence 
(SAD), in opposition to the less common familial form of 
the disease,73 with advanced age being the main risk factor. 
Other important risk factors are metabolic and vascular 
parameters which comprise the so called ‘metabolic syn-
drome’, such as dyslipidaemia and hypertension, as well 
as hyperglycaemia. In addition, type II diabetes mellitus 
is associated with increased risk of both AD and vascular 
dementia.74

Clinically, AD is characterized by progressive memory 
loss and a progressive decline in cognitive function, culmi-
nating in premature death of the individual, on average 10 
years after diagnosis.72 Additionally, AD is accompanied by 
non-cognitive neuropsychiatric symptoms, including anxiety, 
aggression, delirium, excitement or apathy, disinhibition or 
depression.75 Characteristic neuropathological hallmarks 
of AD include: neuronal loss, accumulations of abnormal 
neurofibrillary tangles (NFT) corresponding to intracellular 
deposits of hyperphosphorylated Tau protein and dystrophic 
fibers, and increased expression and abnormal processing 
of amyloid-beta precursor protein (APP), leading to the 
deposition of amyloid beta (Aβ) peptide, and, therefore, 
the formation of senile plaques.73 Another hallmark of AD 
is cerebral amyloid angiopathy. In fact, cerebrovascular 
dysfunction may precede cognitive decline and onset of 
AD. Cerebral hypoperfusion and impaired Aβ clearance 
across the blood-brain-barrier may contribute to the onset 
and progression of dementia of the AD type. There is also 
evidence of microglia playing important roles throughout 
these pathological processes.76

Even though AD is multifactorial, its etiology is still un-
known. Although most studies have suggested that the Aβ 
peptide (‘amyloid cascade hypothesis’) may initiate and/
or contribute to the pathogenesis of AD, the mechanisms 
through which it causes neuronal loss and Tau abnormalities 
still remain poorly understood. Therefore, in the last few 
years, several other new hypotheses have emerged, in an 
attempt to contribute to the knowledge of neurodegenerative 
processes of AD. Bellow we briefly discuss recent data on AD, 
with a focus on the roles of insulin signaling and glucose me-
tabolism disorders as a possible factor in the etiology of AD.

Mitochondrial deficiency, Ca2+ signaling and 
Alzheimer’s disease 

While more than 20 years have been dedicated to the ‘amy-
loid cascade hypothesis’, many other hypotheses remain as 
possible causes of the onset and progression of AD, such 
as oxidative stress, Tau protein, prion, and environmental 
causes.77 It is believed by some authors that AD is initiated 
by a deficiency of enzymes of the tricarboxylic acid cycle, 
reduced cytochrome oxidase activity and mitochondrial DNA 
damage. The production of reactive oxygen species, for ex-
ample, seems to be involved in triggering and maintaining 
the degeneration cycle of AD, aggravating mitochondrial 
DNA damage and altering other complexes of the electron 
transport chain, which leads to increased production of those 
reactive species.78

Learning and memory deficits in the onset of AD may 
also be a result of alterations of Ca2+ signaling. Oligomers 
of Aβ peptide enhance Ca2+ entry and extra Ca2+ is pumped 
into the endoplasmic reticulum. Increased reticulum Ca2+ 
enhances the sensitivity of ryanodine receptors (RyR) which, 
in turn, release more Ca2+ from the internal stores. There 
is evidence that various AD mutations can induce changes 
of Ca2+ signaling. Another observation is that spines and 
dendrites of neocortical pyramidal neurons which are close 
to Aβ deposits had higher resting Ca2+ levels. However, the 
question of which occurs first, activation of amyloidogenic 
pathway or changes in Ca2+ signaling, still remains open.79
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Insulin signaling and glucose metabolism 
deficiency and Alzheimer’s disease 

Functional studies have shown disorders in both cerebral 
glucose mobilization and energy metabolism either preceding 
or accompanying the initial stages of cognitive impairments 
in SAD.80-81

