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ABSTRACT 
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INTRODUCTION 
 

Graph theory is a fascinating branch of mathematics and computer applications. It 

has immense potential for applications to engineering, physical, social and biological 

sciences [1- 4]. The study of  domination numbers of graphs assumes a lot of 
significance as a number of its variations are applied to practical problems. A latest 

book on domination [5] has lead to the enormous growth of this branch of study. For 

instance, the notion of domination occurs in facility location problems, where the 
number of facilities such as  hospitals and fire stations is limited and it is required to 

optimize the distance one requires to cover to reach to the nearest facility. The 

concept of various domination parameters to ad hoc networks, biological networks, 
social networks etc., sufficiently describe the growing interest. These applications 

attempt to choose a subset of vertices that offers useful service such that every vertex 

in the network is as close as possible to some vertex in the subset. The following 

examples show when the concept of domination can be applied in modeling real-life 
problems. Graph theory can be used as a tool  to model secondary RNA (Ribonucleic 

acid) motifs numerically. The graphical invariants employed are variations of the 

domination number of a graph.  These variations correctly distinguish native 
structures among the trees and segregates those that cannot represent RNA. 

Dominating sets model social networks and study its dynamics of relations imminent 

on individuals in different domains. 

 

Erdos Number ad Its Importance 

A Person x is said to have Erdos number r+1 if r is the lowest Erdos number of the 

co-author of x. Erdos number actually elaborates the collaborative distance between 
Erdos and another individual by virtue of co-authoring research papers in 

mathematics. The notion of defining Erdos number and its computation is meant to 

pay encomiums to Erdos for his voluminous work in mathematics. The Erdos 
collaboration graph reveals how mathematics researchers cluster and the pattern of 

evolution over time of the number of co-authors per paper. It is sad to observe that 

achieving small Erdos number is becoming increasingly difficult as mathematicians 

and scientists with low Erdos number disappear from this world. Among Nobel prize 
laureates in physics, A.Einstein and S.L.Glashow have Erdos number 2, the 

computational biologist L.Pachter has Erdos number 2, Nobel laureate H.O.Smith in 

medicine has Erdos number 3. B.Wellman, a well known sociologist has Erdos 
number 3. It is interesting to note that famous Number theorist Terrance Tao, who 

was taught by Erdos himself when he was 10 years old at that time  has Erdos 

number 2. It is worth mentioning that several  non mathematicians in many fields of 
science have finite Erdos numbers. Many bio-medical statisticians are linked to 

Erdos through famous John Turkey who has Erdos number 2. Many geneticists have 

small Erdos number via the link Eric Lander, a widely known geneticist wit Erdos 

number 2. All Fields Medal and Rolf Nevanlinna  prize winners between 1986and 
1994 have Erdos numbers at most 9. 

 

Importance of Centrality and its Limitations 
In Erdos collaboration graph that we consider below the vertex represented by Erdos 

is the central vertex. The concept of centrality in network analysis identifies the most 

important vertex/vertices The most influential person in our RNPCG discussed 

below is a social network.  The indices of centrality provide answers to: What are the 
characteristics of a pertinent vertex? The answer is provided in the form of a real-

valued function on the set of vertices of a graph. The values are supposed to provide 

a ranking which identifies the most important vertices. The RNPCG network is a 
description of the paths among the participants where transfer of knowledge happens 

http://www.revolvy.com/main/index.php?s=Vertex+(graph+theory)&item_type=topic&overlay=1
http://www.revolvy.com/main/index.php?s=Social+network&item_type=topic&overlay=1
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in joint research work. Such centrality indices have two limitations, one trivial and 

the other non trivial. The trivial limitation is that a centrality which is optimal for 

one situation may not be so for a different scenario. A nontrivial limitation is the 
generally held opinion that vertex centrality indicates the relative importance of 

vertices. They are meant to yield a ranking which characterizes the pertinent 

vertices.
 
This happens under the limitation just observed. Even though in the 

RNPCG Erdos is the central vertex for obvious reasons the challenge lies in the 

identification of the next most influential vertex and so on. There are two drawbacks 

in the process.  First, a ranking orders vertices only by importance. It is not 

quantifying the difference in importance among various levels of ranking.  
Centralization concept due to Freeman gives insight based on the difference in 

scores of their centralization. It allows one to draw comparison with other networks 

by considering their maximum centralization scores.
 
 Somehow for strange reasons it 

is never seen in practice. Next, the features that identifies the most important vertices 

in RNPCG network cannot be generalized to the other remaining vertices. This 

describes why, for instance, the first few results alone of a Google image search 

engine appears  in order. Even the pagerank mathematical algorithm proves to be a 
highly unstable measure, exhibiting rank reversals after small adjustments of the 

jump parameter. Even though the failure of various centrality measures to generalize 

to the rest of the RNPCG network may at first seem counter-intuitive, it provides us  
with a chance to delve into the concept of domination numbers and its variations. As 

complex RNPCG network have heterogeneous topology, the extent to which the 

various domination number measure handles the network structure regarding the 
most important vertices turns out to be sub-optimal for the rest of the network. 

 

Preliminaries 

A Graph G = (V, E) is a finite nonempty set V(G) of elements called vertices, along 
with a possibly empty set E(G) of distinct unordered pairs of elements of V(G) 

called edges. Two vertices are said to be adjacent to each other or called neighbors if 

there is an edge between them. For a graph G = (V, E), let |V(G)| = n and |E(G)| = m.  
 

