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ABSTRACT 

 
The aim of this study is the production, purification, and characterisation of thermostable raw starch hydrolyzing α-

amylase produced by Bacillus mojavensis SO-10. The maximum production conditions of α-amylase were found at 

36th hour, 35 °C and pH 7.0. We utilized three steps to purify the thermostable α-amylase and as a result, 34-fold and 

18% yield were obtained. The molecular weight of purified α-amylase was determined as 73 kD. The Km and Vmax 

rates were detected as 0.010 mM and 3.38 µmol min−1, respectively. This purified α-amylase exhibited the highest 

activity at pH 5.0-6.0 and 70 ºC and showed stability over a wide variety of pH and temperature at 4.0–8.0, and 40–

50 ºC, respectively. The thermostable purified α-amylase exhibited stability in the presence of denaturing agents and 

heavy metal ions. The purified enzyme hydrolyzed the raw starches of corn and wheat grains in the ratio of 36.7% 

and 39.2% respectively. The end-yields of soluble starch hydrolysis were analyzed by thin-layer chromatography 

(TLC). In addition, the usage of purified α-amylase in clarification of apple juice and domestic washing detergent 

industries were evaluated. 
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INTRODUCTION 

 
Amylase (EC 3.2.1.1, 1, 4-α-D-glucan-glucanohydrolase) is an extracellular enzyme 

that hydrolyzes starch and glycogen molecules 1. It breaks down the α-1, 4 bonds in 

starch molecules into glucose, maltose, maltotriose and α-limit dextrine 2,3. Amylase 

is used primarily in the food industry for the preparation of maltose syrup and 

clarification of various drinks. In addition, amylase is generally used in other 

industries like biorefinery, paper, detergents, textiles and pharmaceuticals 4-7.  

Starch-hydrolyzing enzymes as amylase play an important role in carbohydrate 

metabolisms. It is a well-known fact that α-amylases degrade the starches. They can 

also be utilized to form a variety of major products with various physical and chemical 

qualities for foods and pharmaceuticals 8. 

As native starch is not dissolve in water at low temperature, many conventional 

processes are carried out at high temperature and pressure for gelatinization of the raw 

starch. These processes require an extreme-energy input, so the production cost of 

starch-based products is increased. To decrease the starch processing cost, effective 

utilization of natural resources and viscosity problems, direct hydrolysis of starch at 

low temperature is desirable 9. The significance of enzymatic saccharification of raw 

starch without heating has become well recognized due to energy savings and low cost 

of starch processing 10-12. This has generated the discovery of some raw starch 

degrading enzymes (RSDE) that can directly hydrolize raw starch below the 

gelatinization temperature of starch 13. In recent years, a worldwide interest has been 

focused on the raw starch digesting amylases, which would be of value to simplify the 

process of starch conversion. 

The most widely utilized thermostable α-amylases are obtained from mesophilic and 

thermophilic microorganisms which are considered to be potential sources of 

thermostable α-amylases of industrial significance 14. They have been indicated from 

a large range of microorganisms from a few species of genus Bacillus and 

Streptomyces 15. Bacillus is usually utilized for the commercial production of 

thermostable α-amylases. 

The present research reports the production, purification and biochemical 

characterizations of an α-amylase obtained from Bacillus mojavensis SO-10. This 

purified α-amylase displayed attractive characteristics such as temperature and pH 

stability and chemical agents’ resistance. In addition, the purified amylase was utilized 

in some industrial starch processes like raw starch hydrolyzing, detergents and apple 

juice clarification.  

 

MATERIALS AND METHODS 
 

Culture conditions 

Bacillus mojavensis SO-10 were grown in 250 mL glass bottle containing 50 mL 

Nutrient Broth (NB) media. The culture media’s pH was adjusted with 0.1 M HCl or 

NaOH to pH 7.0, and glass bottles were autoclaved at 121 ºC for 15 minutes. After 

being autoclaved, every bottle was inoculated with 0.5 mL (3.1×108 CFU/mL) of cell 

suspension. The fermentation media was cultured at 35 ºC on a shaker at 120 rpm.  

