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ABSTRACT

Gaseous ethanol may be recovered from the effigastmixture of the sugar cane fermentation procsssg a
staged absorption column. In the present work, degelopment of a nonlinear controller, based onearal
network inverse model (ANN controller), was progbaad tested to manipulate the absorbent flow raterder to
control the residual ethanol concentration in tHféuent gas phase. Simulation studies were cardied in which a
noise was applied to the ethanol concentration aligjfrom the rigorous model. The ANN controllerpmrformed
the dynamic matrix control (DMC) when step disturbas were imposed to the gas mixture compositiGecarity
device, based on a conventional feedback algoritdumal, a digital filter were added to the proposerhtggy to
improve the system robustness when unforeseen toer@nd environmental conditions occured. The ltesu
demonstrated that ANN controller was a robust agléhble tool to control the absorption column.

Key words: Absorption column, Artificial neural network, Féferward control

INTRODUCTION fossil fuels; it reduces greenhouse gas emissions
and comes from a renewable resource.

Gas-liquid absorption columns are largelyThe amount of alcohol evaporated from the

employed in chemical industry separation units. Idfermentation  processes depend on the
the bioethanol production, a column is used teoncentration and temperature of the fermentation
recover the evaporated alcohol from the sugderoth, and also on the especific features of

fermentation process, increasing the overallermentation tanks. In order to recover this waste
process productivity and improving the plantalcohol, the vapor containing mostly ethanol and

safety. carbon dioxide is collected at the top of the tanks
The principal fuel used in Brazil as a petroleunand fed to an absorption column (Sherwood,

substitute for road transportation vehicles isl975). Absorption process nonlinearities and

bioethanol. As bioethanol has a number ofnvironment variations are such that a fixed

advantages over the conventional fuels, its demarfirameter conventional feedback controller cannot
is increasing. Some of these advantages aragequately achieve satisfactory performance (Palu
bioethanol is biodegradable and far less toxic thaét al, 2004).

" Author for correspondenceduardoeyng@hotmail.com
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Several linear control applications for absorptiometwork models were then compared with the
columns are found in the literature. Palli et afesults obtained from the simulation calculations.
(2004) studied the application of a linear dynamid’he results showed that relatively simple neural
matrix control (DMC) to a staged absorptionnetwork models can be used to model the column
column. In the studied system, bioethanol isteady state behavior.

separated from carbon dioxide in a nine stag®leleiro et al (2005) used neural networks for the
column. The residual alcohol concentration in theontrol of the fermentation step of an alcohol
waste gas is the controlled variable. The DMroduction process. The internal model of the non-
outperformed the PI conventional controller. linear predictive controller was represented by two
Najim and Ruiz (1995) presented first principles~unctional Link Networks (FLN). This structure
modeling and a long-range predictive control of apresented the advantages of fast training and
absorption packed column. This equipment waguaranteed convergence. The performance of the
used to decrease the concentration of &Ga gas proposed controller was evaluated for servo and
mixture below a desired value. A solution ofregulatory problems, and in both cases, it showed
diethanolamine (DEA) was used as the absorbergatisfactory results.

The flow rate of the absorbent and theAn off-line smoothing algorithm in the monitoring
concentration of C@Qwere selected, respectively, system for the partial hydrolysis of cheese whey
as manipulated and controlled variables. Arproteins using enzymes, which used penalized
extended horizon control policy, based on théeast squares, was implemented by Pinto et al
minimization of a quadratic criterion function of (2005). Different algorithms for on-line signals
the input and output tracking errors, was used fdiltering were compared: artificial neural networks
the feedback control. The simulation studiesnoving average and smoothing algorithm. The
highlighted the applicability of this adaptive filters based on neural networks were implemented
control algorithm to packed columns. in the on-line pH control system, promoting a
Nunes et al (2003) developed a rigorous methosimoother control action and did not affect the
for analyzing the stability of unconstrainedinference system.

