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ABSTRACT

The aim of this study was to assess the interaranghlseasonal changes in the community composalmmdance
and presence-absence of macroinvertebrates in tieamms of the northwestern of Argentina. The imgroe of
environmental variability in determining these chas was also analyzed. Macroinvertebrates weresctat in
eleven streams during high (March) and low (Septntvater periods during two years. Physical vateband
water parameters were also recorded at each siam@unity composition and abundance differed sicauitfily
between seasons, but the presence-absence dataotligéxhibit a clear pattern of seasonal change. iRap
recolonization of disturbed substrate could ensiine recuperation of benthic community. Small badgss short
life cycles and continous reproduction could bedngnt strategies that ensure the rapid resilieacel persistence
of macroinvertebrate assemblages in time.

Key words: Andean streams, disturbance, northwestern Amgansieasonal spates

INTRODUCTION predictable (Resh et al. 1988). Spates carry large
amounts of suspended particles. Large boulders,
Environmental variability in time and space isroot masses and sometimes entire shrubs and trees,
known to shape the distribution of organisms, theiin addition to high sediment loads, are carried
interactions and their adaptations (Wiens 1986ownstream with the initial pulse of water. This
Such spatiotemporal variability is a basictemporal variability has great influence in the
characteristic of running water systems (Minshalemergence, reproduction, growth and development
1988; Poff and Ward 1990). Flow fluctuations ancdf aquatic macroinvertebrates (Lytle 2001; 008)
extreme conditions such as floods are primargnd the seasonal replacement of the organisms
sources of variability and disturbance (Cowell e{Bogan and Lytle 2007).
al. 2004). High discharge events can cause sevet®me studies have been made on the main
population losses and changes in the communitypfluence of seasonal variation in terms of change
composition and structure (Hart and Finelli 1999species abundance rather than complete species
Lytle et al. 2008). replacement (Thompson and Townsend 1999;
Streams in monsoonal environments are subject 8rooks 2000). Many invertebrate taxa are
extreme seasonal variation in flow (Jacobsen angersistent; however, in that species composition
Encalada 1998; Brewin et al. 2000). Floods andnd relative abundance remain much the same in
spates in these areas are qualified as disturbandbs long term (Boulton et al. 1992) and resiliémt,
due to their large magnitude  andthat the original configuration is quickly re-
geomorphological effect, but they are highlyestablished after disturbance (Holomuzki and
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Biggs 2000). These important strategies alsdischarge are in January, with values of 226 mm
constitute two important sources of temporalnd 20 r¥s, respectively. The dry period extends
variation of community structure in the subtropicalfrom April to October (autumn/winter season),
streams. with minimum average values of rainfall (11.8
The aim of this work was to study the interannuainm) and discharge (4.64°s) in August (data
and seasonal change of community compositiorecorded by Obispo Colombres, meteorological
and structure of macroinvertebrates in the streanstation of Tucuman province, period 1961-1990).
of the northwestern of Argentina, and the
importance of environmental variability in Benthic sampling
determining these changes. The followingThe study area comprised fifth to seven order
hypothese were tested: (1) variability in benthistreams. Eleven sites were sampled low
assemblage composition, abundance and presen¢8eptember 2005/2006) and high (March
absence of macroinvertebrates is higher betweg®06/2007) water seasons (Fig. 1). The altitude of
seasons than among the years related with tlie sites ranged from 650 to 1300 m.a.s.|. The
same hydrological period, (2) temporal variation irriparian area of these sites was greatly impacyed b
benthic assemblage composition is determinateavergrazing of cattle and goats. Fragments of
by the changes in flow and physicochemicakxotic vegetation interdispersed in the pastura are
variables. The first hypothesis was related with thoccurred in this zone (Mesa 2010).
effect of seasonal environmental variation teste@hree Surber samples (area 0.09 mesh size 300
on attributes of macroinvertebrate community oum) were taken from riffle habitats. Benthic
Lules river basin (Mesa et al. 2010). sampling of sites 2, 4, and 5 in March 2006 and of

site 3 in March 2007 could not be carried out

because of high water levels. Samples were
MATERIALSAND METHODS preserved in the field in 4% formalin, sorted and