Various Neighbourhoods 

The open neighborhood of a vertex u  V(G), denoted as N(u), consists of all 
vertices in V(G) which are adjacent to u and the closed neighborhood of such a 

vertex v, is N[v] = N(v)  {v}. Let D be a subset of V(G) and v  D. Then a private 

neighborhood of a vertex v  V(G) with respect to D denoted by Pr[v, D] is defined 

as follows: Pr[v, D] = {w  V(G): N(w)  D = {v}}. We note that 

a) If w  V(G)  D and w is adjacent only to v  D, then w  Pr[v, D];  

b) If w  D and w  v, then w  Pr[v, D];  

c) If w = v is not adjacent to any vertex of D, then w  Pr[v, D].  

 

Domination Number 

A set D of vertices in a graph G = (V, E) is a dominating set of G if every vertex in  

V \ D is adjacent to some vertex in D. This definition of a dominating set forms a 
basis to several other equivalent forms of the definition of a domination set. A set D 

⊆ V is a dominating set if and only if: i. for every vertex v ∈ V − D there exists a 

vertex u ∈ D such that v is adjacent to u; ii. for every vertex v ∈ V − D, the distance 

between v and D, d(v, D) ≤ 1; iii. the closed neighborhood of D equals V, N[D] = V; 

iv. for every vertex v ∈ V − D, |N(v) ∩ D| > 1, that is, every vertex v ∈ V − D is 

adjacent to at least one vertex in D; v. for every vertex v ∈ V, |N[v] ∩ D| > 1. The 

domination number γ(G) of a graph G equals the minimum cardinality of a 

http://www.revolvy.com/main/index.php?s=Centrality&item_type=topic&overlay=1
http://www.revolvy.com/main/index.php?s=Centrality&item_type=topic&overlay=1
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domination set in G. The idea of domination number in graphs occurred from a chess 

board problem known as the Queen problem. That is, it is required to find the 
minimum number of queens needed to be placed on an 8x8 chess board so that each 

square is either occupied or attacked by a queen. 

 

Outer Connected Domination Number 

For a given graph G = (V, E), a set D  V(G) is said to be an outer connected 
dominating set if D is dominating and the graph induced by V(G \ D) is connected. 

The outer connected domination number of G, denoted (G)γ~

c  is the cardinality of a 

minimum outer connected dominating set of G [6]. Note that every graph G has an 

outer connected dominating set. This is because the set of all vertices of G is an outer 

connected dominating set in G. It is obvious that if G is a graph of order n, then 1  

(G)γ~

c   n. In addition, (G)γ~

c  = 1 if and only if G = K1  H, where H is a connected 

graph of order n1, while  

(G)γ~

c  = n if and only if G = 
c

n
K . Hence (G)γ~

c   n1 if G has at least one edge. 

Also (G)γ~

c   n2 if and only if G has at least one edge which is not an end-edge. In 

general, (G)γ~

c   nk if and only if there exists a proper connected subgraph H of G 

such that |V(H)| = k and every vertex of H has a neighbor which belongs to V(G) \ 

V(H). It is easy to see that if G is a connected graph on n  2 vertices, then (G)γ~

c  = 

n1 if and only if G is a star. This is because, if G is a star K1,n1 with V(k1,n1) = {u, 

u1 ... un1} and edge set E(k1,n1) = {u, ui : 1  i  n1} then any outer connected 

dominating set D of this graph cannot contain u . Further it cannot miss any ui for 1  

i  n1. Therefore it follows that (G)γ~

c  = n 1. Conversely it is equally trivial to see 

that if (G)γ~

c  = n1 for a graph G then it must be a star. The problem of finding a 

minimum Outer-connected Dominating set for an input graph G is stated as follows. 

Given a graph G = (V, E) and a positive integer k, the problem is to decide whether 
G has an outer-connected dominating set of cardinality at most k. This problem is 

known to be NP-complete for bipartite graphs. 

 

Doubly Connected Domination Number 

We say that a set D  V(G) is a doubly connected dominating set  of G if it is 
dominating and the induced subgraphs G[D] and G[V(G) \ D] are connected. The 

cardinality of a minimum doubly connected dominating set in G is called a doubly 

connected domination number and is denoted by cc(G) [7]. Since for an arbitrary 
graph G, every connected dominating set is a dominating set and every doubly 

connected dominating set is a connected dominating set, we have (G)  (G)γ~

c   

cc(G). The notion  of outer-connected domination can be employed in the following 
situation. If we have a computer network in which a main group of fileservers 
possess access to interact directly with every computer outside their group. 

Moreover, every two computers outside the main group may interact with each other 

without the intrusion of any of the fileservers to guard the fileservers from 

overloading. A main group  with minimum number of members with these properties 
is a minimum outer-connected dominating set for the graph representing the 

network. 