multivariable  predictive  controllers, using In order to set a satisfactory real time contral fo
polynomial operators and coprime matrixthe ethanol concentration in a staged absorption
factorizations. The technique permits derivingcolumn, neural modeling was employed in the
explicit expressions for the closed-loop transfepresent work. The main contribution was the
functions that describe the relevant systendevelopment of a nonlinear controller, based on a
dynamics. Therefore, the closed-loop poles can kaynamic inverse artificial neural network model,
determined by finding the roots of two and its application to a staged absorption column
characteristic  polynomial equations, henceaised in the bioethanol production process.
allowing the complete characterizations of theSimulation studies were performed, in which noise
asymptotic stability of the system. The controllersvas introduced to ethanol concentration signals
require the specification of a large number ofrom a rigorous model. A security device, based
tuning parameters, including prediction andon a conventional feedback algorithm, was added
control horizons for every input and output signato the proposed strategy in order to achieve a
as well as the elements of input and outputobust controller when unforeseen operating and
weighing matrices. The proposed stability analysignvironmental conditions occur.

tools lend significant support to the tuning task

because the sets of parameters that produce

unstable poles can be identified and rejected/ATERIAL AND METHODS

Through a simulator, this technique was

successfully applied to control a multistage gasProcess description

liquid absorption column. The gas mixture (CO+ ethanol) from the sugar
Modeling of an absorption column performancecane fermentation tanks is fed to the bottom and
using feedforward neural network was presentethe absorbent liquid to the top of the column. The
by Roj and Wilk (2004). The input and output datdwo streams flow countercurrently. A distillation
for training of the neural network were obtainedcolumn supplies the absorbent water stream
from a rigorous model of a sieve plate absorptiogontaining some alcohol (around 100 ppm).
column. The results obtained from the neuralhe absorption column is composed of nine
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stages, and operates at 40 °C and 1 atm. Tlegquation Y = 1.0682 X, based on the Van Laar
column processes 61.9 mol/s of the gas mixture iequation for vapor pressure data of isothermal
order to reduce the alcohol concentration fronsystems (Sherwood, 1975). This is the equilibrium
approximately 10000 ppm to 200 ppm. The formeequation used, in which X is the alcohol molar
concentration depends on the fermentation brotfiaction in the liquid phase and Y is the alcohol
conditions and also on specific features of thenolar fraction in the gas phase.
fermentation tanks. As it varies, it is a disturt@n «  The following assumptions were considered:
to the absorption process and the absorbent flow Just one component is transferred between
rate must be manipulated to keep the expected phases;
ethanol recovery. + Isothermal absorption;

. Ideal stages;
The mass transfer does not modify gas and
liquid flow rates;
Constant pressure;

Absorption column dynamic modeling .
For the simulation studies, a mathematical model
was obtained from the global mass balances fqr
each stage, equilibrium equations and the Francis Nedligible aas hold-u
equation for hydrodynamic calculation. For theTh g9 i 9a | dp. the ab i |

operating conditions previously described, the € parameters involved In the absorption column

ethanol solubility in water was calculated by themOdeI are listed in Table 1.

Table 1 - Absorption column parameters.

Parameter Value

T = Temperature 40°C

P = Pressure 1 atm

A, = Plate area 210 cnf

h, = Weir height 8 cm

Lw = Weir length 8.3cm

N = Number of ideal stages 9

G = Gas flow rate 61.9 mol/s
Lo = Initial absorbent flow rate 98.25 mol/s
X, = Ethanol concentration in the inlet absorbent [(T0]0)]

The dynamic model, used on the computationalhe hold up at each stage is given by the Francis

simulations is described here. Equation:
The Equation 1 represents the global mass balance 23
at the n stage: L

M, =Ap, *L+C( : j 4)
dMn loﬂ I_W

dt = I-n—l - I‘n (1)

Where:
Where: pn = Average specific molar mass of the mixture
M = Liquid molar mass at each stage. (mols/crr)
L = Absorbent flow rate at each stage. ¢ = Constant (ciH*s*?)

The output liquid flow for each stage is obtained
Global mass balance at n stage, for the absorbﬁ%m the Equation 5.
component.
dM.X,) ¥

M
%ZLn—lxn—l_Lnxn +G(Yn+l_Yn) (2) Ln :anW 1 0 —hv (5)
cl A0,

The Equation 3 is employed to calculate the
average specific molar mass for a binary mixture.

