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ABSTRACT

In this work a MIMO nonlinear predictive mntroller was developed for an extractive alcoholic fermentation
process The interna model of the cntroller was represented by two MISO Functional Link Networks (FLNS),
identified usng simulated data generated from a deterministic mathematical model whase kinetic parameters were
determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence,
since the estimation of the weights is a linear optimization problem. Besides, the dimination d nonsignificant
weights generates parsimonious model s, which alows for fast exeaution in an MPC-based algorithm The propocsed
algorithm showed goodpotential in identification and cantrol of nontlinear processes.
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INTRODUCTION

Despite many advantages of using ethand as fud,
it can subgtitute petroleum fuels only if its
production is economically attractive. Thus, there
is a great interest in the optimization o all the
steps of the éhand production process One of the
options to improve the productivity of ethand
production is the continuous extraction o ethanol.
Several schemes combining fermentation with a
separation process have been developed (Costa
et al., 200)). Silva et al. (1999 have shown that a
scheme combining a fermentor with a vacuum
flash vessd presents sveral positive features and
better performance than an industrial conventional
process(Andrietta and Maugeri, 1994).

Ancther important aspect to be considered in the
optimization o the alcohdic fermentation process
is the development of an efficient control strategy,

" Author for correspondence

since it can minimize costs and environmental
impact by maintaining the processunder optimum
condtions. However, biotechnological processes
are characterized by their complex dynamics and
modeling and control of those systems presents
problems that have not yet been totally solved
(Meleiro et al., 2001).

Modd Predictive Contral (MPC) algorithms have
been widdly used in industrial processes in recent
years. These algorithms are well suited for high
performance control of constrained multivariable
processes because e&plicit pairing o input and
output variables is not required and constraints can
be incorporated drectly into the controller design
(Henson, 1998. On the other hand, most of the
industrial applications use linear dynamic models,
which may not be appropriate for highly non-
linear systems.
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Although the use of non-linear models may
improve the control algorithm performance, the
development of such models is not always an easy
task. In recent years, there has been a strong
interest in the use of neural networks to describe
chemical processes, due to their ability to
approximate highly non-linear systems. There are
several neural network structures cited in the
literature, but there are no methods proposed to
define the best structure to be used for a given
case. In the majority of the applications the
feedforward neural network (FNN) is used. A
structure that has nat been much explored is the
functional link network (FLN). This network has
been shown to have a goad non-linear
approximation capability, although the estimation
of its weights is linear. Due to the linear
estimation, its training is rapid, requires low
computational effort and the convergence is
guarantead (Costa et al., 1999.

The abjedive of this work was to develop a non-
linear Multiple Input Multiple Output (MIMO)
predictive control algorithm to contral the process
mentioned abowve, considering constraints on
manipulated and controlled variables. Two

Multiple Input Single Output (MI1SO) Functional
Link Networks (FLN) were used to identify the
dynamics of the controlled variables and then used
as internal moddls of the controller. The proposed
control algorithm used the Successive Quadratic
Progamming method (SQP) to solve the
optimization problem at each sampleinterval.

MATERIALS AND METHODS

Extractive Alcoholic Fermentation Process

A gengral scheme of the etractive alcohdic
fermentation proposed by Silva & al. (1999 is
shown in Fig. 1. The process consists of four
interlinked units: fermentor (ethanol production
unit), centrifuge (cel separation unit), cdl
treatment unit and vacuum flash vessd (ethanol-
water separation unit). This <heme simulated
industrial conditions (Andrietta and Maugeri,
1994, with the difference that only one fermentor
was used instead of a cascade system, besides the
flash was used to extract part of the e¢hand. The
substrate used was sugar-cane maasss.
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Figure 1 - Extractive Alcohalic Fermentation.
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The mathematical model used to simulate the
processwas experimentally validated (Costa et al.,
200)).

The aobjedive of this work was to control ethand
(P) and substrate (S) concentrations in the
fermentor. Based on the dynamic behavior study
performed by Costa et al. (2001), the manipulated
variables must be the inlet flow rate (FO) and flash
recyclerate (r).

Process Mdentification Using Functional Link
Networ ks

In this work, functional link neural networks were
used as internal modds of the predictive
controller. In these networks, a non-linear

functional expansion of the network inputs was
initially performed and the resulting terms were
combined linearly. The structure obtained had a
goad non-linear approximation capability, and the
estimation of network weights was a linear
optimization problem.
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Figure 2 - General structure of afunctional link network.

The general structure of an FLN is ¢own in Fig.
2, where X, is the input vector and yi(xe) is an
output. The hidden layer performs a functional
expansion on the input data, which maps the input
space of dimension n; onto a new space of
increased dimension, M (M > n,). The output layer
consists of m nodes, each one, in fact, a linear
combiner. The input-output reationship o the
FLN is:

i(x.) = iwu h(x). 1sism @

The most used functional expansion is the
polynomial expansion. In this case, the epansion
results, hj(Xe), are a series of monamials of Xe.