 

Enzyme activity 

α-Amylase activity was studied by determining the quantity of reducing sugars using 

3, 5 dinitrosalicylic acid (DNS) process 16. According to this process, 0.5% starch 

solution (200 µL) was incubated with 100 µL crude enzyme solution or 5 µL purified 

enzyme for 30 min at 70 °C. The reaction was stopped by adding DNS reagent and 

reaction solution was boiled for 5 min. After leaving it for cooling at room 
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temperature, 3 mL of pure water was added to the reaction mixture and 

spectrophotometric determination was measured at 489 nm. One unit of α-amylase 

activity was determined as the quantity of enzyme that produced 1 mmol of reducing 

sugars maltose per minute. 

 

Impact of incubation time on α-amylase production 

The influence of various time courses on enzyme production was assayed at 35 ºC in 

NB at pH 6.0 and 35 ºC in a shaker at 120 rpm. A 2 mL of fermentation culture media 

was collected at various incubation times (0-96 h). Then, the media was centrifuged 

at 7.000 rpm for 10 min. The upper solution was tested for determination of α-amylase 

activity according to DNS process. 

 

Influence of fermentation temperature and pH on enzyme production 

The sterile NB fermentation media was incubated at different temperature between 20 

to 55 ºC at pH 7.0 and 120 rpm in a shaker for 36 hours and enzyme assay was 

evaluated as mentioned above. The optimum fermentation media’s pH for production 

of α-amylase was examined at pH ranges of 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0 on 

optimum culture conditions. After incubation, fermentation media was centrifuged 

and the upper solution was tested for enzyme activity. 

 

Purification of α-amylase 

The crude enzyme was exposed to (NH4)2SO4 up to 80% (w/v) saturation and allowed 

to precipitate at 4 °C. The precipitates were centrifuged at 10.000 rpm for 15 min. The 

precipitate was dispersed in 0.1 M potassium phosphate buffer (pH 7.0), and dialyzed 

overnight at 4 °C. The dialyzed enzyme solution was applied to a DEAE 

(Diethylaminoethyl) cellulose (DE 32) column (flow rate 15 mL/ h). 

 

Protein analysis on SDS–PAGE 

The purity of α-amylase was determined on SDS–PAGE according to Laemmli 

process utilizing 10% polyacrylamide gel 17. 

 

Determination of kinetic parameters  

The purified α-amylase was tested at different starch concentrations from 0.5% to 2% 

for determination of Km and Vmax. The Km and Vmax were calculated from the reciprocal 

plot of starch concentration (S) versus velocity (V). 

 

Influence of temperature on purified α-amylase activity and stability 

The purified enzyme activity at various temperatures was studied by incubating the 

reaction mixture at temperature ranging between 20 oC to 90 oC. The temperature 

stability of purified enzyme was also experimented by pre-incubating the enzyme 

between 40-70 oC for 30, 60, 90, 120, 150, and 180 min and the remaining purified α-

amylase activity was determined. 

 

Influence of pH and pH stability  

The optimal pH of the enzyme was experimented by incubating the enzyme reaction 

solution at pH (3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, and 11.0). For measuring pH 

stability of purified α-amylase, the enzyme was pre-incubated between various pH 

ranges of 4.0 to 8.0 for 30-240 min. The purified α-amylase activity in standard 

reaction mixture was used as control. 
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Effects of inhibitors and different metal ions on purified enzyme activity 

The effect of different metal ions such as MnCI2, ZnCI2, MgCI2, CuCI2, CaCI2, FeCI2, 

HgCI2 and various inhibitors such as EDTA (ethylenediaminetetraacetic acid), PMSF 

(phenylmethanesulfonyl fluoride), β-mercaptoethanol and DTT (dithiothreitol) on 

purified α-amylase was studied. The purified α-amylase was pre-incubated with 1.5 

mM metal ions and 1, 5 and 10 mM inhibitors for 30 min at 37 °C and the standard α-

amylase activity assay was carried out. 