Prsdia = PaXa T Pg (1_ XA) (3)
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Neural network F = B. SSE +a. SSW (7
Theory . . ,
Artificial  neural networks (ANNs) are N which B and a are fitted parameters (Demuth

mathematical models composed of severdind Baele, 2002). o
neurons, arranged in different layers (input, hidde”According to Hagan and Foresse (1997), using this

and output), interconnected by a complex networi@biective function coupled with the Levenberg-
According to Equation (6), the neuron isMarquardt algorithm will cause the network to

responsible for the summation of all signals fron{!2ve smaller weights and this will force the
previous layer neurony, (amplified or weakened netwprk response to be smoother and less Ilkel.y to
by weight valuesy) and a value called biab. overfit. Another important feature of this

A transfer functionf - such as hyperbolic tangent, &/90rithm is that it provides a measure of how
sigmoid or linear function — is used for theMany network parameters (weights and biases) are

activation of the neuron outpu, being_ effectively used by the_ network. This
effective number of parameters is callg@nd is

D ( ) 6) different from the total number of parameters in

Y =1 Z_l WY )+ b the networkN. The best number of neurons of the
2 hidden layer could be found when the effective
The multi-layer feedforward network, which is thenumber of parameters remains the same no matter
most suitable topology for empirical modeling andthe increase in the number of hidden neurons.
engineering applications, was used in this work.
Normalization of the data set

Training the ANN Neural network training is more efficient when a
The training procedure requires a set of th@reprocessing normalization is carried out for
process inputs and outputs. During the trainingnput and target output variables. Then, before
process, the weights and biases are iterativelyetwork training, the data set was normalized in
adjusted to minimize an objective function. Thethe range [-1,1], as follows:
conventional training algorithm — backpropagation
- moves the network parameters towards thg = ZM— 1 (8)
direction of the negative gradient (Demuth and " (x
Baele, 2002). The Levenberg-Marquardt
optimization is a very useful alternative method ofn Wwhich x, is the normalized value for the
training. However, both the methods could lead tyariable, andxyi, and Xmax are the minimum and
data overfitting, if carelessly implemented. maximum of each variablex"
One of the most important methods for improving
the generalization and to avoid overfitting is edll Absorption column control
regularization. This involves modifying the The main goal of the control system was to reduce
objective function, which usually computes 0n|ythe ethanol concentration in the effluent gas phase
the sum of the squared errors (SSE) of the training 200 ppm (set point) by manipulating the
set. In the regularization method, a term thafibsorbent flow rate. Sample time was set to three
consists of the mean of the sum of the square¥econds - approximately 15% of the time constant

weights (SSW) is added to the SSE calculation iRf the process. Figure 1 shows the proposed
the objective function (Equation 7) control scheme for the absorption column.

max Xmin )
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Figure 1 - Absorption column control scheme

ANN controller window of the main input variable measurements
The proposed strategy, based on an inverse neu(aT-101 and AT-102) is employed to calculate the
network model, was successfully employed byuture control action. Table 2 shows the variables
Fileti et al. (2006) to control an industrial involved.
steelmaking process. The controller design may b®perating data were obtained through a
split into two distinct steps: computational program based on the rigorous
« Neural modeling and network training: mathematical model previously described (see
Definition of the input/output variables. A data2.1.1) Step disturbances on the gas mixture
set is presented to the network that extracts theomposition (between -10% and +10% of the
process information required to create a blackeriginal ethanol concentration) were imposed.
box model of the operational environment. ThisBoth, open and closed loop simulations were
knowledge is stored into the networkcarried out. Dynamic matrix control was the
parameters (weights and biases). This first stegirategy used in the closed loop simulations to
should be repeated every time the data set ghange the absorbent flow rate and capture the
updated; process dynamics. The training and validation sets
« Control action determination: The trainedcontained 800 and 500 input/output relations,

neural network receives current values of théespectively.
input variables and computes the controPifferent network architectures were tested, in

action to be implemented. which the number of hidden layers and their
neurons were modified. Performance indexes as
Neural modeling and data set the Sum of Square Error (SSE), Average Square

The nonlinear control strategy (AIC-102) is basederror (ASE) and the Hagan and Foresse criterion
on a dynamic ANN composed of five input (199_7) were employed in the search for the best
variables and one output variable. A movingarchitecture.
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Table 2 -Input and output variables used for neural modelin
Input Output
Current absorbent flow ratedy)
Current ethanol concentration in the effluent gaase
(Yalo)
Past ethanol concentration in the effluent gasefa 1)

Desired ethanol concentration in the effluent daese,
one-step-ahead{sdx+1)
Current ethanol concentration in the gas mixtigg(x)

One-step-ahead absorbent flow ratgh(:)

Feedback action represents the last sample time beflrahat is
The success of the proposed nonlinear contraised in the sum. The filtered variable value was
strategy depends on the neural network efficiencyabtained by Equation (9).

