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Social anxiety disorder (SAD) is a highly prevalent psychiatric disorder that presents with an early age
of onset, chronic disease course, and increased risk of psychiatric comorbidity. Current treatment
options for SAD are associated with low response rates, suboptimal efficacy, and possible risk of
adverse effects. Investigation of new neurobiological mechanisms may aid in the identification of more
specific therapeutic targets for the treatment of this disorder. Emerging evidence suggests that the
endogenous cannabinoid system, also referred to as the endocannabinoid system (ECS), could play a
potential role in the pathophysiology of SAD. This review discusses the known pathophysiological
mechanisms of SAD, the potential role of the ECS in this disorder, current drugs targeting the ECS,
and the potential of these novel compounds to enhance the therapeutic armamentarium for SAD.
Further investigational efforts, specifically in human populations, are warranted to improve our

knowledge of the ECS in SAD.
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Introduction

Social anxiety disorder (SAD) is characterized by an
excessive fear or anxiety of social situations wherein
affected individuals worry they may behave in a manner
that could lead to embarrassment, humiliation, or rejection
by others.! These fears may be restricted to performance-
like situations, such as public speaking, but may also
include more widespread social interactions, such as
initiating a conversation or socializing at a gathering.
As such, affected individuals typically avoid anxiety-
provoking social stimuli." This enduring anxiety and
avoidance often results in clinically significant psychoso-
cial impairment, which interferes with the person’s daily
routines, social engagements, relationships, occupation,
and/or academic functioning.?®

SAD is a highly prevalent, predominately youth-onset
disorder which may affect 12.1% of individuals in the
general population at least once in their lifetime.®* This
disorder has a higher prevalence among females, often
follows a chronic course, and has increased comorbidity
with other psychiatric disorders.® Common coexisting
health conditions include major depressive disorder,
generalized anxiety disorder, agoraphobia, substance
use disorders, and increased rates of suicidal ideation,
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as well as physical health concerns such as cardiovas-
cular disease.®>® Individuals with SAD report higher
unemployment rates, lower income, and greater financial
dependency compared to those without SAD.*® Despite
the significant socioeconomic costs and reduced quality
of life associated with the disorder, only 35% of respon-
dents with lifelong SAD reported seeking treatment
specifically for social anxiety.®

In terms of treatment, cognitive behavioral therapy
(CBT) serves as a first-line psychotherapy approach for
anxiety disorders.? A 2018 meta-analysis reported a pre-
post CBT effect size of d = 1.37, compared to effect sizes
of d = 1.33 for other psychotherapies and d = 0.88 for
psychological or pill placebo.” Pharmacological treatment
with selective serotonin reuptake inhibitors (SSRIs) and
serotonin-noradrenaline reuptake inhibitors (SNRIs) has
also been demonstrated to yield clinical improvement in
SAD patients.2® A 2019 meta-analysis examining 23
randomized-controlled SAD studies reported a standar-
dized mean difference of 0.66 and 0.67 with respect to the
measured treatment benefit of SSRIs and SNRIs com-
pared to placebo.® A moderate response has been
described for treatment with benzodiazepines, although
these drugs have been associated with multiple adverse
effects, including physiological dependence, withdrawal
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symptoms, and impaired cognition when used over longer
periods of time.®'® Anticonvulsants (pregabalin and
gabapentin), monoamine oxidase inhibitors (MAOIs),
reversible inhibitors of monoamine oxidase A, and tricyclic
antidepressants (TCAs) have also demonstrated efficacy
in the treatment of SAD.2 MAOIs and TCAs carry a higher
risk of severe adverse effects and interactions (for
MAOQIs, e.g., hypertension, serotonin syndrome, poten-
tially dangerous interactions with other antidepressants or
food requiring specific dietary restrictions; for TCAs, e.g.,
anticholinergic effects, cardiac adverse effects) compared
to newer antidepressants such as SSRIs and SNRis.®

Overall, current therapeutic options demonstrate sub-
optimal response rates, limited efficacy, and include risk
for potentially severe side effects with certain medica-
tions, such as benzodiazepines or MAQIs. The relative
paucity of effective treatments for this disorder may be
partly due to our limited understanding of the pathophy-
siology of SAD, despite research efforts implicating
several biological systems. Investigation of new neuro-
biological mechanisms may facilitate the discovery of
more specific therapeutic targets for SAD and could aid in
the future identification of biomarkers. One notable target
includes the endogenous cannabinoid system (ECS),
which emerging evidence suggests may mediate aspects
of anxiety and social behavior.'"'2

This article aims to provide a narrative summary of the
pathophysiological mechanisms involved in SAD, give an
overview of the potential pathophysiological role of the
ECS in SAD, and discuss future research directions and
potential therapeutic agents for SAD targeting the ECS.