 

Packing Number 

If we are asked to determine as many independent edges in a graph as possible then 

what strategy we should adopt ? This issue not only occupies the central position of 
several applications it also provides scope for some interesting graph theory. This is 



   
  Computation of various domination numbers 

 

 

 

 

 

Braz. Arch. Biol. Technol. v.60: e17160841 Jan/Dec 2017 

 

5 

 

referred as matching problem in graph theory. A generalization of this is to 

determine in a given graph as many disjoint subgraphs as possible that are 

isomorphic to every element of a given class of graphs. This is called as packing 
problem. Suppose that G1 and G2 are two graphs with n vertices. We say that there is 

a packing of G1 and G2 If there are copies of G1 and G2 on the same n vertices that are 

edge-disjoint. Bollobas and Eldridge showed that, if G1 and G2 together have at most 
2n−3 edges and no vertex is joined to all other vertices, then there is a packing 

of G1 and G2 of course with few exceptions, Define a 2-packing of a graph G as a set 

X  V(G) of vertices such that N[x]  N[y] =  for each pair of distinct vertices x, 

y  X. Alternatively, we can define a 2-packing of G as a set X of vertices in G such 
that for any pair of vertices x and y in X, d(x, y) > 2. The maximum cardinality of a 

2-packing set of G is called the 2-packing number of G and is denoted by 2(G).  
 

ROLF NEVANLINNA PRIZE WINNER'S COLLABORATION GRAPH 

(RNPCG) 

 

Method of Obtaining RNPCG 

We denote the RNPCG by G
*
. It is constructed as follows: G

*
 has twenty three 

vertices and forty eight edges. Let V(G
*
) = {u1, u2, ..., u23}. Here u1 = Paul Erdos, u2 

= Maria Margarat Klawe, u3 = Siemion Fajtlowicz, u4 = Robert Robinson, u5 = 

George Gunthar Lorentz, u6 = Endre Szemeredi, u7 = Laszlo Lovasz, u8 = Nathan 
Linial, u9 = Alon Noga, u10 = Boris Aronov, u11 = Andrej Ehrenfeucht, u12 = Mark 

Jerrum, u13 = Alok Aggarwal, u14 = Robert Endre Tarjan, u15 = Leslie Valiant, u16 = 

A.A. Razborov,  
u17 = Avi Wigderson, u18 = Peter W. Shor, u19 = Madhu Sudan, u20 = Jon Kleinberg, 

u21 = Mario Szegedy, u22 = Lance J. Fortnow, u23 = Daniel Spielman. Note that the 

chronological order of prize winners are defined in order by uj, j =14 to 20, 23. Let 

E(G
*
) = {e1, e2, ..., e48} where e1 = (u1, u2), e2 = (u1, u3),  

e3 = (u1, u4), e4 = (u1, u5), e5 = (u1, u6), e6 = (u1, u7), e7 = (u1, u8), e8 = (u1, u9), e9 = (u1, 

u10), e10 = (u2, u8), e11 = (u2, u13), e12 = (u2, u14), e13 = (u2, u17), e14 = (u2, u18), e15 = (u3, 

u11), e16 = (u4, u12), e17 = (u5, u16),  
e18 = (u6, u9), e19 = (u6, u16), e20 = (u6, u17), e21 = (u7, u8), e22 = (u7, u9), e23 = (u7, u17), 

e24 = (u7, u18),  

e25 = (u8, u9), e26 = (u8, u13), e27 = (u8, u17), e28 = (u8, u18), e29 = (u9, u10), e30 = (u9, u17), 

e31 = (u9, u19),  
e32 = (u10, u13), e33 = (u11, u15), e34 = (u12, u15), e35 = (u13, u17), e36 = (u13, u18), e37 = 

(u13, u19), e38 = (u13, u20), e39 = (u16, u17), e40 = (u17, u19), e41 = (u19, u20), e42 = (u1, u21), 

e43 = (u7, u21), e44 = (u9, u21), e45 = (u17, u22), e46 = (u19, u21), e47 = (u21, u22), e48 = (u22, 
u23). None of the eight RNPW'S have Erdos number 1. Out of the 511 direct co-

authors of Paul Erdos, with Erdos Number 1, only ten members are connected by a 

path of length 1 with the RNPW'S.  Out of the eight RNPW’S only five members 
namely u14, u16, u17, u18, u19 have Erdos number 2, the remaining members namely 

u15, u20, u22, u23 have Erdos number 3. G
*
 is shown in Figure 1. 
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Figure 1. Collaboration Graph 

 
Proceeding like this, one can obtain all the eight RNPW’S collaboration details one 

by one.  We have thoroughly checked all possible combinations. That is, first, we 

have checked the co author relationship between any of the RNPW’S with any of the 
10 applicable co-authors at level 1 with Erdos number 1.  This action leads to 5 × 10 

+ 3 × 10 (where 5 × 10 stands for the possible collaboration between 5 RNPW’s at 

level 2 with any of the 10 possible collaborators at level 1 and 3 × 10 stands for the 
possible collaboration between 3 RNPW’s at level 3 with any of the 10 possible 

collaborators at level 1) combinations. Then we have considered the possible 

collaboration of the 4 non RNPW’s at level 2 with any of the 10 possible 

collaborators at level 1.  This action leads to 4 × 10 combinations.  Then we have to 
consider possible collaborators between themselves of both 5 RNPW’s and 4 non 

RNPW’s at level 2.  This action leads to 














2
4

2
5

 + 5 × 4 combinations.  Then we 

have to consider the possible collaborators between 3 of the RNPW’s at level 3 with 
5 RNPW’s at level 2 and with 4 non RNPW’s at level 2. This action leads to 3 × 5 + 

3 × 4 combinations.  Finally we have to consider all possible combinations between 

themselves of the 3 RNPW’s at level 3. This action leads to 







2
3

 combinations.  A 

scrupulous implementation of the above said procedure has led to the graph G
*
 in 

Figure 1. 

