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ABSTRACT

Present study reports the validation (oxidation)}computationally predicted oxidation of xenobiat@ntaminants
by commercially available pure laccase from Trareetersicolor. Selected contaminants were prediasd
potential targets for laccase oxidation by usinesilico docking tool. The oxidation by laccase wasasured by
change in absorbance at specifianax of each compound. Sinapic acid and tyrosine waken as positive and
negative controls, respectively. Oxidation was ob=g in m-chlorophenol, 2,4 di-chlorophenol, 2,46
chlorophenol, captan, atrazine and thiodicarb, gtcmalathion, which showed no activity. It could dgeeculated
that the predicted substrates showing oxidationretiehomology at structural and chemical level withsitive
control compounds. In case of malathion, structurah-homology with sinapic acid could be attributedits
inactivity towards laccase that required furtherusttural analysis. Thus, a remediation tool propmsan advanced
remediation approach combining the application bédretical in-silico method and subsequent experimental
validation using pure laccase could be proposedné&sber and type of xenobiotics increase, the wwitbddy to
screen them experimentally for bioremediation alse. This approach would be useful to reduce ittne and cost
required in other screening methods.

Key words: biodegradation, In silico screening, laccase, kétcs

INTRODUCTION chemical or mechanical methods require huge
chemicals and energy input that enhance process
Industrial and agriculture practices results the&ost and burden on environment. Biodegradation,
release high level of xenobiotic compounds, suchiostimulation and biotransformation are cost
as polycyclic aromatic hydrocarbon (PAH),feasible environmental friendly strategies that
pentachlorophenol (PCP), polychlorinatedhave wide application in xenobiotics remediation
biphenyls (PCB), DDT, pesticides, benzene(Rao etal. 2010).
toluene, ethylbenzene, xylene and TNT in thd.accase a blue copper oxidoreductase

environment (Riva 2006). These are highly toxidEC:1.10.3.2] is widely used enzyme in
and persistent in nature, many of them exerpioremediation of xenobiotics (Jurado et al. 2011).

mutagenic and carcinogenic effects on livinglaccases have ability to oxidize both phenolic and
systems (Samanta 2002; Alcalde et al. 2006)0n-phenolic lignin related compounds and highly
Hence, in view of public health, it becomesrecalcitrant environmental pollutants, which make
necessary to put serious efforts in order to removéaem attractive and useful tool to serve in
them from the environment. Available physico-biotechnological processes, detoxification of
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effluents from pulp and paper industry, textiieDegradation study has been performed for
industry and petrochemical industries (Pinheiro eselected compounds to find out whether they
al. 2004). Laccases have been used as tool fospond similarly towardfaccaseas in the lab.
medical diagnostics, as cleaning agents for watdrhe approach can be useful to develop better
purification, as catalysts for the manufacturing ofemediation strategy.

anti-cancer drug and even as ingredients in

cosmetics (Shraddha et al. 2011). Their broad

substrate specificity makes them able to removMATERIALS AND METHODS

xenobiotic substances (Couto et al. 2006). Since

laccases catalyze a wide range of enzymatigaterials

reactions, they have also gained considerablgll the chemicals (sinapic acid, L-tyrosine, D-
biotechnological importance (Duran and Espositeyrosine, m-chlorophenol, di-chlorophenol, tri-
2000; Leonowicz et al. 2001; Mayer and Stapleghlorophenol) and pesticides  (thiodicarb,
2002). They are used as carrier to remove th@alathion, atrazine, captan) were purchased from
plant cell wall inhibitors from sugarcane bagass&igma-Aldrich (St. Louis, MO, USA). Purified
hydrolysate to obtain desired ethanol yields vidaccase (source organisnilrametes versicoloi)
microbial reactions (Chandel et al. 2007). Awas purchased from Sigma-Aldrich containing 26
number of biosensors containing laccase have/mg. Laccase-pollutant docking was carried out
been developed for immunoassays, and faising GOLD vs.3.0 and docking procedure was
determination of glucose, aromatic amines an@erformed using both chemscore and goldscore
phenolic compounds (Kunamneni 2008). function. The predicted substrates were
White-rot fungi are main laccase producingexperimentally evaluated.