Known pathophysiological mechanisms of SAD
Behavioral inhibition and neurocircuitry in SAD

Behavioral inhibition (BI), described as a childhood
tendency to withdraw from unfamiliar situations, people
and environments,'® has been associated with the devel-
opment of SAD across several prospective studies.'*'”
A 2020 meta-analysis found that behaviorally inhibited
children had significantly increased odds of developing
SAD (odds ratio = 5.84), indicating that childhood BI
may be a risk factor/predictor of the disorder.'®'® One
hypothesis suggests that Bl is associated with either a
lower threshold for or a stronger response to the detection
of novel, salient, or threatening information, thereby
implicating disruptions in certain neural circuitry.2® This
is supported by studies which found that individuals with a
childhood history of Bl exhibit a greater striatal response
to reward®'2® and punishment®* cues, as well as heigh-
tened activity in regions including the prefrontal cortex
(PFC)?*25 and anterior cingulate cortex (ACC).2® Greater
amygdala reactivity to novel stimuli has also been repor-
ted in adolescents and adults who exhibited Bl during
childhood.?”2°

These findings fall in line with those of functional
imaging studies in persons with SAD. Results from such
studies consistently demonstrate abnormal activity in
regions including the amygdala, insula, PFC, and ACC,
dubbed the “corticolimbic circuit.”*° Notably, heightened

Braz J Psychiatry. 2022;44(1)

amygdalar and insular activities have been observed in
response to performing stressful social tasks®'3* or
viewing negative facial expressions,®*3¢ which in some
studies has also correlated positively with the severity of
SAD symptoms.3”-%° Although less consistent in direction,
abnormal activity has also been reported in the PFC and
ACC of subjects with SAD compared to controls.32-3440
Collectively, these findings suggest that the neurobiology
of childhood Bl may be associated with corticolimbic
disruptions contributing to the development of SAD.

Neurotransmitter systems in SAD

The monoamine hypothesis and pharmacological
approaches suggest that the neurobiologies of depression
and anxiety share imbalances in the monoaminergic
neurotransmission system.*' In this regard, neuro-molecu-
lar positron emission tomography (PET) and single photon
emission computed tomography (SPECT) studies in SAD
have largely focused on imaging serotonergic and dopa-
minergic neurotransmission, based on the reported efficacy
of antidepressants.*'42

Two PET studies examining presynaptic serotoninergic
activity found elevated rates of serotonin synthesis in
the hippocampus, basal ganglia, amygdala, and ACC of
individuals with SAD.**** Additionally, three studies
employing two different tracers ([C-11]DASB PET**4®
and [I-123]-B-CIT SPECT*®) reported higher serotonin
receptor binding potential (a measure of receptor expres-
sion) within the raphe nuclei,** caudate nucleus,** insular
cortex,** nucleus accumbens,*® and thalamus.***® Only
one study investigated postsynaptic serotonergic function
in SAD, in which PET imaging of [carbonyl-C-11]WAY-
100635 demonstrated significantly reduced serotonin 1A
receptor binding potential in the amygdala, insula, and
ACC of patients with SAD.*’

Imaging of dopaminergic systems has produced less
consistent results. Three studies employing [I-123]-B-CIT
SPECT reported either an increase,*® decrease,*® or no
difference® in dopamine transporter binding in the striatum.
As suggested by Schneier et al.,*° these discrepancies
could possibly be due to small sample sizes (n=12) or
differences in SPECT assessment methods (receptor
blocking compound, identification of volumes of interest
or reference regions). Another SPECT study reported
significantly reduced dopamine D2/D3 receptor binding
potential in the striatum of patients with SAD and
comorbid obsessive-compulsive disorder compared to
healthy controls.*® However, the same group found no
difference in striatal dopamine D2/D3 receptor binding
in a subsequent PET study, which employed a more
reliable dopamine measurement technique and used a
larger SAD sample size (n=17).*° The latter study also
reported a decrease in striatal dopamine D2/D3 receptor
binding following an amphetamine challenge. Some of
the observed differences may be due to variations in age
range, symptom severity, treatments, and disease duration
of the study cohorts, as well as varying strengths and
limitations of the different imaging techniques and tracers
employed in the aforementioned studies. While some of
these findings suggest that serotonergic and dopaminergic



activity may play a role in SAD, the limited and incon-
sistent results warrant further investigation to better
understand the role of these neurotransmitter systems in
SAD pathophysiology.