identified in the laboratory. Identifications were
This study was conducted in Lules River basin, éade to the lowest taxonomic level possible. On
seventh-order mountain catchment located ithe same date of benthic sampling, flow (mean
Tucuman province in the northwestern ofdepth, discharge, mean velocity) and
Argentina. This region is characterized by thephysicochemical (conductivity, pH, water
monsoon, a rainy season that lasts from Novembé&mperature) variables were recorded at the
to April, during which 80-90% of annual rainfall studied sites.
occurs. The maximum average precipitation and
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Figure 1 - Map of Lules River basin showing the sampled sites.
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Statistical analyses abundance and presence/absence data were
Macroinvertebrate data were initially summarisedneasured by Bray-Curtis distance (BC, Bray and
using non-metric multidimensional  scaling Curtis 1957). Changes in benthic structure were
(NMDS) carried out in PC-ORD (McCune andassessed for each pairing of years related with the
Mefford, 1999). Sorensen distance was used teame (Sep05-Sep06; March06-March07) and
calculate the community dissimilarity between thedifferent  (Sep05-March06;  Sep06-March07)
samples. Log (x+1) transformed abundance dateasons at each site. In addition, the community
relative to the three replicates samples were use@riability between March06-Sep06 and Sep05-
for this analysis. Rare taxa (abundance 0.1%) weldarchO7 was also determined in order to evaluate
discarded to reduce the noise (sensu Gauch 198#)e seasonal variation within the same year and the
Pearson correlation was used to explore thng-term change respectively. Resulting values
relationship between the invertebrate compositiomwere compared by one-way analysis of variance
and ordination scores, using a cut-off of 0.50 t§ANOVA) using the sites as replicates.

eliminate weakly correlated taxa. In addition,

correlation coefficients between each

environmental variable and axis were determineRESULTS

in order to detect those significantly related with

the variation expressed for this axis in theThe NMDS ordination yielded a final stress of
ordination. 12.5 (P<0.0004) with axis one explaining 50% and
Following the methods described by Scarbroolkaxis two 20% of the variation in the data (Fig. 2).
(2002) and Collier (2008), the changes in percent
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Figure 2 - Non-metric multidimensional scaling plot based bnradance of the three replicates of
benthic macroinvertebrates collected at high (Ma®06/07, open cycles and
triangles) and low (September 2005/06, filled tgias and cycles) water season.

The list of common taxa used in this ordination ionductivity and pH @0.32, P<0.01, Table 2)
shown in Table 1. The first axis corresponded to and negatively correlated with the mean depth,
seasonal gradient: there was a clear distinctiomean velocity and discharge®¢0.35, P<0.01,
between the high and low water samples along thiBable 2).
axis. The second axis represented a weaké&hanges in percent abundance data were strongly

gradient in the

invertebrate

assemblagsignificantly higher between years related with

composition, and could illustrate the communitydifferent seasons (including Mar06-Sep06) (BC=
variable no0.70+ 0.13, meanzSD) than between the years
measured in this study. Taxa such Manomis within the same period (BC= 0.40+0.12) (P<0.001,

response

galera (Lugo-Ortiz
Metrichia  spp.,

to an environmental

Austrelmis spp.

(larvae),

and McCafferty 1999), Table 3, Fig. 3a). The variability in the presence-
absence data was significantly lower than the

Othocladiinae, Chironominae, Tanypodinae an@bundance (BC=0.32+0.07,;£99.1, P<0.001,
Oligochaeta were significantly associated withFig. 3b). In only two occasions, seasonal changes

samples relative to low water level?40.50,

in the presence/absence data were significantly

P<0.001). In addition, axis 1 of the ordination wasigher than interannual variation (Table 3).
significantly  positively associated with

the
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Table 1 - Mean annual densities (indof common macroinvertebrate taxa (relative abnod20.1%) in the four
sampled dates. 9/05=September 2005; 3/06= March; BB06=September 2006; 3/07=March 2007.

Order Family Taxa 9/05 3/06 9/06 3/07
Plecoptera Perlidae Anacroneuriasp. 11.9 8.7 2.9 1.2
Ephemeroptera  Baetidae Americabaetis alphus 25.4 3.9 21.4 2.5