organisms in soil, which enable them to grow on

various toxic compounds and degrade thexidation of xenobiotic compounds by laccase
pollutants in the soil (Jurado et al. 2011). EnzgmeEnzyme assay of laccase was performed in cuvette
are preferred over the microorganism to work ag Brittson and Robinson (BR) buffer (pH 4.5).
remediating agent because they can work in hargizyme stock was prepared in 0.1M BR buffer
environment. Enzyme mediated degradation ofnd stored at 4°C. The 0.1mM BR buffer was
pesticides has two advantages; firstly, theprepared by mixing equal volumes of boric acid
degradation reaction proceeds under relatively0.1 M), orthophosphoric acid (0.1 M) and acetic
mild reaction condition and secondly, the reactiomcid (0.1M). pH was adjusted to 4.5 by using 1N
rate is faster than that by microorganisms (CoutflaOH solution (Xu 1996). Thiodicarb, malathion
et al. 2009). and atrazine were dissolved in 90% methanol. m-
The list of xenobiotics is huge and growing. It ischlorophenol, di-chlorophenol and tri-
not appropriate to experimentally screen them althlorophenol were dissolved in methanol (50%),
to find candidates for which bioremediation canwhile captan was dissolved in acetone (90 %) and
be carried out. Therefore, studies have beetyrosine in water with HCI (0.1 M). All the buffers
carried out to develom silico methods to know and solutions were prepared by using double
the possibility of degradation of a xenobioticdistilled deionized water. Final reaction mixture
compound by an enzyme likaccase Various contained substrate (0.1 mM), enzyme (0.5U) and
bioinformatics methods have been developed tBR buffer (pH 4.5) in 2.0 mL reaction volume.
determine the kinetic constant, redox potential of\fter the addition of enzyme, absorbance was
laccase mediated reactions, etc. Some haveeasured at 0, 15 and 30 min time interval on
provided both structural and experimentallyspectrophotometer (UV-1700 Pharmaspec,
determined potentials of laccase for substratSHIMADZU Japan) (Palmieri et al. 1997). The
degradation. These theoretical methods may h&bsorbance was measured Jatmax of each
useful in facilitating in silico prediction of compound (sinapic acid-315 nm, L-tyrosine-280
substrates for laccase (Librando et al. 2013hym, D-tyrosine-280 nm, captan-263 nm,
Xenobiotic compounds of present study havehiodicarb-235 nm, malathion-230 nm and
previously been predicted as substrates for laccaserazine-225 nm, m-chlorophenol-273 nm, di-
by docking (Suresh et al. 2008). The aim ofchlorophenol-28 4nm, tri-chlorophenol-285 nm).
present study was to validate the predictiorControl reactions for all the compounds were
strategy applied to screen xenobioticsperformed with inactive enzyme (boiled for 30
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min). Absorbance values represented the mean bigher will be the oxidation of compounds by
three independent experiments. Sinapic acid andccase. The score is based on the availability of
tyrosine were taken as positive and negativeome reaction promoting chemical features such
controls, respectively. All the experiments wereas H-bonding energy, van-der waals energy, metal
performed in dark to avoid photo-oxidation of theinteraction, ligand torsion strain in enzyme and
substrates. Significance was measured fatompound as well. The results dh silico
enzymatic activity by paired t test. prediction when compared with experimental
results showed a similarity. Predicted substrates
with high gold score were oxidized efficiently by

RESULTSAND DISCUSSION laccase in comparison to those with low gold
score. Although this was not applicable on all the
Oxidation of predicted substrates by laccase substrates as some xenobiotics were very resistant