 

Method of drawing the collaboration graph G
*
 

As G
*
 is fairly a large graph with 23 vertices and 48 edges for manual drawing we 

employed Pajek program to visualize it. In Windows operating system Pajek is a 

amenable program for the twin purpose of visualizing and analyzing G
*
. For the 

latest version of Pajek and for entire procedure of downloading, installing and using 
one can refer to [7-10]. For more on RNP, for instance, its history and for the details 

on other related constructions with illustrations one can [10]. 

 

Results Concerning G
*
 

Outer Connected Domination Number 

Theorem 1[11]. An outer connected dominating set D of G is minimal if and only if 

for each vertex v ∈ D one of the following holds good: a) Pr[v, D] ≠ ∅; b) v is an 

isolated vertex in the graph induced by D; c) N(v) ∩ (V \ D) = ∅. 

Proposition 1. )(Gγ *~

c  = 11. 

Proof. First note that D1 = {u1, u3, u4, u6, u11, u12, u13, u14, u15, u22, u23} is an outer 

connected dominating set. This is because 1) every element of V(G
*
) \ D1 is adjacent 

with some element of D1 as (uj, u1) for  

j = 2, 5, 7, 8, 9, 10, 21;  (u16, u6); (uj, u13) for j = 17, 18, 19, 20 are edges of G
*
 and 2) 

the subgraph induced by V(G
*
) \ D1 is connected. The graphs induced by V(G

*
) \ D1  

and D1 are shown in Figure 2. 
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Figure 2. The Graph V(G*) \ D1 and The Subgraph Induced by D1 

 
Next we claim that D1 is a minimal outer connected dominating set using Theorem 1. 

Observe that u13 and u14 are isolated vertices in the subgraph induced by D1. Also, 

Pr[u1, D1]   as u5  Pr[u1, D1];  

Pr[u22, D1]   as u21  Pr[u22, D1]; Pr[u6, D1]   as u16  Pr[u6, D1]. Further N(uj) 

 V(G
*
) \ D1 =  for j = 3, 4, 11, 12, 15, 23. Hence D1 is a minimal outer connected 

dominating set. Moreover D1 is not a minimum outer connected dominating set as 

there exists another such set namely  D2 = {u1, u3, u4, u11, u12, u13, u14, u15, u17, u22, 

u23}.  This is because 1) every element of V(G
*
) \ D2 is adjacent with some element 

of D2 as (uj, u1) for j = 2, 5, 6, 7, 8, 9, 10, 21;  (u16, u17); (uj, u13) for j = 18, 19, 20 are 

edges of G
*
,  

2) u14 is an isolated vertex in the subgraph induced by D2 and 3) the subgraph 
induced by V(G

*
) \ D2 is connected. The graphs induced by V(G

*
) \ D2 and D2 are 

shown in Figure 3. 

 

 
Figure 3. The Graph V(G*) \ D2 and The Subgraph Induced by D2 

 

Further Pr[uj, D2]   for j = 1, 13, 17, 22 as ui  Pr[uj, D2] for i = 5, 16, 18, 21 

respectively in order. Also N(uj)  V(G
*
) \ D2 =  for j = 3, 4, 11, 12, 15, 23. So D2 

satisfies the conditions of Theorem 2.1 and qualifies as a minimal outer connected 

dominating set. Hence )(Gγ *~

c = 11. 

 

Doubly Connected Domination Number 

Theorem 2 [11]. A doubly connected dominating set D of G is minimal if and only 

if for each vertex  

v ∈ D one of the following conditions hold good: a) Pr[v, D] ≠ ∅; b) N(v)∩ (V \ D) = 

∅; c) v is a cut vertex of the subgraph induced by D. 

Proposition 2. cc(G
*
) = 12. 

Proof. First note that D1 = {u1, u2, u3, u4, u11, u12, u13, u14, u15, u17, u22, u23} is a doubly 

connected dominating set. This is because a) every element of V(G
*
) \ D1 is adjacent 

with some element of D1 as  
(uj, u1) for j = 5, 6, 7, 8, 9, 10, 21; (u16, u17); (u18, u2); (uj, u13) for j = 19, 20 are edges 

of G
*
. b) the graphs induced by D1 and V(G

*
) \ D1 are connected by Figure 4. Next 

by Theorem 2, it is enough to verify that the elements of D1, satisfies any one of the 
three conditions mentioned there. Observe that  
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(i) Pr[uj, D1]   for j = 1, 13, 17, 22 as ui  Pr[uj, D1] for i = 5, 16, 20, 21 
respectively in order.  