The hypothalamic-pituitary-adrenal axis in SAD

It has been well established that the hypothalamic-
pituitary-adrenal (HPA) axis plays a major role in stress
regulation.®"%2 Activation of the HPA axis leads to
increased corticotropin-releasing-hormone (CRH) signal-
ing in the limbic forebrain, which, in turn, stimulates the
downstream release of cortisol.>> While acute stress
leads to adaptive activation of the HPA axis with a
transient increase in cortisol,> chronic stress can result in
prolonged activation of the HPA axis via dysregulation of
glucocorticoid-mediated feedback inhibition.>* These dis-
ruptive processes may affect the coping mechanisms
established by CRH systems, leading to chronic symp-
toms of fear and anxiety.>'**

Previous studies have demonstrated that individuals
with SAD had significantly elevated social stressor-
induced cortisol levels compared to controls.®>” How-
ever, these findings are not consistent: other studies
employing similar stress paradigms found no significant
difference in cortisol levels.58%° These discrepancies may
be due to variable length of stressor exposure, perception
of risk posed by the stressor, comorbidities, or age, which
are known to influence cortisol response.®”¢" Interestingly,
emerging evidence suggests that the ECS may contribute
to the regulation of HPA axis activity.>® As such, improved
understanding of ECS processes may provide insight into
the possible aberrations in the HPA axis stress response
involved in the pathophysiology of SAD.

The endocannabinoid system

The ECS is a lipid-based signaling system of the central
and peripheral nervous system (Figure 1).°2 The ECS
is primarily composed of two G protein-coupled cannabi-
noid receptors, endogenous cannabinoid ligands, and
enzymes responsible for ligand synthesis and degrada-
tion. Cannabinoid type 1 (CB1) receptors®® are the pre-
dominant cannabinoid receptors in the central nervous
system (CNS) and mainly located on terminals of central
and peripheral neurons.®*%° Activation of these receptors
inhibits neurotransmitter release, primarily from GABAer-
gic and glutamatergic neurons as well as certain mono-
aminergic sites.®? In comparison, cannabinoid type 2
(CB2) receptors®® are primarily distributed in peripheral
tissues and immune system cells, where they modulate
cell migration and cytokine release.®®

The two main endocannabinoids, N-arachidonoyletha-
nolamine (anandamide; AEA)®® and 2-arachidonoylgly-
cerol (2-AG),*° are lipid ligands that are synthesized
and released on demand from the post-synaptic cell,
leading to a retrograde suppression of neurotransmitter
release.®®%” Other lipid ligands of cannabinoid receptors
include 2-arachidonylglyceryl ether, N-arachidonoyl dopa-
mine, N-oleoyl dopamine, O-arachidonoylethanolamine,
and oleamide.”® Signaling is terminated via metabolization
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of AEA and 2-AG through their catabolic enzymes, fatty
acid amide hydrolase (FAAH)”' and monoacylglycerol
lipase (MAGL),”? respectively.

These endocannabinoids, collectively with their recep-
tors, biosynthetic proteins, and degradative enzymes, are
referred to as the ECS (Figure 1).

Role of the endocannabinoid system in the
regulation of stress and anxiety

Over the last two decades, the ECS has emerged
and been recognized as a potential regulator of stress
and anxiety. Cannabis consumption studies investigating
the exogenous cannabinoid delta-9-tetrahydrocannabinol
(THC) found that, in addition to its addictive potential,”®
THC consumption produces biphasic physiological effects
depending on dose.”*"® Notably, low-dose THC con-
sumption has been associated with anxiolytic effects,
whereas high-dose consumption has been linked to
anxiogenic effects.””’® Given that the psychoactive
effects of THC are mediated by CB1 receptor activa-
tion,%*7? it is possible that ECS signaling may serve to
buffer against anxiety and stress symptoms.

Animal studies have converged to show that increasing
ECS activity via pharmacological stimulation of CB1
receptors (via CB1 agonism or via elevating AEA/2-AG
through inhibition of their degradative enzymes) decreases
behavioral measures of rodent anxiety.®® Conversely,
decreasing ECS activity via antagonism or deletion of the
CB1 receptor gene elicits an anxiogenic response.®’ These
anxiolytic effects seem to depend on CB1 activation in key
structures implicated in the fear response, particularly
those comprising the corticolimbic circuit.8'® In this
regard, studies have shown that increased amygdala
neuron excitability in rodents exposed to stress can
be corrected by FAAH inhibition.2%8” Moreover, rodent
models of anxiety, modeled via exposure to stress
paradigms, consistently demonstrate elevated FAAH
activity and reduced AEA levels in limbic areas, further
supporting the anxiolytic potential of the ECS via FAAH
inhibition.®®88°" While the status of 2-AG and MAGL
in anxiety is less studied, pharmacological and genetic
investigations suggest that enhanced 2-AG signaling
may play an important role in reducing anxiety-like
behaviors and promoting adaptation under conditions of
repeated stress exposure (reviewed by Bedse et al.??).
Several studies have also shown that systemic MAGL
inhibition reduces anxiety-like behaviors under basal
and highly aversive conditions,?*®” as well as acute and
chronic stress-induced anxiety-like behaviors.%2:93:98.99