 

Thin layer chromatography (TLC)  

The purified α-amylase was incubated with 1% soluble wheat starch to determine the 

end-products of hydrolyzed soluble starches at various incubation time (15, 30 and 

240 min). 3 μL of end products of reaction were spotted on TLC plate (Merck). The 

end products of reaction were examined by pre-coated TLC plate with the solvent 

system of n-butanol/methanol/H2O (8:4:3, v/v/v). Spots were visualized by spraying a 

sulfuric acid/methanol solution (1:7, v/v), drying and heating at 95 ºC for 10 min. 

 

Industrial applications of Purified α-amylase  

Influence of detergents on purified α-amylase activity 

Various detergent solutions (Omo, Tursil, and Alo) were prepared at 0.5% 

concentration. In this test, 50 µL detergent solution, 200 µL starch, and 10 µL α-

amylase were mixed and incubated from 15 min to 120 min 8. The enzyme activity 

was assayed according to the DNS method as mentioned above. 

 

Raw starch degrading  

Wheat and corn raw starch grains were cleaned 3 times with distilled water to 

eliminate contaminants. The grains were dried and 1% of raw wheat and corn starch 

grain was suspended in 980 µL of 0.1M buffer (citric acid) at pH 6.0 and 10 µL of 

purified α-amylase was added. The purified α-amylase was incubated with wheat and 

corn raw starch grains at 50 oC for 4 h, and reaction solution was centrifuged. The 

upper solutions were examined to define released reduce sugars with DNS assay with 

maltose as the standard. The percentage of degrading of raw starch (Rh) was calculated 

by the following formula:  

Rh (%) = (A1/A0) × 100, 

where A1 refers to the quantity of reducing sugar in the upper after the degrading, and 

A0 refers to the quantity of raw starch before the degrading 18. After 4 h incubation, 

hydrolyzed starch of wheat and corn grains were cleaned with pure ethanol and dried. 

The dried starch grains were treated with iodine solution and photographed under the 

Olympus CX31 light microscope 400 times magnification. 

 

The starch amounts of immature apple juices (green and red) and theirs 

clarification by purified enzyme 

The detection of starch contents in immature apple juice was experimented according 

to the method defined by Carrín et al. 19, and the usage of purified alpha amylase in 

the apple juice clarification industry was assayed. 

 

RESULTS AND DISCUSSION 
 

Impact of time courses, temperature, and pH on α-amylase production 

We tested the impact of fermentation course, temperature, and pH on α-amylase 

production. It is well known that short incubation time is important for cheap 

production of enzyme in fermentation industry. The production of α-amylase is 

demonstrated in Fig. 1. The production of the enzyme increased when the incubation 

time increased up to 36th. The maximum α-amylase production was achieved with 36th 
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(Fig. 1a) and the enzyme production decreased after 36th. After this incubation period, 

there was a decrease in the production of α-amylase. This is because the cells have 

reached the decline phase and displayed low α-amylase synthesis. The decrease in the 

enzyme production may be due to consumption of the nutrients in the fermentation 

culture or due to accumulation of toxic by-products. The fermentation temperature and 

pH were also significant parameters, which clearly affect enzyme production. The 

fermentation temperature and pH were tested between 20 to 55 °C and 4.0 to 10.0 

respectively in an incubator shaker to define the temperature and pH influences on α-

amylase production. The highest α-amylase production was determined at 35 °C. 

When the fermentation temperature went up higher than 35 °C, α-amylase production 

diminished (Fig. 1b). The enzyme yield reduced 87.3%, while the fermentation 

temperature increased from 35 to 50 °C. The α-amylase activity found to be increasing 

as the fermentation pH rose from 4.0 to 7.0 (Fig. 1c). This was followed by a slight 

reduction in α-amylase activity above the 7.0. The highest enzyme activity was 

recorded at pH ranges of 6.0-7.0. The optimum fermentation conditions for α-amylase 

production were recorded at 36th hour, 35ºC and pH 6.0-7.0 by B. mojavensis SO-B11. 
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(b) 

 
(c) 

 

Figure 1 Impact of time cources (a), temperature (b), and pH (c) on α-amylase production. 