(ii) N(uj)  (V(G
*
) \ D1) =  for j = 3, 4, 11, 12, 14, 15, 23 as (N(u3) = {u1, u11})  

(V(G
*
) \ D1) = ; (N(u4) = {u1, u12})  (V(G

*
) \ D1) = ; (N(u11) = {u3, u15})  

(V(G
*
) \ D1) = ; (N(u12) = {u4, u15})  (V(G

*
) \ D1) = ; (N(u14) = {u2})  (V(G

*
) 

\ D1) = ; (N(u15) = {u11, u12})  (V(G
*
) \ D1) = ; (N(u23) = {u22})  (V(G

*
) \ D1) 

= . (iii) u2 is a cut vertex of the subgraph induced by D1. See Figure 4. Hence D1 is 

a minimal doubly connected dominating set. Moreover we also observe that D1 is not 
a minimum such set as D2 = {u1, u2, u3, u4, u11, u12, u14, u15, u17, u19, u22, u23} is 

another such set. This is because, a) every element of V(G
*
) \ D2 is adjacent with 

some element of D2 as (uj, u1) for j = 5, 6, 7, 8, 9, 10, 21; (u16, u17); (uj, u13) for j = 19, 
20 are edges of G

*
. b) the graphs induced by D2 and V(G

*
) \ D2 are connected as 

shown in Figure 5. Next by Theorem 2, it is enough to verify that the elements of D2, 

satisfies any one of the three conditions mentioned there. Observe that (i) Pr[uj, D2]  

 for j = 1, 2, 17, 19 as ui Pr[uj, D2] for  

i = 5, 16, 18, 20 respectively in order.  (ii) N(uj)  (V(G
*
) \ D2) =  for  j =3, 4, 11, 

12, 14, 15, 23 as (N(u3) = {u1, u11})  (V(G
*
) \ D2) = ; (N(u4) = {u1, u12})  

(V(G
*
) \ D2) = ; (N(u

11
) = {u3, u15})  (V(G

*
) \ D2) = ; (N(u12) = {u4, u15})  

(V(G
*
) \ D2) = ; (N(u14) = {u2})  (V(G

*
) \ D2) = ; (N(u15) = {u11, u12})  (V(G

*
) 

\ D2) = ; (N(u23) = {u22})  (V(G
*
) \ D2) = . (iii) u22 is a cut vertex of the 

subgraph induced by D2. See Figure 5. Hence cc(G
*
) = 12. 

 

 
Figure 4. The Graph V(G*) \ D1 and The Subgraph Induced by D1 
 

 
Figure 5. The Graph V(G*) \ D2 and The Subgraph Induced by D2 

 

Packing Number 

 

Algorithm 1 

How to Construct a 2-Packing Set? 

Step a: Arrange the vertices of a given graph G in the order of non-decreasing 
degree. 

Step b: Identify all pendant vertices in G. 

Step c: Form an initial set A with pendant vertices such that their closed 

neighborhoods are pairwise disjoint. 
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Step d: Expand A by adding a vertex u whose degree is greater than the degree of 

any element of A, provided N[u]  N[v] =  for all v  V(G) and goto Step e else 
goto Step f. 

Step e: Stop and declare that A is the required set. 

Step f: Repeat Step d. 

 

Theorem 3 [11].For any graph G, ρ2(G) ≤ γ(G). 

 

Proposition 3. 2(G
*
) = 6. 

 

Proof. By Theorem 3, we have 2(G
*
)  (G

*
).  But (G

*
) = 6 by Theorem 7.1 of 

[10]. Therefore a 2-packing set of G
*
 can have at most six elements. Now we 

construct a 2-packing set A of G
*
 with 6 elements by using the Algorithm 1. The 

initial set A consists of two one degree vertices namely, u14, u23. So A = {u14, u23}. 
There are seven two degree vertices (u3, u4, u5, u11 u12, u15, u20) out of which u3, u4, 

u11, u12} and u20 are eligible to be included in A under the virtue of the fact that N(uj) 

 N(ui) =  for j = 14,  23 and i = 3, 4, 11, 12, 20. But as (u3, u11), (u4, u12)  E(G
*
) 

both u3 and u4 cannot be included in A simultaneously. Without loss of generality 

assume that u3  A. Then as N(uj)  N(ui) =  for j = 14, 23 and i = 3, 12, 20 the 
expanded set A takes the form A

(1) 
= {u14, u23, u3, u12, u20}. Next we look at the 

eligible three degree vertices among all the three degree vertices (u10, u16, u22). As 

N(uj)  N(ui) =  for  
j = 3, 14, 23, 12, 20 and i = 16, we expand the set A further and A

(2) 
= {u14, u23, u3, 

u12, u20, u16}. Now as the cardinality of A has reached the maximum permissible size 

of 6, we stop and declare A as the maximal 2-packing set with its elements as A
final 

= 

A
(2)

. Moreover we find another 2-packing set  
final

1
A = {u14, u23, u4, u11, u20, u16} by looking at the other option of choosing u4 as the 

third element of 
final

1
A . Hence 2(G

*
) = 6. 

 

Fair Domination Number   
 

First we define the concept of External Domination as follows. We say that the set of 

vertices X from G externally dominates a set U  V(G) if U  X =  and for every 

u  U there exists x  X such that ux  E(G). Let D1,D2,...,Dk be pairwise disjoint 

sets of vertices from a graph G=(V,E) with D
*
 = D1D2... Dk and let Z=V\D

*
. 