In line with the preclinical literature, human research
has shown that treatment with the CB1 inverse agonist/
receptor blocker rimonabant increases symptoms of
anxiety and depression in some individuals.'®® Due to
serious psychiatric adverse effects, including suicidal
ideation, rimonabant was withdrawn worldwide, in an
example of the potency and potential risks associated
with manipulation of the ECS. Moreover, biochemical
studies in humans have found that experimental exposure
to the Trier Social Stress Test (TSST) increases serum
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Presynaptic neuron

arachidonic acid +
glycerol

Postsynaptic neuron
arachidonic acid +
athanolamine

A 2-AG biosynthesis

B 2-AG metabolism

C AEA biosynthesis

D AEA metabolism

E Both bind to Cb1 and
F back into the neuron

Figure 1 lllustration of endocannabinoid biosynthesis, binding, and metabolism. A) The biosynthesis of 2-AG is mediated by
sequential hydrolysis, whereby a GPL is hydrolyzed by PLC or PLD to form DAG. DAG is then rapidly hydrolyzed by DAGL to
form 2-AG. B) 2-AG is primarily broken down by MAGL to form arachidonic acid and glycerol. C) AEA is synthesized from
phospholipid precursors PPEA which are initially converted to NAPE by NAT. NAPE is subsequently converted to AEA by
NAPE-PLD activity. D) AEA is primarily metabolized by FAAH to form arachidonic acid and ethanolamine. E) Both 2-AG and
AEA bind to CB1 on the presynaptic neuron. F) After receptor activation, AEA and 2-AG are transported back into the neuron
by EMT. * NAPE may be converted to AEA through alternative pathways.®” 2-AG = 2-arachidonoylglycerol; AEA = ananda-
mide; CB1 = cannabinoid receptor 1; DAG = diacylglycerol; DAGL = DAG lipase; EMT = endocannabinoid membrane trans-
porters; FAAH = fatty acid amide hydrolase; GPL = glycerophospholipid; MAGL = monoacylglycerol lipase; NAPE =
N-arachidonoylphosphatidylethanolamine; NAPE-PLD = NAPE phospholipase D; NAT = N-acyltransferase; PLC = phos-
pholipase C; PLD = phospholipase D; PPEA = phosphatidylethanolamine.

concentrations of AEA, 2-AG and the other N-acyletha-
nolamines immediately after the stress period, both in
healthy participants (compared to unstressed con-
trols)'®" and in those diagnosed with major depression
(compared to TSST-exposed controls).'% In the former
study, baseline anxiety ratings also correlated negatively
with baseline AEA concentrations.®' Similarly, among
individuals with PTSD, those with lower peripheral AEA
levels experienced more intrusive symptoms.'®® Clinical
studies examining the FAAH C385A genetic polymorph-
ism (rs324420) found that carriers of the A allele — which is
associated with lower FAAH and higher AEA levels'%* 1% —
have a blunted amygdalar response to threat, greater
ventral striatum response to reward, decreased correla-
tion of amygdala reactivity and trait anxiety, enhanced
fronto-amygdalar connectivity, and reduced stress reac-
tivity."”1%9 Green et al."° failed to replicate the afore-
mentioned relationship between the FAAH C385A
polymorphism and amygdalar functional connectivity,
possibly due to a small sample size. However, they did
find that FAAH levels measured in vivo in the human
brain are negatively correlated with fronto-amygdalar
functional connectivity, suggesting that higher brain levels
of AEA could increase coupling strength in fronto-amygda-
lar networks and affect stress response.''® Another recent
fMRI study in healthy males showed that neural activation
of the anterior cingulate cortex and anterior insular cortex
during extinction learning correlated positively with AEA
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baseline levels.'' Moreover, task-related changes in AEA
were observed during fear extinction, suggesting that AEA
may play a putative role in fear extinction learning.'"
Finally, in the remarkable case report of a patient
presenting with pain insensitivity and low fear and anxiety,
the C385A polymorphism together with a microdeletion
linked to decreased FAAH expression was detected as a
possible causal factor. In addition, blood levels of AEA and
other fatty-acid amides which are degraded by FAAH were
unusually elevated in this individual.’*?