Enzymatic activity of laccase with positive andmolecules. The applicability oh silico tool to
negative control (sinapic acid and tyrosinejnvent environmental remediation strategy could
respectively) and with experimental xenobioticbe a practical approach when combined with
compounds was examined by measuring thparallel pure enzyme based remediation. Figure 1
difference in absorbance (ali») at different time indicates the oxidation pattern of all the
intervals. In positive control sample, thecompounds. In case of m-chlorophenol, 2,4-
enzymatic activity of laccase with sinapic aciddichlorophenol and 2,4,6-trichlorophenol, higher
was observed as the decrease in absorbance witkidation by laccase were observed at 15 and 30
time, whereas in negative control samplemin time points as compared to O min value. In
(tyrosine), no enzymatic activity was observedcase of thidocarb, significantly higher (p<0.05)
Chlorophenol compounds (m-chlorophenol, 2,40xidation was observed at 15 and 30 min than O
dicholorophenol,  2,4,6-trichlorophenol)  andmin. For captan and atrazine, slight oxidation was
pesticides (thiodicarb, captan, and atrazine) werebserved at 15min that became significantly
oxidized by laccase. One pesticide (malathionhigher at 30 min time point. Control experiments
from predicted compound was not oxidized byfor each Xxenobiotic compound with heat
laccase. Docking score of predicted compoundactivated laccase were carried out and no
indicated the efficiency of their degradation byenzymatic activity was observed as indicated in
laccase. Theoretically, higher the gold scorefigure 2.
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Figure 1 - Oxidation activity of laccase enzyme on varioudpp®ed substrates.
N° 1 represents the positive control (sinapic adild)2 and 3 are negative controls (tyrosine
D and L, respectively). N4, 5, 6, 7, 8, 9 and 10 are representimghlorophenol, 2,4-
dicholorophenol, 2,4,6-tricholorophenol, thiodicarimalathion, captan and atrazine,
respectively. Decrease in absorbance indicatedebeeasing amount of substrate or higher
enzymatic activity. Significant changes are dendited, for p<0.001, *, for p<0.01 and #,
for p<0.05. Error bars (I) indicate mean + SD fr8rimdependent experiments.
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Figure 2- Oxidation activity of heat inactivated laccaseyene on various predicted substrates.
N° 1 represents the positive control (sinapic achj,2 and 3 are negative controls
(tyrosine D and L, respectively).°’M, 5, 6, 7, 8, 9 and 10 are representing m-chlwgnpl,
2,4-dicholorophenol, 2,4,6-tricholorophenol, thicatib, malathion, captan and atrazine,
respectively. Enzyme activity was not observed day substrate in all the samples as
indicated by insignificant differences in absorbmac different time intervals. Error bars (1)
indicate mean £ SD from 3 independent experiments.
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Biodegradation promoting structures in  done by various groups, but no obvious
xenobiotics relationship has been established between the
Some structural features of xenobiotic compound®nization potential and degradation percentage.
and their degradation by laccase have beeBimilar results were reported by other
investigated. Finding of these structuralinvestigators (Pickard et al. 1999; Cho et al.
specificities would be important to know the exac002). In anin vivo study, (Farnet et al. 2009)
mechanism of pesticide degradation by laccasshowed that six laccase isoforms transformed
Structural influence of xenobiotic on the extent ofanthracene  and  benzopyren. The PAH
their degradation by laccase was mentioned biransformation were linked to the ionization
Dominguez et al. (2007), particularly for PAH potential (IP) of PAH. It was concluded that
structures  (anthracene, benzo pyrene, pmolecules with an IP <7.55eV were degraded by
benzoquinone and phenanthrene), indicating thlaccase. The percentages of anthracene and
specificity of enzyme towards these substratesaenzopyrene transformation were higher when
Different laccases differ considerably in theirABTS was used as mediator. The presence of
catalytic preferences. Laccases can be groupeddox mediators such as ABTS is required for the
according to their preference for ortho-, meta- opxidation of complex substrates by laccase. Such
para substituted phenols. Ortho-substitutednediators have been proven efficient system for
compounds  (guaiacol, o-phenylenediaminethe degradation of recalcitrant compounds
caffeic acid, catechol, dihydroxyphenylalanine,(Piontek et al. 2002). Canas et al. (2010) disalisse
protocatechuic acid, gallic acid and pyrogallol)the application of lignin polymer related phenolic
were better substrates than para-substitutetbmpounds as mediator that promoted the
compounds (p-phenylenediamine, p-cresolfransformation of non-phenolic  recalcitrant
hydroquinone) and the lowest rates were obtaineaholecules by laccase. The study emphasized the
with meta-substituted compounds (m-use of lignocellulosic material to isolate natural,
phenylenediamine, orcinol, resorcinol andcheap, eco-friendly mediators for industrial uses
phloroglucinol) with crude laccase (Baldrian et alof laccase to remediate the wastes generated
2006). Prediction of substrate degradation byhrough industrial processes. In anothersilico
laccase, based on ionization potential has beestudy, the role of mediator molecule in the
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degradation of large dye molecule was predictedomputer simulations used to study laccase agreed
by docking, where the analysis of a dye moleculavell with corresponding experimental data,
with enzyme showed that enzyme active siténdicating a high degree of reliability. Delavati e
always could not accommodate dye molecule dual. (2013) performed docking to characterize the
to constructed nature of active site pocket anthccase binding pocket of different species in
steric hindrance of the residues. The mediatorgrder to establish their common pharmacophoric
however, were relatively small in size, hencecharacteristics. A common km value was also
could be accommodated into active site pocketationalised for a specific substrate oxidised by
which together led to the productive bindingdifferent laccases. The study was useful in order
(Prasad et al. 2012). An interesting study by Reis® understand the oxidation mechanism of laccase
et al. (2013) on the oxidation of 91 natural andor ABTS mediator.