We say that the sets 
k

1i

i
D



 form a fair reception of size k if for any integer l, 1  l  

k, and any choice of l sets 
ri

D  1  r  l the following holds: if D externally 

dominates 
l

1r

i4
D



 then l 
 φDDj,

j

j

1)DD(ZD . That is, on the left hand side we 

count all the vertices of D that are not in D
*
, and for vertices of D that are in some 

Dj, we count all but one from D  Dj. In any graph, any subset of the vertex set 

forms a fair reception of size 1. Given a graph G, the largest k such that there exists a 

fair reception of size k in G is denoted by F(G), and called the Fair Domination 

number of G. It is known that for any graph G, 2(G)  F(G)  (G). In view of this, 

we deduce that F(G
*
) = 6 as 2(G

*
) = (G

*
) = 6 by Theorem 7.1 of [12] and 

Proposition 4. The following illustration demonstrates the existence of a fair 
reception of size 6. 
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Let D1 = {u11}; D2 ={u1, u14}; D3={u2, u12, u18}; D4 ={u8, u16, u20, u21}; D5 ={u3, u6, 
u7, u10, u19} and  

D6 ={u4, u5, u9, u13, u17, u23} be a collection of pairwise disjoint sets of vertices of G
*
 

with 
6

1j

j

* DD


  and Z = V\D
*
. Let l be any integer such that 1  l  6. We now 

construct for each value of l an appropriate set D that externally dominates 
l

1r

ir
D



 

and satisfy the inequality l 
 φDDj,

j

j

1)DD(ZD . 

Set l = 1. Choose D = {u1, u3, u8, u12, u15, u23}. Note that D externally dominates 

1k
DD

1

1k

i l

l






 = {u11} as (u11, u15)  E(G
*
). Also observe that |D  Z| + (|D2  D|  1) 

+ (|D3  D|  1) + (|D4  D|  1) + (|D5  D|  1) + (|D6  D|  1) = 1 + (11) + 

(11) + (11) + (11) + (11)  1. 
Set l = 2. Choose D = {u2, u11, u15, u17, u18, u19, u21}. Note that D externally 

dominates 
2

1k

ik
D





l

 where }{uD
121

 , }{uD
4122

  as (u1, u21) and (u14, u2)  E(G
*
). 

Also observe that |D  Z| + (|D1  D|  1) + (|D3  D|  1) + (|D4  D|  1) + (|D5  

D|  1) + (|D6  D|  1) = 1 + (11) + (21) + (11) + (11) + (11)  2. 
Set l = 3. Choose D = {u1, u4, u6, u10, u11, u13, u15, u21, u23}. Note that D externally 

dominates 
3

1k

ik
D





l

 where }{uD
231

 , }{uD
1232

 , }{uD
1833

  as (u2, u1), (u12, u15) 

and (u18, u13)  E(G
*
). Also observe that |D  Z| + (|D1  D|  1) + (|D2  D|  1) + 

(|D4  D|  1) + (|D5  D|  1) + (|D6  D|  1) = 1 + (11) + (11) + (11) + (21) 

+ (21)  3. 
Set l = 4. Choose D = {u6, u11, u12, u13, u14, u17, u18, u19, u22}. Note that D externally 

dominates 
4

1k

ik
D





l

, where }{uD
841

 , }{uD
1642

 , }{uD
2043

 , }{uD
2144

  as (u8, 

u17), (u16, u17), (u20, u19) and (u21, u19)  E(G
*
). Also observe that |D  Z| + (|D1  D| 

 1) + (|D2  D|  1) + (|D3  D|  1) + (|D5  D|  1) + (|D6  D|  1) = 1 + (11) + 

(11) + (21) + (21) + (21)  4. 
Set l = 5. Choose D = {u1, u8, u9, u11, u12, u15, u17, u21, u22, u23}. Note that D 

externally dominates 
5

1k

ik
D





l

, where }{uD
351

 , }{uD
652

 , }{uD
753

 , }{uD
1054

 , 

}{uD
1955

  as (u3, u1), (u6, u1), (u7, u1), (u10, u1) and (u19, u21)  E(G
*
). Also observe 

that |D  Z| + (|D1  D|  1) + (|D2  D|  1) + (|D3  D|  1) + (|D4  D|  1) + 

(|D6  D|  1) = 2 + (11) + (11) + (11) + (21) + (31)  5. 
Set l = 6. Choose D = {u1, u2, u3, u8, u10, u11, u12, u15, u16, u19, u22}. Note that D 

externally dominates 
6

1k

ik
D





l

, where }{uD
461

 , }{uD
562

 , }{uD
963

 , }{uD
1364



, }{uD
1765

 , }{uD
2366

  as (u4, u1),  

(u5, u1), (u9, u1) , (u13, u2) , (u17, u16) and (u23, u22)  E(G
*
). Also observe that |D  Z| 

+ (|D1  D|  1) + (|D2  D|  1) + (|D3  D|  1) + (|D4  D|  1) + (|D5  D|  1) = 

2 + (11) + (11) + (21) + (21) + (31)  6. Thus, we have the following 
proposition: 
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Proposition 4. F(G
*
) = 6. 

 

Vertex Independence Number 

 

Proposition 5. 0(G
*
) = 10. 

 

Proof. We know that for any graph G, 0(G) = 
V(G)u

max


{0(Gu), 1 + 0(GN[u])}. It is 

enough to look at vertices of high degree in G
*
. The high degree vertices are u1 with 

deg(u1) = 10; u17 with deg(u17) = 9; u9 with deg(u9) = 8; u8, u13 with deg(u8) = 
deg(u13) = 7; u2, u7 with deg(u2) = deg(u7) = 6; u19, u21 with deg(u19) = deg(u21) = 5. 