The role of the ECS specifically in social anxiety is
supported by various preclinical findings which demon-
strate effects of ECS modulation, via either CB1 receptor
activation or FAAH inhibition, on social interaction and
social anxiety."'®'"® |n comparison, clinical studies
investigating this system in SAD are considerably limited.
A recent clinical trial investigating the therapeutic effects
of a FAAH inhibitor in SAD was negative. However, the
authors observed a small to modest anxiolytic effect in
patients with severe SAD and suggested that, based on
the correlation between low trough concentrations of the
inhibitor (i.e., the lowest concentration of the drug in the
bloodstream) and low plasma AEA, future trials with a
higher dose of the inhibitor may be warranted.'™® In
addition, a recently published double-blind, placebo-
controlled experimental study in healthy adults found
that administration of the FAAH inhibitor PF-04457845
produced a 10-fold increase in peripheral AEA levels and



decreased broad-spectrum fear-related phenotypes.'?°
Furthermore, a 2021 double-blind, placebo-controlled
clinical trial in healthy males employing the FAAH inhibitor
JNJ-42165279 found that the drug attenuated activation
in the amygdala, anterior cingulate, and bilateral insula
during a face emotion processing task — effects which are
consistent with those of previously observed anxiolytic
agents.'' Moreover, higher levels of plasma AEA were
associated with greater attenuation in these brain
regions.'?' While the latter two clinical studies were not
conducted in a population with SAD, they suggest that
FAAH inhibitors may have some potential in the treatment
of fear-related disorders such as SAD.

Over the past two decades, cannabidiol (CBD), the
primary non-psychotomimetic cannabinoid constituent
of cannabis,'®® has emerged as a drug with multiple
potential therapeutic benefits including neuroprotective,
anti-inflammatory, antioxidant, antipsychotic, and antian-
xiety effects (reviewed by McPartland et al.'?3). Although
evidence is emerging that the anxiolytic effects of CBD
may be mediated through serotonergic 5HT1a recep-
tors'?*'25 and vanilloid receptor type 1 (TRPV1)'2®
receptors, some of these effects may also be exerted
through modulation of the ECS. Specifically, mild agonis-
tic effects on CB1 receptors and antagonistic effects on
exogenous CB1 receptor agonists (THC) have been
described.'?®127:128 \Whijle the agonistic effects are still
limited and controversial, emerging evidence suggests
that CBD may act as a negative allosteric modulator of
CB1 receptors, resulting in the aforementioned antag-
onistic effects on cannabinoid agonist activity.'2® Further-
more, there have been inconsistent findings on the effects
of CBD on FAAH activity. Some animal studies found an
inhibitory effect of CBD on FAAH activity in brain tissue
of healthy mice,'?®'® rats,'®' and cell membranes from
mouse neuroblastoma,’3? whereas in vivo treatment of
mouse glioma tissue with CBD increased FAAH activ-
ity."®® In addition, two studies reported a decrease in
FAAH protein expression following CBD administration in
chronically stressed mice'* and LPS-treated mice.'®®
Further investigation with more standardized methodolo-
gies may help elucidate the actions of CBD on FAAH.

Moreover, several preclinical studies'¢'®9 investigat-
ing effects of CBD in different animal models of anxiety
have repeatedly demonstrated anxiolytic effects, as com-
prehensively reviewed by Blessing and colleagues.'?®
Among these, some animal studies have found that
CBD produces anxiolytic effects following an inverted
U-shaped dose-response curve.'38140:141 |nterestingly,
this bell-shaped response is not exclusive to the anxiolytic
effects of CBD, as it has also been observed in animal
models of depression,'*? compulsive behavior,'*® schizo-
phrenia,'** cognitive impairment,’*® and other ailments.'*°
These findings suggest that the optimal dose of CBD may
depend on condition, indicating the need to test different
doses in animals and humans in order to elucidate its
therapeutic potential for the treatment of SAD and other
anxiety disorders.

In terms of clinical findings, one study in human cells
suggests that CBD increases AEA levels through binding
to fatty acid-binding proteins and thereby prevents AEA

Endocannabinoid system in SAD
uptake and catabolism by FAAH, '€ rather than inhibiting
FAAH directly. In addition, results from a clinical trial in
schizophrenia indicate higher AEA levels in individuals
receiving treatment with CBD."'?” While direct measure-
ment of brain FAAH activity has been made possible by
the novel PET radiotracer [C-11]CURB,'*” there have
been to our knowledge no studies directly investigating
brain FAAH activity before and after treatment with CBD.
Finally, three randomized-controlled clinical trials in SAD
have shown that CBD may improve SAD symptoms
(Table 1).7#81%0 Although these results appear to be
promising, it should be noted that these trials were
conducted in small samples (10 to 37 participants) and
employed inconsistent assessment tools across studies.
Such limitations warrant further investigation to produce
robust findings and better understand the biological
mechanisms of CBD action in SAD.