Molecular evidence raised the assumptions that traffick-
ing of the amyloid precursor protein (APP) is under control 
of insulin signaling and insulin receptor tyrosine kinase,82,83 
and that insulin regulates phosphorylation of Tau protein via 
glycogen synthase kinase-3 activity (GSK-3).84,85 In addition, 
insulin affects brain functions, such as cognition and memory, 
as shown by in vivo studies.85 Consequently, impairment of 
glucose metabolism and of insulin signaling has been proposed 
as a probable etiology of SAD.86 Insulin affects numerous 
brain functions including cognition, memory and synaptic 
plasticity through complex insulin/insulin receptor (IR) sig-
naling pathways. Insulin binds to the extracellular subunit 
of its receptor, which results in the autophosphorylation and 
activation of the intracellular β-subunit. Activated insulin 
receptor phosphorylates several intracellular substrates, 
including the insulin receptor substrate.The phosphorylation 
of intracellular substrates then leads to the recruitment and 
activation of multiple proteins and the initiation of several 
signaling cascades, amongst the most abundant of which are 
the phosphoinositide 3-kinase (PI3K) and the mitogen-activat-
ed protein kinase (MAPK) signaling pathways.86-88 Activation 
of PI3K pathway, in turn, mediates the activation of the 
serine-threonine kinase Akt (also known as protein kinase-B, 
PKB), promoting neuronal survival by directly inactivating the 
pro-apoptotic machinery.89 In addition, activated PI3K/Akt 
phosphorylates and, therefore, inhibits both cytosolic forms 
of glycogen synthase kinase 3 (GSK3),90 which is known to 
regulate the formation of the Αβ peptide. Therefore, insulin 
regulates soluble APP release via a PI3K-dependent pathway.91

Several studies confirmed that cerebral metabolism 
declined before the deterioration of cognitive functions, 
suggesting that energy failure is one of the earliest reversible 
hallmarks of SAD.92 Predominant abnormalities in cerebral 
glucose metabolism and its control by the neuronal insulin 
signal transduction system have been found in SAD,93,94 lead-
ing to the hypothesis that SAD is the brain’s type II diabetes 
mellitus.92 A mismatch between the insulin action and insulin 
receptor function, including downstream signaling pathways, 
has been proposed to be involved in brain insulin system 
dysfunction in SAD.95

Intracerebroventricular injection of 
streptozotocin as a model for sporadic 
Alzheimer’s disease 

Considering the presence of insulin and its receptors in 
the brain, an experimental rat model was developed by 
using streptozotocin (STZ) to induce a brain insulin system 
dysfunction.93 STZ (glycosamine derived from nitrosourea) 
is a drug selectively toxic to insulin producing/secreting 
cells and is used to induce both insulin-dependent and non-
insulin-dependent diabetes mellitus (DM) after intravenous or 
intraperitoneal administration in rats.96 The intracerebroven-
tricular injection of streptozotocin (icvSTZ) in low doses does 

not alter, however, plasma glucose levels and does not induce 
DM, but it alters the brain glucose metabolism.97 Considering 
the important roles of insulin and insulin receptors in the 
brain, and the fact that insulin deficiency and resistance are 
related to both SAD and DM, icvSTZ has been considered by 
many authors as a model for SAD.74,94,97,98

In the periphery, the toxicity of STZ starts when this drug 
is taken up by pancreatic B cells via the glucose transporter 
GLUT2 and induces cell death by alkylation of DNA and acti-
vation of poly ADP-ribosylation.99 Since STZ is a nitric oxide 
(NO) donor, participation of NO in the cytotoxic effect of STZ 
has also been observed, as well as the generation of reactive 
oxygen species, which also contributes to DNA fragmenta-
tion and evokes other deleterious changes. STZ action on 
mitochondria results in the formation of superoxide anions, 
inhibition of the tricarboxylic acid cycle and substantial 
decrease in oxygen consumption by mitochondria, strongly 
limiting mitochondrial ATP production.96 The mechanism of 
action of STZ in the nervous system, however, has not been 
totally elucidated.