First let us choose u1. Consider G \ u1. The structure of G
*
 reveals that a maximal 

independent set of G
*
 \ u1 is {u2, u3, u4, u5, u6, u7, u10, u15, u19, u22} with 0(G

*
 \ u1) = 

10. Further consider G
*
 \ N[u1]. Its maximal independent set is {u11, u12, u13, u14, u16, 

u22} with 0(G
*
 \ N[u1]) = 6. Therefore 0(G

*
) = max{10, 6} = 10. Moreover we do 

the similar analysis with u17, u9, u8, u13, u2, u7, u19, u21 in order which reveals that 

their respective 
0
β s are 7, 7, 8, 8, 9, 9, 7 and 9 in order. Further the 0 values for low 

degree vertices namely u6, u18 with deg(u6) = deg(u18) = 4; u10, u16, u22 with deg(u10) 

= deg(u16) = deg(u22) = 3; u3, u4, u5, u11, u12, u15, u20 with deg(u3) = deg(u4) = deg(u5) 
= deg(u11) = deg(u12) = deg(u15) = deg(u20) = 2; u14, u23 of degree 1 are respectively 

9, 7, 9, 6, 7, 9, 9, 9, 6, 6, 7, 7 in order. Hence we have thoroughly established that 

0(G
*
) = 10. 

 

Independence Dominating Number 
 

Given a graph G and an independent set I of vertices in G, the least size of a set of 

vertices in G that dominates I is denoted by I(G), and by 
i
(G) we denote the largest 

I(G) over all independent sets I in G. For an arbitrary graph G, it is known that F(G) 

 
i
(G). We call 

i
(G) an independence domination number of G. 

 

Proposition 6. 
i
(G

*
) = 4. 

 

Proof. There are forty four independent sets in G
*
 of different sizes. They can be 

classified into three categories. Category A consists of a collection A1 of 
independent sets in which u1 is present; Category B consists of a collection A2 of 

independent sets in which the neighbors of u1 are present and Category C consists of 

a collection A3 of independent sets in which neither u1 nor its neighbors are present. 
We have found that the number of sets of category A is 21; that of category B is 21; 

and that of category C is 2. We furnish those sets here for verification along with 

their dominating sets. Let (Ai, Di), (Bj, Dj
*
) and (Ck, Dk

**
) denote the respective 

independent sets along with their dominating sets of the three categories in order. 

We find that |Di| or |Dj
*
| or |Dk

**
| is either 3 or 4.  

 

(A1, D1) = ({u1, u11, u12, u14, u16, u18, u22}, {u2, 
u15, u17});   

(A2, D2) = ({u1, u11, u12, u14, u16, u18, u23}, {u2, 

u15, u17, u22});  
(A3, D3) = ({u1, u11, u12, u14, u16, u19, u22}, {u2, 

u15, u17});  

(A4, D4) = ({u1, u11, u12, u14, u16, u19, u23}, {u2, 
u15, u17, u22});  

(A5, D5) = ({u1, u11, u12, u14, u18, u20, u23}, {u2, 

u13, u15, u22});  
(A6, D6) = ({u1, u11, u12, u13, u14, u16, u22}, {u2, 

u15, u17});  
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(A7, D7) = ({u1, u11, u12, u13, u14, u16, u23}, {u2, 

u15, u17, u22}); 
(A8, D8) = ({u1, u12, u13, u14, u16, u22}, {u2, u15, 

u17});  

(A9, D9) = ({u1, u12, u13, u14, u16, u23}, {u2, u15, 
u17, u22});  

(A10, D10) = ({u1, u11, u13, u14, u16, u22}, {u2, u15, 

u17});  

(A11, D11) = ({u1, u11, u13, u14, u16, u23}, {u2, u15, 
u17, u22}); 

(A12, D12) = ({u1, u11, u12, u14, u16, u22}, {u2, u15, 

u17});  
(A13, D13) = ({u1, u11, u12, u14, u16, u23}, {u2, u15, 

u17, u22});  

(A14, D14) = ({u1, u11, u12, u13, u16, u22}, {u2, u15, 

u17});  
(A15, D15) = ({u1, u11, u12, u13, u16, u23}, {u2, u15, 

u17, u22});  

(A16, D16) = ({u1, u11, u12, u13, u14, u22}, {u2, u15, 
u23}); 

(A17, D17) = ({u1, u11, u12, u13, u14, u23}, {u2, u15, 

u22}); 
(A18, D18) = ({u1, u13, u14, u16, u22}, {u2, u17});  

(A19, D19) = ({u1, u13, u14, u16, u23}, {u2, u17, 

u22});  

(A20, D20) = ({u1, u11, u12, u14, u16, u18, u19, u22}, 
{u2, u13, u15, u17}); 

(A21, D21) = ({u1, u11, u12, u14, u16, u18, u19, u23}, 

{u2, u15, u17, u22});  
(B1, D1

*
) = ({u2, u3, u4, u5, u6, u7, u10, u15, u19, 

u22}, {u1, u11, u17});  

 (B2, D2
*
) = ({u2, u3, u4, u5, u6, u7, u10, u15, u19, 

u23}, {u1, u11, u17, u22}); 

(B3, D3
*
) = ({u2, u3, u4, u5, u6, u7, u15, u19, u22}, 

{u1, u11, u17}); 

(B4, D4
*
) = ({u2, u3, u4, u5, u6, u7, u15, u19, u23}, 

{u1, u11, u17, u22});  

(B5, D5
*
) = ({u3, u4, u5, u6, u7, u10, u15, u19, u22}, 

{u1, u11, u17});  
 

 

 

 
 

 

 
 

 

 
 

 

 

 