Henrique (1999 proposed a modification on the
structure of the FLNs, where the output given by
equation 1 was transformed by an invertible non-
linear activationfunction. The new output is

yi(xe)=fi(MZvvuh,-(xe»,lsism @

where f; is an invertible non-linear function such
as, for example, the sigmoidal function. This
modification was made to increase the non-linear
approximation ability of the FLNs. The training of
the network was performed using a transformed
output: the original output transformed by the
inverse of the activation function f.

Ancther modification was made in the FLNs to
increase their non-linear approximation capability.
Before the functional expansion is performed, the
network inputs, Xe, are transformed into a greater
number, n,, of auxiliary inputs, z. These auxiliary
inputs are non-linear expressions of the real inputs
(Costa et al., 1999. A polynomial expansion was
then performed onthe new inputs. The generated
monamials can befound in Costa et al. (1999.
Once the monamials are generated, the network
weights, w;, are estimated using an arthogonal
least-squares estimator (Billings e al., 1989.
Henrique (1999 also proposed that the monamials
that are nat significant in explaining the output
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variance can be diminated using a method
proposed by Billings et al. (1989. This procedure
reduces the size and complexity of the neural
network and avoids overfitting o thetraining deta.
The performance of the FLN was measured by
(Milton e Arnold, 1990:

cor=(1- %100% (3)
SrT
where:

see= 3 (1)~ () SEE=3 (v.()-7.)
ye(k) is the e<piimental output, y(k) is the

network output, Yy, is the mean value of the

experimental outputs and N is the numbe of
training data.

Non-Linear Mimo Predictive Control

The objedive of the controller is to select a set of
future control actions in order to minimize the
following dbjedive function:

NO NP

J= Z Z (9,‘0,k+i ~YSPB ki )2 +
o NI NC
JZ}\J. ;(Auj,kﬂ_l)z

where y°© are the controlled variables predicted by
the neural networks, corrected according to
equation 10; ysp are the set-point values; A are the
weighting factors (tuning parameters that penalize
the control actions); Au are the increments on the
manipulated variables; NO is the number of
controlled variables; NI is the number of
manipulated variables; NP is the prediction
horizon and NC is the control horizon.

The objedive function is aubject to the following
constraints:

(4)

ymin < yk+i < ymax (I :1!"' !NP) (5)
Uy SUio <UL ([i=1---,NC) (6)

Upsi _uk+i—l| < AU, (i :1""’NC) ()

Where Yrin and Yimax, Umin 8N Umax; Alin aNd AUmex
are lower and upper bounds for the vectors y, u
and Au, respectively.

The optimization algorithm calculates the values
of Au to minimize the objedive function (equation
4). The future control actions are calculated over a
control horizon NC and are kept constant for NC<
i <NP (NC < NP):

Uksi = Uksi-s + AUisi, (1 = 1,7,NC) (8)
Uksi = Ugeng) » (I = NC+1,7",NP) 9)

The predictions of the neural networks are
corrected by a procesgmodel error:

d =y -V
AT (10
Yiri = Yisi Hd (' :1""!NP)

where yy is the vector of measured outputs at the
present sampling time, Y, is the vedor of the
networks predictions (calculated at the previous
sampling time) and Yy, is the vector of the
corrected networks predictions.

As the neural networks are trained to predict the
controlled variables only one step ahead, in the
control algorithm the networks are iterated to
obtain atotal of NP future predictions by using the
outputs of the neural networks as their own inputs
in the next iteration.

Although the optimization is based on a cortrol
horizon, only the first control action (for each
manipulated variable) is implemented in the
process and the optimization problem is slved
again at the next sampling time. Successive
Quadratic Programming (SQP), using the routine
DNCONF of the IMSL math library of
FORTRAN, was used to solve the optimization
problem.

RESULT S AND DISCUSS ON

Two MISO FLNs were used as internal models for
the contral algorithm. The first FLN was used to
predict substrate concentration in the fermentor
one step ahead with the foll owing structure (Zhan
and Ishida, 1997 Santos et al., 2000:
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e Inputs: S, Foxandry

e Output: S+1

The second FLN was used to predict ethanol

concentration in the fermentor one step ahead with

the foll owing structure:
e Inputs: P«, Fox andry
e Output: Py

wherek is the present sampling time.

The training data were obtained by performing
random step changes in the manipulated variables:
inlet flow rate, Fy, and flash recycle rate, r. The
inputs were transformed into auxiliary inputs for
both FLNs. After some tests the auxiliary input
vedors that led to the best results were chosen:

.0
% = o (12)

[ |

1
I:)k
Tests were made to determine the functional
expansion degree and activation function that led
to the best training performance of the networks
(Costa et al., 1999. For both FLNSs the functional

expansion degree chosen was 6 and the activation
function was:

f(iwu h (X)) =t

ZW” h; (x.)