Behavioral and molecular findings which follow glucose 
metabolism and insulin signaling disruption in the nervous 
system seem to mimic SAD, at least in some aspects. Here it 
is presented a short summary of the results obtained, until 
the present moment, by authors studying icvSTZ-injected 
rats, all resulting in changes similar to what is observed in AD 
patients. In general, the icv administration of STZ has been 
associated with morphological, molecular and behavioral 
changes in animals.

As mentioned earlier, the major hallmarks of AD are the 
formation of senile plaques due to Αβ accumulation and the 
formation of NFT due to Tau hyperphosphorylation.73 In many 
regions of the icvSTZ rat brain, there is an increase of Tau 
phosphorylation,83,87,88,100 of neurofibrillary tangles,80 and of 
the expression of Αβ peptide,80,86,100 even though these studies 
do not report the formation of senile plaques.

Corroborating the pathological hallmarks mentioned 
before, behavioral data have been very consistent in show-
ing cognitive deficits, compromised learning and short and 
long-term memory after icvSTZ administration. For instance, 
memory deficits were observed in the Morris water maze as 
early as 3 hours following the injection and persist for at 
least 30 days.100 STZ injection has also been shown to lead 
to cognitive impairments in memory tasks, including the 
passive avoidance, and the elevated plus-maze,101-103 which 
seem to be independent of how many injections or what 
dose of STZ was administered.86 There are, however, some 
studies that demonstrate that smaller doses result in less 
cognitive deficit.104

Even though the cholinergic system has been described 
to be one of the first to be affected in AD,73 no changes were 
observed in the number or morphology of cholinergic neurons 
of the basal forebrain nuclei, medial septum, diagonal band, 
the nucleus basalis magnocellularis or the hippocampus, 
one week after a single icv STZ injection.105 Furthermore, 
the choline acetyltransferase (ChAT) did not vary in sev-
eral brain areas even after one month post-injection.100 
However, there was an increase of acetylcholinesterase 
(AChE) activity86,105 and a reduction of ChAT activity,106,107 
which may explain the reduced synaptic function, learning 
ability, and memory deficits observed in these animals.102  



S200 A.S. Torrão et al.

Other neurotransmitter systems seem to be also modified in 
the icvSTZ model. For example, there is a downregulation 
of the dopamine receptor D1 and an upregulation of GABA-A 
receptor α-1 subunit.108

Markers for apoptosis are increased in the icvSTZ model 
and an atrophy of oligodendrocytes has been noted, prob-
ably due to the decreased cellular density observed in the 
periventricular region and to the ensuing inflammation.86 In 
addition, many authors have described increased expression 
of glial fibrillary acidic protein (GFAP), mainly in peri and 
paraventricular regions, such as septum, fornix, striatum,105 
and in the hippocampus.100,105 There is also an enlargement 
of the third ventricle after STZ injection, consistent with the 
hypothesis of neuronal loss.109

Considering proteins related to glucose metabolism and 
the insulin signaling pathway, a decreased expression of IRS1 
and IRS2, IR, AKT/PKB, glucose transporter type 1 (GLUT1), 
GLUT3, and GSK-3β has been observed in the icvSTZ model, 
which is also observed in SAD patients.86,87 Moreover, after 
icv administration of STZ, severe brain abnormalities of glu-
cose/energy metabolism occurred,110 such as the reduction 
of glucose utilization in 17 brain areas. Finally, the activities 
of key glycolytic enzymes decreased sharply after the icv 
injection of STZ.111

Therefore, energy metabolism and insulin signaling im-
pairment, the reduction of ChAT activity and the increased 
activity of AChE, may all be part of the biological basis for 
the marked reduction of learning ability and memory, as well 
as the increased histopathological hallmarks of AD in the 
icvSTZ model.102 Further studies, however, are necessary to 
fully understand the effects of STZ on the central nervous 
system. The events that trigger AD neurodegeneration have 
yet to be fully elucidated in order to generate an adequate 
model for this devastating multifactorial disease.

The intracerebroventricular streptozotocin model 
and therapeutic approaches 

Oxidative stress is an important contributor to the develop-
ment of neurodegenerative disorders as demonstrated previ-
ously in the present review (please see section on NADPH 
oxidase and Parkinson’s Disease). Similar mechanisms also 
seem to be part of the AD etiology.112 Some of this oxidative 
damage include lipid peroxidation and protein degradation, 
leading to alterations on enzyme activity, causing cell mem-
brane disruption and ultimately cell death.