non-natural industrially relevant compounds by 11

laccasses and LMCOs of bacterial, fungal andable 1 - GOLD average fitness score of known and
plant origin was carried out to classify a newlynewly predicted substrates for laccase.

identified bacterial multi copper enzyme as Name GOL D aver age fitness score
laccase. Even though the enzymes sharedinapic Acid 37.32
conserved active site residues, the substrate sangé-Tyrosine 19.07
of the individual laccase varied considerably. D-tyrosine 20.82
Such studies could lead designing of desiredm-Chlorophenol 30.25
laccase by enzyme engineering of available 3D2,4-Dichlorophenol 30.22
structures of laccases according to speciaR,4,6-Trichlorophenol 32.17
requirement like in industrial waste remediation, Captan 44.23
cosmetic industry, refineries, etc. The main Thiodicarky 59.01
advantage in the approach is the broad substratelalathion, 57.29
specificity of laccase, where enormous Atrazine 44.24

possibilities of innovation exist.

Among the predicted substrates, m-chlorophenol,

2,4-dichlorophenol and 2,4,6-tricholorophenolMicrobial degradation of pesticides

showed a higher degree of structural homologMicrobes have the ability to degrade the pesticides
with sinapic acid. Significant decrease in therom the environment. This specialty is
absorbance of these compounds at 15 min and 80ntributed by different types of enzymes present
min time intervals reflected their relatively faste in microbes. Laccase is one of them, which has
extinction and thereby indicating higherbroad substrate specificity, hence is able to
enzymatic activity. Thus, it could be speculatedlegrade wide range of pollutants (Kosehorreck et
that higher enzymatic activity was attributed toal. 2009). The simplest case to understand the
their structural homology to the known substratesnechanistic point of reaction catalysed by laccase,
such as sinapic acid. They all have aromatics the one in which the substrates are oxidized to
benzene ring and reactive phenol group. Howevecorresponding radicals by direct interaction with
contradictory results were also obtained in case d@he copper cluster. This reaction gives rise to the
thiodicarb and malathione. Despite of higher Goldadicals that can spontaneously rearrange, leading
score (table 1), malathion was not oxidized byo fission of C-C or C-O bonds of the alkyl side
laccase, whereas thiodicarb exhibited slowhains, or to cleavage of aromatic rings. The
oxidation. The reason of this anomaly, howeversubstrates of interest cannot be oxidized directly
lied in the very complex prediction parameterdy laccases, either because they are too large to
and stringencies of docking calculations (Sousa gtenetrate into the enzyme active site or because
al. 2006). The aromatic rings, hydroxyl groupsthey have a particularly high redox potential. By
and less ring substitution or chlorination are somenimicking nature, it is possible to overcome this
biodegradation promoting structures whosdimitation with the addition of so-called ‘chemical
presence in xenobiotic compound can lead to theinediators’, which are suitable compounds that act
biodegradation by laccase. Librando et al. (2013s intermediate substrates for the laccase, whose
have compiled an interesting review onsilico  oxidized radical forms are able to interact with th
methods and their application in bioremediation obulky or high redo potential substrate targets
pollutants. It was observed that the results ofkKunamneni et al. 2008). The potential of
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microbial laccase Gerrena unicoloy to oxidize the chemical input demanded in traditional
herbicide, simazine via oxidative couplingmethods.

reactions has been explored by Sannino et al.

(1999). Although Filazzola et al.(1999) showed

that simazine behaved as an inhibitor of laccas;ACKNOWLEDGMENT
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