Many authars suggested that the neural networks
used as internal models of MPC schemes should
be validated by testing their capacity to predict
steady states of the process (Zhan and Ishida,
1997 Santos et al., 2000. Figs. 3-6 show the
results when the trained FLNs were used to predict
the steady states of the etractive alcohalic
fermentation process for different values of the
manipulated variables (F; and r). The trained
networks showed goodperformarce.
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Figure 3 - Performance of the FLN to predict substrate mncentration steady states for
different values of the inlet flow rate.
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Figure 4 - Performance of
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the FLN to predict substrate mncentration steady states for

different values of the flash recyclerate.
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Figure 5 - Performance of the FLN to predict product concentration steady states for
different values of the inlet flow rate.
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Figure 6 - Performance of the FLN to predict product concentration steady states for
different values of the flash recyclerate.
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Figure 7 - Disturbancesimposed on SO and TO.
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Figure 8 - Servo and regulatory control for substrate @ncentration.

The FLNs described above were used as internal
models of the predictive controller. The sampling
time was chosen as 12 minutes, considering that an
HPLC (High Performance Liquid Chromatograph)
was used to measure substrate and ethanol
concentrations on-line (Andrietta, 1994. The
controlled and manipulated variables constraints
were as follows:

S. 20 (=1 NP
60< F,,,., <150 (i =1:--,NC)

Ok+i-1 —

02<r,.,<07 (i=1---,NC)
|F0k+i - F0k+i—1| <30 (i :1""’NC)
Mo ~Teria| 201 (i =1---,NC)

and the controller parameters were chosen after
many tests: NP=8, NC=3 and A'=[0.01 70]. The
performance of the controller was tested by
changing simultaneously the set-points and
disturbance variables that influence the controlled
variables. The main disturbance variables in this

process are the inlet substrate concentration, S,
and the inlet temperature, To. The disturbances
made in S, and T, are shown in Fig. 7. The set-
point values for these variables were 180 kg/m3
and 303K, respectively.

Fig. 8 shows the performance of the controller
when set-point changes in substrate concentration
were peaformed simultaneously with  the
disturbances sown in Fig. 7. Note that the
controller maintained the output concentration at
the desired value.

Fig. 9 illustrates the correspondng behavior of
product concentration. It can be noticed that the
controller was able to reect the disturbances that
affeded this variable. Fig. 10 dpicts the control
actions. Fig. 11 shows the results when set-paint
changes in product concentration were performed
simultaneously with the disturbances sown in
Fig. 7. Fig. 12 illustrates the behavior of substrate
concentration. It can be seen that the non-linear
controller presented good performance to lead the
system to new sd-points and to rged
disturbances. Fig. 13 depictsthe control actions.
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Figure 10 - Control actionsrelated to Figures 8 and 9.
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Figure 11 - Servo and regulatory control for product concentration.
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Figure 12 - Regulatory control for substrate @ncentration.
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Figure 13 - Control actionsrelated to Figs. 11 and 12.

CONCLUSIONS

In this work, two MISO Functional Link Networks
(FLNs) were applied to identify an extractive
alcohdic fermentation process using simulated
data generated by a deterministic modd whose
parameters were obtained from the experiments.
The FLNs represented accurately the dynamic and
static behavior of the process and presented goad
potential to be used as internal models of a control
algorithm. This gructure presented the advantages
of fast training and guaranteed convergence, since
the etimation o the weights is a linear
optimization problem. Besides, the dimination of
non-significant weights generated parsimonious
models, which allowed for fast exeaution in an
MPC-based algorithm.

The non-liner MIMO predictive controller
developed in this work used FLNs as internal
models and was applied to control the etractive
alcohdic fermentation process By solving a
constrained MIMO optimization problem over a
future time horizon, this highly non-linear system
could be successully controlled. The performance
of the proposed controll e was evaluated for servo

and regulatory problems, and in both cases it
showed satisfactory results.

RESUMO

Neste trabalho um controlador preditivo réo linear
multivariavel foi desenvalvido para um processo
de fermentacdo alcodlica extrativa. O modelo
interno do controlador foi representado por duas
redes do tipo Functional Link (FLN), identificadas
usando dados de simulag&o gerados a partir de um
modelo validado experimentalmente. A estrutura
FLN apresenta como vantagem o treinamento
rdpido e convergéncia garantida, ja que a
estimacdo dos seus pesos € um problema de
otimizacdo linear. Além dis, a diminacdo de
pesos nao significativos gera  modelos
parsimoniosos, 0 que permite a rapida exeaugdo
em algoritmos de controle preditivo baseado em
modelo. Os resultados maostram que o algoritmo
proposto tem grande potencial para identificagéo e
controle de processos néo li neares.
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