Baetodes huaico 215 87.9 66 21.5
Baetodes spp. 5.9 0.8 11.3 0.6
Camelobaetidius penai 18.9 36 25.3 1.9
Nanomis galera 28.1 0.9 8.8 2.8
Caenidae Caenis ludicra 25.5 0.5 2.8 2.6
Leptohyphidae Leptohyphes eximius 33.6 15.6 14 3.4
Tricorythodes popayanicus  19.1 5 2.3 1.9
Leptophlebiidae Thraulodesspp. 22.4 12.1 6 2.2
Coleoptera Elmidae Austrelmisspp. (larvae) 235.7 6.8 70.4 23.6
Austrelmisspp. (adult) 7.8 13.9 1.2 0.8
Macrelmisspp. (larvae) 14.8 25 1.8 15
Macrelmisspp. (adult) 0.4 0.5 0.2 0
Neoelmisspp. (adult) 3.9 2.2 0.7 0.4
Psephenidae Psephenusp. 10.1 4.6 2.8 1
Staphylinidae (larvae) 13 4.2 2.1 1.3
Staphylinidae (adult) 10.3 2.3 1.7 1
Prostigmata Hygrobatidae Dodecabates dodecaporus 3.9 0 4.6 0.4
Atractidessp. 4.5 0.2 1.2 0.5
Torrenticolidae Torrenticola columbiana 19.4 6.7 4.8 1.9
Trichoptera Hydroptilidae Metrichia spp. 47 1.9 12.3 4.7
Mortoniella spp. 10.3 0.2 12.8 1
Hydropsychidae Smicrideaspp. 29.8 24.4 19.7 3
Helicopsychesp. 8.4 1.7 3.3 0.8
Diptera Chironomidae Orthocladiinae 902.8 39 360.390.3
Tanypodinae 95.1 3.7 9 9.5
Chironominae 409.1 6.9 88.5 40.9
Simuliidae Simuliumsp. 177.7 20.2 35.4 17.8
Ceratopogonidae 16.2 1.2 2.4 1.6
Empididae 6.2 0.3 3.5 0.6
Psychodidae 23.6 0 13 2.4
Tipulidae 24.9 2.7 4.6 25
Oligochaeta 1452.8 4.6 183.9 145.3
Odonata 0.4 5.6 0.7 0
Planariidae 2 1 0.2 0.2

Table 2 - Mean values and standard deviation (in parenthes$ighysical variables and water parameters medsure

in the four sampled dates. 9/05=September 2005=8/arch 2006, 9/06=September 2006; 3/07=March 2007.

Variables 09/05 03/06 09/06 03/07
Discharge (m3/s) 0.3 (0.34) 0.61 (0.54) 0.40 (0.47) 1.14 (1.4)
Mean depth (m) 0.12 (0.05) 0.19 (0.2) 0.17 (0.1) 240.09)
Mean water velocity (m/s) 0.27 (0.13) 0.43 (0.25) .13)0.19) 0.59 (0.39)
Water temperature (°C) 18.4 (1.7) 17.9 (3.1) 12.8)( 21.5(3.1)
Conductivity {1S/cm) 329.3 (279) 143 (109) 287 (232) 186.7 (161)
pH 8.2 (0.4) 6.4 (0.5) 6.7 (0.9) 6.3 (0.5)
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Table 3 - Results of ANOVA testing for differences in varilityiin abundance and presence-absence data regulti
to compare years related with the same seasonyeils that include a monsoon (interannual), andsyesdated
with the same period with years that included aesgaent (seasonal). Within year variability betwvekates that
include a monsoonal event was also included (M&6€p06).

Variability Abundance Presence/absence
Interannual  Sep 05/06 - Mar06/07 0.05 2.54
Mar06-Sep06 - Sep05-Mar07 1.21 1.41
Mar06/Sep06 - Sep05/Mar06 0.12 0.03
Mar06/Sep06 - Sep06/Mar07 1.12 4.33
Sep05/Mar06 - Sep06-Mar07 0.498 5.71
Sep06/Mar07 - Sep05-Mar07 0.05 0.59
Sep05/Mar06 - Sep05/Mar07 0.43 1.99
Seasonal Sep05/06 - Sep05/Mar06 26.8%** 8.04*
Sep05/06 - Sep06/Mar07 23.5%** 1.21
Sep05/06 - Mar06/Sep06 29.8*** 6.63*
Sep05/06 - Sep05/Mar07 40.3%** 2.44
Mar06/07 - Sep05/Mar06 17.8%* 2.31
Mar06/07 - Sep06/Mar07 15.3%** 0.84
Mar06/07 - Sep05/Mar07 29, 2%+ 0
Mar06/07 - Mar06/Sep06 19, 7% 1.61

*P<0.05; **P<0.001.
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Figure 3 - Values of Bray-Curtis distance for macroinvertebraiercent abundance (a) and
presence/absence data (b) for 11 sites. Filled sigmbinterannual variability
between years related with different seasons; Gpenbols= interannual change
between years associated with the same seasoriabl.p&Yithin year variability
between dates that comprise a monsoonal eventO@&&far06) was also included.