As mentioned before, during the training

procedure, the neural network captures the proceg(slopmered =a, Y|, +a,Y| et Aypn Y, )
dynamics in the operating range employed.
However, if the ANN must work on a different in which:
operating condition, the error probability

increases. Y eierea - Filtered variable. _
Sometimes, the environmental and process Y = Variable supposed to be filtered.
conditions may reach values unexpected by the NA+L

a; = Filter parameter,» a; =1

network. Therefore, a security device based on a
i=1

feedback control was coupled to the ANN control
strategy. If this controller performance decreased
to a critical limit, the device was activated (AY-

101). This critical limit was arbitrarily definedsa RESULTS AND DISCUSSION
5% of the absolute error. In case of error

measurement above the critical limit, a PIDASSessment of the neural network

controller (AIC-101) droved the absorbent flowMany arrangements were tested to find an ANN
rate manipulation. architecture t_hat pr_owded a _satlsfactory
To test this arrangement, disturbances on theerformance without high computational effort.
absorbent ethanol concentration were imposed tb2Pe 3 and 4 showed the SSE and ASE parameter

the process. This kind of disturbance was not takefp!ués for both data sets used (training and
into account for the network training purpose. Vﬁ“dat'%n) when the ANN architecture was
changed.

Noisy signal and filter implementation It was observed that when using more than five

In order to approximate simulation to real world,"eurons in the hidden layer and more than one

noisy signals were added to the measurements pdden layer, there were no significant changes on
ethanol concentrationsY{ and Ya.1). This noise the SSE and ASE values. Therefore, architectures
was the product of a random number between With more than one hidden layer should be

and 1 and a sine function with high frequency an@gliminated, because it would cause just an increase

controlled amplitude. The noise was applied onlP" computational effort.

to the tests of the control system performance arfcHrthermore, according to the Hagan and Foresse
not during the network training. criterion (1997), the best number of neurons in the

After analyzing the control system behavior withhidden layer is reached Whe_n the effective number
noisy input data, another test was done: the inplfn’tf network parameters remains the same, no
data was filtered. The filter used was composed dpatter the increase in the number of neurons. This

a weighed sum of the input variable at differen€riterion pointed out the architecture of 5-9-1 as
sample times. Current time besides the previous the Pest network and was the adopted topology.

sample timesk-1, k-2,..., k-NA were usedNA
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Architecture

Training set

SSE (mof/s) ASE
5-4-1 12.080 * 10 1.4748 * 10°
5-5-1 23.570 * 10/ 2.8785 * 10°
5-6-1 9.8429 * 10 1.2018 * 10°
5-7-1 9.9674 * 10/ 1.2170 * 10°
5-8-1 9.9988 * 10/ 1.2208 * 10°
5-9-1 9.9907 * 10/ 1.2199 * 10°
5-10-1 9,9913 * 10/ 1.2199 * 10°
5-11-1 9.9493 * 10/ 1.2148 * 10°
5-12-1 9.9971 * 10/ 1.2206 * 10°
5-13-1 9.9984 * 10/ 1.2208 * 10°
5-14-1 9.9973 * 10/ 1.2207 * 10°
5-15-1 9.9985 * 10/ 1.2192 * 10°
5-5-5-1 9.9898 * 10/ 1.2197 * 10°
5-6-6-1 9.9942 * 10/ 1.2203 * 10°
" (moP/[s] . [input-output data number] . [neuron numbettia output layer])
Table 4 - SSE and ASE values for different ANN architectuyiéalidation set)
Architecture Validation set -
SSE (mof/s) ASE
5-4-1 2.0437 4.1879 * T0
5-5-1 2.0489 4.1985 * 19
5-6-1 2.0515 4.2038 * 19
5-7-1 2.0650 4.2315* 19
5-8-1 2.1112 4.3262 * 19
5-9-1 2.0425 4.1854 * 19
5-10-1 2.0850 4.2725 * 19
5-11-1 2.1511 4.4079 * 18
5-12-1 2.0380 4.1762 * 18
5-13-1 2.0632 4.2278 * 18
5-14-1 2.0862 4.2750 * 18
5-15-1 2,1559 4.4178 * 18
5-5-5-1 2.0544 4.2098 * 19
5-6-6-1 2.1215 4.3473 * 19