 

Purification of α-amylase 

The enzyme purification steps were (NH4)2SO4 precipitation (80%), dialyzed and 

DEAE-cellulose ion-exchange chromatography, respectively. The purification fold 

and yield were determined as 34% and 18 % respectively completion of purification 

steps. The purification results are represented in Table 1. The α-amylase secreted by 

Geobacillus stearothermophilus was purified to homogeneity (65-fold and 46% yield) 

through a series of steps 20. Recently, Xie et al. 15 have indicated 13.1 purification fold 

and 7.0% yield, Abdel-Fattah et al. 21 have pointed out 59.3 purification fold and 12.6 

% yield, and Shukla and Singh 22 have reported 37 purification fold and 16.8% yield 

using chromatography methods.  
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Table 1 Purification of amylase from B. mojavensis. 

Step  Total 

activity (U) 

 Total protein 

(mg) 

 Specific activity 

(U/mg) 

 Yield 

(%) 

 Fold 

Crude extract 

 

 283.374 

 

 188.444 

 

 1.504 

 

 100 

 

 1 

NH4)2SO4 

precipitation/Dialysis 

 106.705 

 

 8.746  12.201 

 

 38  8 

DEAE-Cellulose  50.929 

 

 0.982 

 

 51.870 

 

 18  34 

 

 

Molecular mass determination on SDS–PAGE 

The molecular mass of the purified enzyme which appeared as a single band on SDS-

PAGE was found to be 73 kDa (Fig. 2). Murakami et al. 23 reported α-amylases 

having molecular masses of 105 and 75 kDa, respectively. Asoodeh et al. 24 

determined the molecular weight of α-amylase as 68.9 kDa. Michelin et al. 25 

demonstrated amylase as a single band of about 75 kDa by SDS-PAGE. Another α-

amylase with molecular weight of 70 kDa was indicated by Zafar et al. 26. Different 

molecular masses of the α-amylases from various Bacillus sp. ranging from 42 to 

150 kDa have been reported 27. 

 

 
Figure 2 Molecular mass determination on SDS–PAGE. Lane a: standard proteins; Lane b: after dialyze c: purified 

enzyme from DEAE cellulose; Native-PAGE (using iodine stain) Lane d: standard  a-amylase; Lane e: purified 

enzyme from DEAE cellulose. 

 

Determination of kinetic parameters  

Kinetic studies of α-amylase were determined using soluble starch as substrate. The 

Km and Vmax values were estimated from a Lineweaver–Burk plot (Fig. 3). Values of 

V max and Km for the purified enzyme were 0,007964 mM and 2, 77 µmol min−1 

respectively. Aguilar et al. 28 declared the Km value of α-amylase as 3.44 mg/mL. 

Aguloglu Fincan et al. 29 determined Km and Vmax as 0.005 mM and 3.5 µmol min−1, 

respectively. 
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Figure 3 Lineweaver–Burk plot of purified  α-amylase from B. mojavensis. 

 

Impact of temperature on purified amylolytic activity and stability  

The impact temperature on amylolytic activity is shown on Fig. 4a, and the residual 

activities of purified enzyme were found as 37.1%, 70.9%, 82.7%, 90.3% and 97.6% 

at 20, 30, 40, 50, and 60 °C, respectively. The purified amylase produced from B. 

mojavensis SO-B11 exhibited optimal activity at 70 °C. The results revealed that the 

relative amylolytic activity sharply declined from 82.3% to 24.4% with increasing 

temperature from 80 °C to 90 °C, respectively. The optimum temperature for α-

amylase from Bacillus sp. ferdowsicou 24, Bacillus subtilis 8 and Anoxybacillus 

flavithermus 14 were found as 70, 60, and 70 °C, respectively. This reveals that the 

optimum temperature of purified amylase obtained from B. mojavensis SO-B11 

showed well parallelism with these studies. Thermal stability of the purified enzyme 

produced by B. mojavensis was examined by incubating the enzyme at different 

temperatures (30-180 min). The results of thermal stability are represented in Fig. 