DISCUSSION and Encalada 1998; Brewin 2000; Bogan and

Lyttle 2007). In Lules River basin, seasonal
Temporal variability in  macroinvertebrate variability showed significant differences in the
assemblage composition and structure oenvironmental variables, influencing strongly the

macroinvertebrates are strongly influenced by theommunity parameters. _ o
monsoonal climate, as has been noted in othén contrast with the first hypothesis, variability
studies in different regions of the world (Jacobsegommunity composition and abundance was

Braz. Arch. Biol. Technol. v.55 n3: pp. 403-410,Wne 2012
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higher between seasons than between years relatedre distinct ‘wet season’ and ‘dry season’ taxa,
with the same period, but the presence-absence didhich were adapted to the flow-altered habitat of a
not exhibit a significant pattern of seasonaparticular season. The strong seasonality in this
change. In addition, according to the secondommunity parameter was in accordance with
hypothesis, changes in flow and physicochemicaksults of other regions of the world across a eang
conditions showed significant changes inof different climates (McElravy et al. 1989;Flecker
community composition. and Feifarek 1994; Lytle 2000; Cowell et al.
The significant association between the variability2004). Physical and chemical habitat changes,
in flow and changes in the communitywhich results from increasing or decreasing flow,
composition was in accordance with other studieare primarily responsible for many of the
(Poff and Ward 1989; Rempel et al. 1999; Bogamommunity variability in the lotic systems
and Lyttle 2007). During monsoonal spates, higlfThompson and Townsend 1999). Low flows in
shear forces suspend the sediments, move bottdhe studied streams were accompanied by
materials and kill or displace the stream biotashrinking habitats and increase of conductivity and
Consequently, significant decreases in theH, whereas high flow increased the hydraulic
abundance of benthic macroinvertebrates haverces on the stream bed, causing changes in the
been recorded after bed-moving floods (Brewin ecommunity structure (Hart and Finelli 1999). Both
al. 2000, Moya et al. 2003, Bogan and Lytle 2007pH and conductivity can be significant drivers of
Mesa et al. 2009, Mesa 2010). Mesa (2010) founthe  invertebrate  community = composition
that the macroinvertebrate abundance wa&Clenaghan et al. 1998; Woodward et al. 2002;
approximately three times higher during the preSanderson et al. 2005).

spate period compared with the post-spate samplBuiring low water period, groups such as Baetidae
in the studied basin. The main mechanisms behirghd Chironomidae, which are generally fast
the declines observed in the studied streams wegeowing (Jackson and Sweeney 1995) and quick
likely to be catastrophic substrate mobilization an colonizers (Mackay 1992) are able to become
continued inputs of the sediments from the erodingominant. These groups are especially well
banks during subsequent storms. Increased shestapted to the unstable environments (Jacobsen
stress from high flows removes the invertebrateand Encalada 1998). They possess behaviours that
into the water column and produces a catastrophallow them to resist flash floods and life history
drift of individuals. Assuming that only part ofe¢h adaptations that impart resilience. Life history
fauna survived following the spates, flowadaptations such as small adult body size, rapid
variability could be considered an importantdevelopment time, and nearly-continuous
source of mortality in these subtropical streams. reproduction, could ensures that aerial adults
In many lotic systems, the main influence ofremain present throughout the spate season and, as
seasonal variation is often expressed in terms @af consequence, stream reaches may be recolonized
changed taxa abundance rather than completeom the local sources rather than from other
species replacement (Miller and Golladay 1996stream reaches of the drainages. The individuals of
Boulton et al. 1992; Thompson and Townsend hironomidae and Elmidae also constituted a large
1999; Brooks 2000). This was in accordance witlproportion of the drift fauna in Lules River basin,
the results of this study where the abundancenabling the rapid recolonization of disturbed
varied seasonally while the presence-absence daabstrate following the spates (Molineri 2008).
were similar between hydrological periods.The preference oMetrichia spp. andAustrelmis
Resilience and persistence of macroinvertebratepp. (larvae) for conditions dominant in the low
are two important strategies that would enable thevater period was also exposed in a recent local
rapid recuperation of disturbed community in thestudy (Mesa et al. 2009). Mesa et al. (2009) found
studied basin (Mesa et al. 2009). Samples taken the dominance ofiustrelmisspp. (adult) during
mid-March could reflect a community in a state ofautumn season in the samples collected during
recovery from the disturbance, as the abundance ©999 in the studied basin, and this coincided with
most taxa was still low whereas the species hatthe result of this study with the samples taken in
already colonized the disturbed substrate (Mesaid March. During low water season, Elmid
2010). larvae concentrated in the diminished habitats and
The macroinvertebrate assemblages compositiqmerhaps burrow into the sediments (Manzo M. V.
changed qualitatively between the seasons: thepersonal communication). In addition, the
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