" (moP/[s? . [input-output data number] . [neuron numbettia output layer])

Performance of the ANN controller versus small values. The controllers used similar amounts
DMC of the absorbent to carry out the task.

Table 5 compares the performance of the ANNrigures 2a and 2b showed the behavior of the
controller and the DMC strategy (Pall, 2004). Stepontrolled variable, Y;, and the manipulated
disturbances were imposed to the gas mixtureariable,Lo, when a step disturbance of 8.6% was
composition,Yy.:. imposed to the ethanol concentration in the feed
The ANN controller provided smaller ISE mixture,Yy..

(integral of square error) values, which mean thalccording to Figure 2a, the ANN controller
the controlled variable remained closer to the satutperformed the DMC strategy because the
point than that obtained under the DMC strategycontrolled variable behavior presented smaller
The parameter ISE was expressed in squamershoot and the response time decreased from
concentration (ppf and consequently presented125 to 90 seconds.
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Table 5 -Performance comparison between ANN control and Di&tegy

YN+1 Disturbance (%) ISE (ppm2) Amount of absorbent Control technique
(mol)
1.6380 * 10°° 29474.40 Open loop
-8.3 3.3900 * 10" 29133.16 DMC
1.6600 * 10 29125.54 ANN
7.1953 * 1¢°° 29474.40 Open loop
5.5 1.700 * 10" 29251.39 DMC
6.8700 * 10" 29246.36 ANN
1.0448 * 10°° 29474.40 Open loop
+2.1 2.1000 * 10" 29556.37 DMC
8.8500 * 10" 29558.17 ANN
1.7561 * 1¢°® 29474.40 Open loop
+8.6 3.4000 * 10" 29800.94 DMC
1.5000 * 10" 29808.09 ANN
204
2034
2024
. 201 ,,;"l
£ AN
= 200 N ==
199
198
197 T T T T T T T
25 50 75 100 125 150 175 200
Time (s)
———-YL(ANN) -+~ Y1 (DMC) Set point
@)
101
100
| T
98 4
974
96
25 50 75 100 125 150 175 200
Time (s)
[--—-LO(ANN) - L0 (DMC)
(b)

Figure 2 - Performance comparison between ANN controller @QRtC: (a) controlled variable
and (b) manipulated variable.
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Security device (feedback action) training purpose, the ANN control performance
Figure 3 showed the controlled variable behaviodecreased below the critical limit. As expected, th
when the system was submitted to a stepecurity device (PID controller) was activated. An
disturbance of 30% in the ethanol concentration obff-set was observed when this device was not
the liquid absorbent X;). As this kind of present. The PID controller was tuned for this
disturbance was not taken into account for networkpecific situation and eliminated the off-set.

225

215+

(ppm)

205 .:'\.

e N L e e et

195

0 50 100 150 200 250 300 350 400

Set point
—--—- Y1 (ANN control with security device
------- Y1 (ANN control without security devicg)

Figure 3 - Performance comparison between ANN controller it without the security device
(PID: Kc=22000 ppm.s/mol;=10400 s7p,=60 s ).

Noisy data, filter implementation and the ANN Figure 5 showed the process response when the
controller performance ANN controller was fed with noisy data: noisy
Figure 4a and 4b show the noisy signal of the gasignals between +1 ppm and -1 ppm were added to
phase ethanol concentrationY;|,, and the the ethanol concentrations of the gas phask, (

respective filtered variableY| . __ . Without the Yils @nd Yy.al). Furthermore, a step disturbance
it i the inout ere bi . dof 10% was imposed tdry.; at initial time.
ter — action, € [nput -variable presentede g system without filtering were compared to
oscillation band amplitude of 3 ppm, excep

initiall h ten disturb t 109 ‘the control system in which the input variables
Inftially - when -a step disturbance of L% WaSyqre filtered before their presentation to the ANN
imposed toYy:;. The amplitude of this input