(B6, D6
*
) = ({u3, u4, u5, u6, u7, u10, u15, u19, u23}, 

{u1, u11, u17, u22});  
(B7, D7

*
) = ({u2, u4, u5, u6, u7, u10, u15, u19, u22}, 

{u1, u11, u17});  

(B8, D8
*
) = ({u2, u4, u5, u6, u7, u10, u15, u19, u23}, 

{u1, u11, u17, u22});  

(B9, D9
*
) = ({u2, u3, u5, u6, u7, u10, u15, u19, u22}, 

{u1, u11, u17});  

(B10, D10
*
) = ({u2, u3, u5, u6, u7, u10, u15, u19, u23}, 

{u1, u11, u17, u22});  

(B11, D11
*
) = ({u2, u3, u4, u6, u7, u10, u15, u19, u22}, 

{u1, u11, u17});  
(B12, D12

*
) = ({u2, u3, u4, u6, u7, u10, u15, u19, u23},  

{u1, u11, u17, u22});  

(B13, D13
*
) = ({u2, u3, u4, u5, u6, u10, u15, u23},   

{u1, u11, u22});  
(B14, D14

*
) = ({u2, u3, u4, u5, u7, u10, u15, u19, u22},  

{u1, u11, u17});  

(B15, D15
*
) = ({u2, u3, u4, u5, u7, u10, u15, u19, u23},  

{u1, u11, u17, u22});  

(B16, D16
*
) = ({u2, u3, u4, u5, u6, u10, u15, u19, u22},  

{u1, u11, u17});  
(B17, D17

*
) = ({u2, u3, u4, u5, u6, u10, u15, u19, u23},  

{u1, u11, u17, u22});  

(B18, D18
*
) = ({u3, u4, u5, u6, u10, u15, u19, u22},  

{u1, u11, u17});  
(B19, D19

*
) = ({u3, u4, u5, u6, u10, u15, u19, u23},  

{u1, u11, u17, u22});  

(B20, D20
*
) = ({u2, u3, u4, u5, u15, u20, u22},  {u1, 

u11, u13, u17});  

(B21, D21
*
) = ({u2, u3, u4, u5, u15, u20, u23},  {u1, 

u11, u19, u22});  
(C1, D1

**
) = ({u11, u12, u13, u14, u16, u22},  {u2, u15, 

u17});  

(C2, D2
**

) = ({u11, u12, u13, u14, u16, u23},  {u2, u15, 

u17, u22}).  
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Hence by the definition of the independence domination number, we conclude that 


i
(G

*
) = 4. 

 

Scope Of Practical Applicability Of The Results 

 
The OSN(On-line social networks) of type Facebook have progressed as a hot topic 

within the network science community. Various research points that OSNs agrees 

with many properties in common with several other complex networks like: 
distributions obeying power-law degree [13,14], high local clustering [15], constant 

or varying diameter with network size [15,16], localized information flow 

bottlenecks [17,18] etc., A number of models were designed to simulate them[19, 

20], and a typical model that absorbs asymptotically all these properties is the GEO-
P (geometric protean model) [21]. A unique feature of GEO-P over other models 

[22,23] is that exhibits the underlying feature of a metric space. This metric space 

yields a Blau space construction in the social sciences called [24]. The agents in Blau 
space, of a social network correspond to points in a metric space, and the relative 

position of these nodes supports the homophily principle of [25]. Domination and 

dominating sets assumes a significant role with lot of application to problems in real-
world networks. Dominating sets occurs in network controllability [26], as a measure 

of centrality in efficient data routing [27], and to detect biologically pertinent 

proteins in protein-protein interaction networks [28].  

 

Conclusion And Further Research Challenges 

 

In this paper we have studied several variations in the concept of domination with 
respect to vertices of a graph. Similar formulations can be probed with reference to 

edges and that will open up a plethora of opportunities. For instance consider the 

bondage domination number b of a graph G, by which we mean the minimum 

cardinality of an edge subset E1 of E(G) to be removed from E(G) so that b(G  E1) 

> (G) or the strong bondage domination number sb, by which we mean the 

minimum cardinality of an edge subset E1 of E(G) such that s(G  E1) > s(G). 

Interestingly for the RNPCG discussed in the above we have b(G
*
) = sb(G

*
) = 1. 

Several other interesting properties around these parameters are observed and we 
will revert back to it elsewhere. Moreover the effect of the domination variations 

considered here with reference to the concept of a) vertex or edge criticality or b) 

Nordhaus-Gaddum type inequalities and the associated extremal graph 
characterization, are being considered by us and soon we hope to announce new 

results as a sequel to this paper. In social networks, One can consider the assumption 

that dominating sets with minimum order contain agents that strongly influence the 

rest of the members in the network. The deemed elites are those who influences 
stealthily on the ambitious network, are considered in the sociology literature [6]. In 

order to detect elites is through their high degree and through k-cores [6]. Another 

way is to find for them inside a minimum order dominating set. If dominating sets 
with minimum order possess much smaller order than the size of the network then 

that brings down the cost of computation of identifying the elites. It is in Network 

theory we notice that popularity is a side effect of being connected. The Erdos 
number computation is necessary as they provide a meta hub to focus oneself 

conceptually. One can also refer [30-32] for more on Erdos numbers. In future we 

wish to widen our analysis of various domination numbers considered here to other 

data sets belonging to other social and biological networks. 
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