4b. The purified enzyme was steady at temperature of 40 °C and 50 °C up to 180 

min. The 87.1% and 85.7% of residual enzyme activity was retained after 30 min of 

incubation at the temperature of 60 °C and 70 °C, respectively. According to the 

results obtained from thermal stability of purified α-amylase, the enzyme can be 

applied in brewing and food processing. 
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(a) 

 
(b) 

 
Figure 4 Impact of temperature on purified amylolytic activity (a) and stability (b). 

 

Effect of pH on purified α-amylase activity and stability  

The pH profile of the purified enzyme activity is depicted in Fig. 5a. As shown in 

Fig. 5a, the amylolytic activity is nearly the same at pH 5.0-7.0. The amylolytic 

activity sharply decreased from pH 4.0 to 3.0 and from pH 8.0 to 9.0. The purified 

α-amylase showed optimum activity at pH 5.0-6.0. Parallel results were found by 

some researchers such as Hamilton et al. 30, Sarikaya and Gürgün 31 and Kikani and 

Singh 32. The retained enzyme activity was about 96.2% at pH 7.0. The purified 

enzyme pH stability experimental results are depicted in Fig. 5b. The amylolytic 

activities did not significantly change between pH ranges of 4.0-8.0 for 120 min. The 

retained α-amylase activities obtained from B. mojavensis SO-B11 were defined as 

84.1%, 86.1%, 89.2%, 88.2% and 83.8% at pH 4.0, 5.0, 6.0, 7.0, and 8.0 respectively 
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for 120 min. These results indicated that purified novel enzyme can be utilized in 

starch saccharification and detergent industries.  

 

 
(a) 

 
(b) 

 

Figure 5 Effect of pH on purified amylolytic activity (a) and stability (b). 

 

Effect of Different Cations and Inhibitors on Purified α-Amylase Activity  

The influences of Zn2+, Mg2+, Hg2+, Mn2+, Ca2+, Cu2+ and Fe2+ and different inhibitors 

on purified α-amylase activity are depicted in Table 2. When compared with the 

control group, the enzyme activities in presence of Zn2+, Mg2+, Hg2+, Mn2+, Ca2+, 

Cu2+, and Fe2+ were determined as 82%, 86%, 38%, 119%, 121%, 79%, and 94% 

respectively. The purified enzyme was activated by Ca2+ and Mn2+, but slightly 

inhibited by Fe2+, Zn2+, Mg2+, and Cu2+. Lin et al. 33 suggested that enzyme was 

activated with Ca2+, while it was inhibited in the presence of Hg2+. The effect of 

various metal ions on purified α-amylase activity was reported by Mamo and 

Gessesse 34, Aguloglu Fincan and Enez 20, and Liu et al. 35. Our results are very close 
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to their studies. The highest inhibitory effect was obtained with EDTA. This 

inhibition can reveal that the purified α-amylase produced by B. mojavensis SO-B11 

is a metalloenzyme. Our results completely match with the results obtained by other 

investigations on the α-amylase 15, 36, 37. PMSF and β-mercaptoethanol did not show 

important influence on the purified α-amylase activity. This can make it obvious that 

serine residues and disulfide bonds are not essential for the amylolytic activity 38.   

 
Table 2 Effects of inhibitors and some metal ions on amylase activity 

Agent  Concentration (mM)  Relative activity of purified α-amylase (%)* 

PMSF  1  77 

 5  74 

 10  65 

DTT  1  97 

 5  93 

 10  92 

β-mercaptoethanol  1  96 

 5  95 

 10  92 

EDTA  1  78 

 5  78 

 10  64 

Mn+2  1.5  119 

Fe+2  1.5  94 

Zn+2  1.5  82 

Mg+2  1.5  86 

Hg+2  1.5  38 

Cu+2  1.5  79 

Ca+2  1.5  121 

Control  0  100 
*Activity remaining after incubation for 30 min at 37 ◦C. 