Interaction of the endocannabinoid system with
other systems and biological findings

As discussed, previous research has largely focused on
establishing monoaminergic impairment affecting the
limbic system®'®2 and dysfunction of the HPA axis'®®
as pathophysiological mechanisms of SAD. Accordingly,
treatments developed and/or tested for SAD have mainly
targeted serotonin (5-HT) and norepinephrine (NE) neuro-
transmission, specifically via drugs blocking their reup-
take.® However, these drugs are ineffective in more than
one-third of SAD patients.?

Recently, the ECS has been identified as a modulator
of the aforementioned systems and incited interest in
the development of new pharmacological treatments for
mood and anxiety disorders. In particular, two preclinical
studies found that synthetic CB1 receptor agonism was
associated with increased NE efflux and anxiety-like
behavior in healthy rodents.'®*'%° The latter study also
showed that local administration of a CB1 receptor
antagonist (SR 141716A) followed by local administration
of a CB1 receptor agonist (WIN55,212-2) produces a
paradoxical inhibition of NE efflux.'®® Together, these
findings suggest that enhanced NE activity may be
mediated, in part, by direct CB1 receptor agonism,
localized at noradrenergic axon terminals. However, the
paradoxical decrease in NE observed in the second study
may also indicate that NE efflux is modulated indirectly via
interneurons or other chemically distinct afferents.'®
Similarly, direct or indirect stimulation of CB1 receptors
has been linked to enhanced 5-HT neuronal activity. '¢1%8
However, these studies found that increased 5-HT
neurotransmission following CB1 receptor agonism,'®®
FAAH inhibition,’” or FAAH knockout'®® was associated
with enhanced stress-coping behaviors and antidepressant
effects in otherwise healthy rodents.

Accumulating evidence also suggests that the ECS
may act as a homeostatic regulator of HPA axis activity
under basal and stress-related conditions.’®® In this
regard, studies have found that chronic stress exposure
or repeated corticosterone treatment activate the HPA
axis response, which has been associated with changes
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Table 1 Randomized, double-blind, placebo-controlled clinical trials of drugs targeting the ECS in SAD

Pharmacological Treatment duration Symptom
Reference Sample size treatment (# days, treatment/day) scale Principal finding
Crippa SAD =10 400 mg CBD (n=5) 1 day, 1/day VAMS CBD decreased subjective anxiety
et al.’® Placebo (n=5) scores compared to
placebo (p < 0.001).
Bergamaschi SAD = 24 600 mg CBDi (n=12) 1 day, 1/day VAMS, CBD pre-treatment reduced subjective
et al.’® HC = 127 Placebo* (n=12) NSSS anxiety scores compared to placebo
(VAMS, p < 0.001; NSSS, p < 0.004).
Masataka'®° SAD = 37 300 mg CBD (n=17) 4 weeks, 1/day LSAS, CBD decreased post-intervention
Placebo (n=20) FNEQ social anxiety scores compared to
placebo (FNEQ, p = 0.0002; LSAS,
p = 0.0018).
Schmidt SAD = 149 25 mg JNJ (n=74) 12 weeks, 1/day LSAS, No significant difference in anxiety
et al® Placebo (n=75) HAM-A, scores between subjects treated
HDRS with JNJ and placebo.
NCT0354 SAD among other 200 mg CBD (n=TBD) 8 weeks, 1/day® HAM-A Clinical trial registered"
9819 anxiety disorders Placebo (n=TBD)

Not yet recruiting

CBD = cannabidiol; ECS = endocannabinoid system; FNEQ = Fear of Negative Evaluation Questionnaire; HAM-A = Hamilton Anxiety Rating
Scale; HC = healthy control; HDRS = Hamilton Depression Rating Scale; JNJ = JNJ-42165279 (FAAH inhibitor); LSAS = Liebowitz Social
Anxiety Scale; MCT = medium-chain triglyceride; NSSS = Negative Self-Statement Scale; SAD = social anxiety disorder; TBD = to be
determined; THC = delta-9-tetrahydrocannabinol; VAMS = Visual Analogue Mood Scale.

"Healthy controls underwent the same study procedures without receiving pharmacological treatment.

*Treatment administered 1.5 hours prior to participation in a simulated public speaking test.

$Titrated as tolerated up to a maximum 2 capsules, twice daily (200-800 mg total dose).