One of the upsurging therapeutics for Alzheimer’s disease 
treatment is the use of curcumin. Curcuma (Curcuma Longa L.) 
presents 3-5% of curcuminoids, including 50-60% of curcumin 
and also oils and resins (ca. 5%). Curcumin is composed by 
two monomers of ferulic acid, and presents free-radical 
scavenger properties.113 In contrast to the increased levels 
of free radicals induced by the icv injection of STZ in rats, 
curcumin was able to revert this process and also the activity 
of Na+/K+-ATPase in the hippocampus and cerebral cortex. 
The treatment induced the activity of antioxidant enzymes 
such as glutathione peroxidase (GPx) and glutathione reduc-
tase (GR), and also increased reduced glutathione (GSH) and 
oxidized glutathione (GSSG) levels in both brain structures. 
Besides, the treatment also counteracted the decreased lev-
els of acetylcholine induced by the STZ injection, which also 
contributed to ameliorate memory and learning deficits.101

Other studies evaluated the influences of curcumin 
treatment on glucose and glycogen metabolism, which are 
notably reduced in the STZ model in cerebral cortex and hip-
pocampus, including a decreased level of insulin receptors 
(IR). Intraperitoneal injection of curcumin in rats improved 
the performance in passive avoidance task and in the Morris 
water maze test and increased levels of IGF-1 in these brain 
structures. IGF-1 has been related to tau phosphorylation 
and its impairment leads to tau hyper-phosphorylation and 
consequently to mitochondrial dysfunction and cell death.114 
Corroborating these data, the oral treatment with curcumin 
restored the IR levels in both structures, as well as the per-
formance in behavioral memory and learning tests.115 Other 
studies in SHSY5Y cells demonstrated the role of curcumin 
on activating the Wnt/β-catenin signaling pathway through 
inhibition of GSK-3β, which is responsible for phosphorylating 
β-catenin and also plays a part as a β-catenin substrate. In 
addition to that, curcumin then induces the expression of 
β-catenin and cyclin D1. All these signaling pathways cross-
talk interferes with the amount of free PS1 (presenilin 1) 
and, consequently, with the activity of γ-secretase involved 
in the cleavage of APP.116 Another plant extract, Centella 
asiatica (Umbelliferae), has also presented effects similar 
to curcumin.117

The Wnt and the MAP kinase-signaling pathways are also 
involved in other approaches involving exercise protocols, 
which are beneficial to the Parkinson’s disease as demon-
strated previously in the present review (please see the 
section on Parkinson’s disease and neuroprotective effects 
of exercise). Similar studies have been undertaken in the 
STZ model of SAD. Treadmill running (5-week) significantly 
reverted cognitive decline observed in water maze task, 
and probably this effect is due to alterations in insulin-like 
signaling pathways and also MAP kinases and Wnt pathways.118 
MAP kinases have been shown to play important roles in 
neurotrophic signaling and synaptic plasticity119 and Wnt is 
also involved with plasticity, learning, memory, neurogenesis 
and LTP.120

A recent study has used a flavonoid named rutin, which 
has demonstrated antioxidant and anti-inflammatory effects, 
such as suppressing microglial activation.121 The same study 
demonstrated the attenuation of thiobarbituric acid reactive 
substances (TBARS), which indicates lipid damage, and also 
other beneficial effects involving oxidative stress-induced 
enzymes GPx, GR, and catalase. The anti-inflammatory 
effects were demonstrated by the decrease in the nuclear 
translocation of NF-κB, production of IL-8, and GFAP and 
COX-2 immunoreactive neurons.121 In the same research field, 
statins are used to evaluate the effects of anti-inflammatory 
and anti-oxidative interventions on AD. A conjugated model 
of celecoxib (nonsteroidal anti-inflammatory drug)/STZ-
induced sporadic dementia has been used to test pitavastatin 
(3-hydroxy-3-methyl glutaryl co-enzyme A (HMG-CoA), a 
reductase inhibitor, and donepezil (a cholinesterase inhibi-
tor), and these treatments presented successful results in 
neuroprotection.122