. ._._control.
;/_Ie:nable decrl(_eadsed to 0.5 ppm, when the d'g't‘ﬂ] spite of that the ANN controller did not get the
iter was applied. _ _ controlled variable stabilization in the first case
The ai and NA (Equation 10) were determined (yithot filter), its oscillation band was reducted
through a trial-and-error procedure. Observing th

: S alf of the noisy signal employed: 2 ppm to 1 ppm.
controlled variable overshoot and oscillation band,,:Or the second case, the ANN controller

the best results were obtained when 15 sampi§srtormance was even better because the filter
times beforek were used NA=15). The a  gecreased the oscillation by 75%.

(i=1,2...,NA) values employed weren = 0.20,a2  The security device was not required and the ANN
= 0.10,a3 = 0.05,a4 = 0.05,a5 = 0.05,a5 = 0.05,  controller was considered robust to deal with this
a; = 0.05,a05 = 0.05,a9 = 0.05, 1= 0.05,011. =  kind of data distortion.

0.05, a = 0.05,0'13 = 0.05,0'14 = 0.05,0'15 = 0.05

andays = 0.05.
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Figure 4 - ANN input variable)Y;| (a) distorted by the noisy signal and (b) filtered
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Figure 5 - Controlled variable behavior when filter are enygld or not.
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CONCLUSIONS In addition, the ANN controller worked properly
when the ANN input variables were distorted by a

The main contribution of this work is the noisy signal. The security device implemented

development and the application of a nonlineaturned the control system more robust when

controller, based on an inverse neural networknexpected environmental and  operating

model, to an absorption column. This columnconditions occurred.

recovered the bioethanol evaporated from a

fermentation process. The nonlinear behavior of

the process challenged the control system desighCKNOWLEDGMENTS

and suggested that conventional techniques did not

work properly. The ANN controller developed The authors would like to thank FAPESP for the

provided a satisfactory control, in spite of thefinancial support (Process number 05/02536-9).

system characteristics.

Many ANN architectures were tested. According

to the Hagan and Foresse criterion (1997), a 5-9-RESUMO

network was chosen and the parameters sum of

square error and average square error confirmddeseja-se recuperar o0 etanol perdido por

the choice. Therefore, this was the architecturevaporacéo durante o processo de fermentacdo da

employed in the ANN controller. cana-de-acUcar. Para tanto, faz-se uso de uma

The proposed controller outperformed the DMGCcoluna de absorcdo. O controle da concentracéo de

strategy (Palli, 2004) because the controlledtanol no efluente gasoso da coluna é realizado

variable behavior presented smaller overshoot angkla manipulacdo da vazao de solvente, sendo esta

the response time decreased from 125 to 9fleterminada pelo controlador n&do linear proposto,

seconds. Furthermore, the ANN controllerbaseado em um modelo inverso de redes neurais

superiority was also noted through the integral ofcontrolador ANN). Foram feitas simulacdes

the square error criterion that became smalleadicionando-se um sinal de ruido a medida de

under ANN control. concentracdo de etanol na fase gasosa. Quando

When disturbances not predicted on the trainingerturbacdes degrau foram inseridas na mistura

procedure were inserted, the ANN controlledgasosa afluente, o controlador ANN demonstrou

performance decreased below a critical limitdesempenho superior ao controle por matriz

Therefore a PID controller implementation as alindmica (DMC). Um dispositivo de seguranca,

security device was necessary. This arrangemebtiseado em um  controlador feedback

worked very successfully. convencional, e um filtro digital foram

The robustness of the ANN controller was alsomplementados a estratégia de controle proposta

tested for situations in which the gas concentratiopara agregar robustez no tratamento de distUrbios

variables were distorted by the noisy signal. Thecorridos no ambiente operacional. Os resultados

controlled variable oscillation amplitude wasdemonstraram que o controlador ANN é uma

reduced to half of the noisy amplitude applied tderramenta robusta e confiavel no controle de uma

ANN input variables. When a digital filter was coluna de absorcéo.

applied to these data, the results were even better

because the oscillation was reduced to almost 75%

of original noisy amplitude. REFERENCES
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