' Clinical trial is registered but has not yet started.

in AEA levels, FAAH activity, and CB1 receptor expres-
sion.%%1%9-161 ‘Moreover, Di et al.’®® showed that the
paraventricular nucleus (PVN) participates in glucocorti-
coid-mediated feedback regulation of the HPA axis
via endocannabinoid release. Specifically, this model
suggests that, during the stress response, activation of
hippocampal glucocorticoid receptors (via corticoster-
one) induces the synthesis of endocannabinoid ligands
which bind to CB1 receptors on glutamatergic neu-
rons."®? This binding activates a signaling cascade that
leads to the inhibition of glutamate release onto the
hypothalamic PVN, decreasing PVN neuronal activity
and further hormone secretion.'®? It is possible, then,
that disruption of certain ECS processes may lead to
dysregulation of HPA axis activity, which together may
contribute to the development of sustained anxiety-
related symptoms.

ECS interactions with oxytocin, the neuropeptide that
reinforces social bonding and social reward, have also
been observed. Specifically, Wei et al.’®® showed that
oxytocin drives AEA mobilization in the mouse nucleus
accumbens, leading to reinforcement of social reward
behavior. Pharmacological blockade of oxytocin receptors
attenuated this response, whereas FAAH inhibition or
gene deletion offset the behavioral effects of oxytocin
receptor blockade.'®® These findings suggest that the
ECS may modulate the prosocial effects of oxytocin, which
may open potential avenues of research in disorders of
social impairment such as SAD.

Genetic studies examining ECS candidate genes relat-
ing to anxiety disorders have produced limited findings.
Current evidence suggests that a single nucleotide poly-
morphism in the FAAH gene (rs324420; C385A)'%*
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influences FAAH protein expression,'%% which has

been found to correlate with trait anxiety.'®” However,
there is little to no evidence to support an association
between genetic variants of other ECS genes and
symptoms of SAD.

Thus, further investigation of ECS interactions with
other biological systems and genetic variables may help
improve our current knowledge and address the gap with
respect to SAD pathophysiology, potentially allowing for
the development of more targeted treatment options.

Summary of current drugs targeting the
endocannabinoid system

Based on current evidence, it appears that the ECS may
play a role in buffering against stress and anxiety. Thus,
targeting components of this system could serve as a
potentially valid strategy for the treatment of social anxiety
symptoms. In this regard, several ECS-targeting drugs
have been developed, with some demonstrating promis-
ing therapeutic potential.

Logically, CB1 agonists were considered promising,
given their ability to enhance ECS activity and reduce
anxiety-like behaviors in rodents.®%1%416¢ Notable syn-
thetic CB1 agonists include WIN55,212-2, CP-55940, and
HU-210. Although these compounds are generally well-
tolerated, accompanying risk of other psychotropic adverse
effects has been observed.'®” Direct CB1 agonism has
also been associated with disturbances in social behavior
and social play in some preclinical studies, prompting the
exploration of other ECS targets.!3168-170

One of the most effective strategies to target anxiety
through modulation of the ECS has been inhibition of



the endocannabinoid degradation enzymes FAAH and
MAGL. This allows for the indirect activation of CB1
receptors by increased levels of AEA and 2-AG.
Accumulating evidence has demonstrated the anxiolytic
effects of FAAH inhibitors (URB597, PF-3845, and PF-
04457845), most prominently in rodents,®® as well as the
aforementioned human experimental PF-04457845 trial.'2°
Interestingly, prosocial effects of these compounds have
also been consistently observed in rodent models of social
impairment.’'”171174 Although more limited in study,
MAGL inhibitors (URB602, JZL184) have demonstrated
similar results in terms of improved anxiety and social
behavior.8%'7%176 While a handful of inhibitor studies
have reported insignificant results,’””~'7° the vast majority
suggest that inhibition of endocannabinoid degradation
enzymes may serve as a promising novel treatment
strategy for anxiety-related disorders.

The opposing effects on anxiety and social behavior
exerted through direct versus indirect CBR activation may
be due to differences in the mechanism of action (e.g.
partial vs full agonistic properties at CBR) and/or affinities
of endogenous vs synthetic ligands for CB1R vs CB2R
affinity. '®® However, this variability may also be explained
by existing differences in the underlying status of the ECS
in animals with social impairments, such as ECS receptor
expression, ligand levels, or enzyme activity.'’>'74.181
These aspects warrant further investigation of changes in
ECS components in social impairment models as well as
in human studies of disorders associated with social
impairment in order to validate the therapeutic potential
and potential risks of these ECS-targeting agents in
clinical settings.