Alzheimer’s disease, proteomics and peptidomics 

Peptides have also been shown to be important in Alzheimer’s 
disease. Somatostatin was recently associated to the onset 
of the disease once the formation of the β-amyloid plaques 
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impairs this neuropeptide transmission. The β-amyloid 
plaques are key targets for the insulin-degrading enzyme 
(IDE) and are regulated by the presence of somatostatin, 
functioning as a substrate and allosteric modulator for the 
enzyme.123 Another peptide is substance P (SP), which has 
been shown to present an effect in the proteolytic pathway of 
amyloid precursor protein (APP) due to an increased activity 
of α-secretase and less availability of APP to β-secretases.124

Furthermore, peptidases are also important in the 
β-amyloid generation. Increasing evidence demonstrates 
the importance of neprilysin in the clearance of β-amyloid 
peptide due to a decrease of this enzyme level with aging.125 
In addition, there are increased levels of peptidases such as 
the endopeptidase EP 24.15126 and prolyl oligopeptidase (POP) 
in Αβ-treated rat hippocampus.127 EP 24.15 was also shown 
to be increased in AD brain tissue in comparison to controls, 
probably acting in the clearance of this peptide as well.128

There is an upcoming research field that involves the 
identification of intracellular peptide alterations, called 
peptidomics, and that does not use digestive enzymes, and 
analyzes the native form of the peptides and their post-
translational modifications (PTMs).129,130 Some of them are 
hemoglobin fragments (six from α-chain and three from 
β-chain)131 called hemorphins (LVV hemorphin-7, VV hemor-
phin-7, LVV hemorphin-6, and VV hemorphin-6). They were 
found to be significantly elevated in the temporal lobe of 
Alzheimer’s disease, but not in frontal lobe, occipital lobe, 
or hippocampus.132 These hemorphins present opioid recep-
tor function.133,134

There are also other fragments of hemoglobin with intra-
cellular function. They are called hemopressins (hemoglobin 
α1-chain) (PVNFKFLSH; HP) and presented a hypotensive 
effect.126 Other studies demonstrated antinoceptive proper-
ties on inflammatory pain,135 and its activity on cannabinoid 
CB1 receptors as a selective antagonist.136 Hemopressin 
seems to be part of the now called non-classical peptide 
secretory pathway characterized by “on demand” synthesis 
and no vesicle storage.137 These effects shed light over the 
endocannabinoid system, which presents important roles in 
neurodegenerative disorders, such as Alzheimer’s disease.138

One possible origin for these intracellular peptides seems 
to be the proteasome. Our group’s recent studies using mass 
spectrometry demonstrated that the epoxomycin inhibition 
of the proteasome in HEK293T cells significantly altered the 
intracellular peptide composition.139 Preliminary results also 
demonstrated changes in the intracellular peptide profile, as 
well as in some peptidases mRNA expression, such as EP24.15 
and aminopeptidase B (unpublished data).

Altogether, the data indicate that these peptides may 
function in several cellular mechanisms, including the 
modulation of protein-protein interactions.140,141 The natural 
generation and degradation of these intracellular peptides 
may be an important part of the mechanisms involving neu-
rological disorders.

Conclusion 
The data presented above illustrate some of the recent 
outcomes of several basic science approaches aimed at 
understanding the cellular and molecular mechanisms 
involved in Parkinson´s and Alzheimer´s diseases. The ani-
mal models discussed here have been very useful for that 

purpose, aside from several other models that are avail-
able, including transgenic mice. Some of the approaches 
discussed here have disclosed the relevance of oxidative 
stress, endocannabinoids, physical exercise/neurotrophic 
factors and peptides as sources of potential neuroprotective 
strategies, which largely remain to be tested in humans. The 
multidisciplinary environment provided by the Nucleus for 
Applied Neuroscience Research will hopefully stimulate the 
expansion of these ideas in the years to come.
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