In contrast, CB1 inverse agonists/antagonists have
been shown to further exacerbate anxiety-like beha-
viors. As mentioned above the inverse agonist Rimona-
bant, found to be effective for weight-loss and smoking
cessation, was quickly withdrawn following the emer-
gence of severe psychiatric side effects.’® In line with
this, CB1 inverse agonist, AM251 has been found to
reduce social interactions in rodents'®®'®* and non-
human primates."'® Interestingly and in contrast to CB1
inverse agonists, two preclinical studies found that
administration of a CB1 neutral antagonist, AM4113,
did not produce anxiogenic or depressive side effects
when administered in rats.'®'8 Similarly, two other
rodent studies found that Rimonabant, but not the CB1
neutral antagonist tetrahydrocannabivarin, produced
depressive and anxiogenic-like behaviors following
administration.'®”:188 While inverse agonists induce a
pharmacological response opposite to that of agonists,
neutral antagonists do not activate the receptor —
differences which may partly explain the absence of
these behavioral side effects following administration of
the latter group of agents.'8®

Overall, the development of ECS-targeting agents
has produced some promising results with regards
to modulation of anxiety-like symptoms and social
behavior, particularly in the field of FAAH and MAGL
inhibitors. However, current evidence largely focuses
on measures of general anxiety in animal models, and

Endocannabinoid system in SAD

lacks the support of clinical trials. Further investigation
of the effect of ECS-targeting drugs, specifically in
animal models of social impairment and human studies,
may provide greater insight as to how these compounds
effect other biological systems, the possibility of risks
and adverse effects, as well as their therapeutic
potential in SAD.

Future research and potential challenges

This article highlights some of the currently known
pathophysiological mechanisms of SAD and the thera-
peutic potential of the ECS. Targeting specific compo-
nents of the ECS which have been shown to play a role in
anxiety-related symptoms and social behavior may serve
as a novel and possibly more targeted treatment for such
disorders. However, there are a number of challenges to
consider with respect to this new approach.

Firstly, while CB1 activation has been hypothesized
to improve social anxiety-like behaviors by enhancing
ECS signaling, activation of this receptor has since
also demonstrated increased risk of social''®'%817% gnd
cognitive'® impairments, as well as disturbances in the
reward system.'%'®! As previously discussed, indirect
CB1 activation via FAAH or MAGL inhibition has been the
most commonly proposed solution to possibly avoid these
adverse effects. Additionally, peripheral CB1 agonists and
CB1 positive allosteric modulators have also demon-
strated the ability to avoid certain CB1-related side
effects.’®>19* Despite these alternative solutions, the
vast majority of current supporting evidence is a result
of animal experimentation. As such, the efficacy, safety,
and tolerability of such drugs must be further validated
through clinical studies to evaluate not only their thera-
peutic potential, but also their possible risks.

Secondly, it is important to consider that the ECS is a
complex biological system that does not function in
isolation, but rather through interactions with an array
of other systems. In this regard, the ECS may interact
with and modulate other systems including the endova-
nilloid,"9*'9° opioid,'®® noradrenergic,'®” prostanoid,'®®
serotonergic,'®® dopaminergic,?°° glutamatergic,?°’ and
GABAergic®® systems, among other biological net-
works.'®* Accounting for these additional biological
networks will be crucial in understanding the larger
physiological context and environment in which the ECS
functions, and, by extension, the biological pathways
that pharmacological interventions in the ECS can
potentially influence.

A third challenge to consider is the pathophysiological
heterogeneity of individuals with SAD. While the patho-
physiological mechanisms of SAD are not yet certain, a
number of biological systems have been described above
which may additionally interact with the ECS. In this
regard, it is possible that SAD in some individuals may be
due to greater dysregulation of the HPA axis,®' whereas
others may have more severe disruptions in their
serotonergic/dopaminergic systems*® or inflammatory
processes.?°32%4 Accordingly, it is possible that ECS-
targeted treatment may be beneficial to certain
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neurobiological subgroups of SAD patients, but poten-
tially ineffective or even possibly harmful to others. As
such, future research efforts should also focus on
elucidating biological subpopulations in SAD and how
ECS-targeted therapies could be individualized to max-
imize their therapeutic potential.

Conclusion

Overall, the ECS presents as a potential biological pathway
in the pathophysiology of SAD and as promising avenue
for developing novel therapeutic approaches. The lack
of human ECS studies and clinical trials, combined with
the complex nature of the ECS and the heterogenous
pathophysiology of SAD, highlight significant gaps in our
knowledge and possible challenges, though at the same
time great potential for future research. Further investiga-
tional efforts — specifically in human populations — are
warranted to improve our knowledge of the ECS in SAD
and help clarify these emerging questions. In turn, such
research may allow for the development of more targeted
pharmacological treatment interventions for individuals
with SAD.
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