 

Determination of the end products of soluble starch by TLC 

The purified α-amylase was incubated with soluble starch for 15, 30 and 240 min. It 

is seen from the Fig. 6 that the purified α-amylase produced by Bacillus mojavensis 

SO-10 hydrolyzed the soluble starch. There were various end products after hydrolysis 

of soluble starch by amylase. Maltose (G2), maltotriose (G3), maltotetraose (G4), and 

maltooligosaccharides occurred after 15 min and glucose (G1), maltose (G2), 

maltotriose (G3), maltotetraose (G4), and maltooligosaccharides after 30 min. After 

240 min, whole soluble starch hydrolyzed into (G1). Parallel finding was described by 

Takasaki 39. These results described that purified α-amylase can be used in starch 

liquefying industry or food industries because of the end products of (G1), (G2), (G3), 

(G4), and maltooligosaccharides. 
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Figure 6 End products of soluble starch by Thin-layer Chromatography TLC. Lane A, glucose (G1), maltose (G2), 

maltotriose (G3) and  maltotetraose (G4); Lane B-D, reaction time for 15 min, 30 min and 240 min, respectively. 
 

Industrial applications of purified α-amylase  

The capable of raw starch hydrolyzing of corn and wheat by purified α-amylase 

Purified α-amylase capable of hydrolyzing raw starch was examined by defining the 

percentages of hydrolyzing of corn and wheat starch grains. After 4 h of incubation, 

the purified α-amylase hydrolyzed the raw wheat and corn grains in the ratio of 36.7% 

and 39.2% respectively. Parallel results were reported by Božić et al. 40 and Hayashida 

et al. 41. Considering the literature, this is the first study to hydrolyze the raw starch by 

α-amylase obtained from B. mojavensis SO-B11. It is too important to degrade the raw 

starch grains under the gelatinization temperature of starch due to the economic 

approach. α-Amylase produced by B. mojavensis SO-B11 can be utilized for 

hydrolyzing of raw wheat and corn starch in various industries such as food, 

fermentation and gelatinization of starch. The hydrolyzed raw corn and wheat starch 

granules were monitored with Olympus CX31 light microscope (Fig. 7). The rate of 

corn and wheat starch grains decreased after 4 h of degrading, while the structure of 

starches grains were moderately damaged. 
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Figure 7 Raw starch hydrolyzing. (A) Corn starch  before hydrolyzing; (B) Corn starch  after hydrolyzing; (C) Wheat 

starch  before hydrolyzing; (D) Wheat starch  after hydrolyzing. 

. 

 

Influence of some commercial detergents and surfactants on purified enzyme 

activity  

The influence of some surfactants and trading domestic washing detergents on the 

purified B. mojavensis α-amylase was experimented. As demonstrated in Fig. 8, the 

purified B. mojavensis α-amylase exhibited significant stability with surfactants and 

domestic washing detergents such as Omo (44.7%), Tursil (51.9%), Alo (63.1%), SDS 

(60.9%), Tween-10 (97.2%), Tween-40 (99.5) and Triton X-100 (98.2%) for 60 min 

and Omo (41.3%), Tursil (53.2%), Alo (73.8%), SDS (69.7%), Tween-10 (102.9%), 

Tween-40 (99.5%) and Triton X-100 (101.3%) for 120 min. Parallel findings were 

indicated by Goyal et al. 42 and Pathak and Rekadwad 43.   
 

 

Figure 8 Influence of some commercial detergents and surfactants on purified enzyme activity. 
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The starch amounts of immature apple juices (green and red) and theirs 

clarification by purified enzyme 

Immature starch amounts of red and green apple were tested by using process of Carrín 

et al. 19. The starch amounts of immature red apple were determined as 0.59 g/L for 

soluble starch and 3.87 g/L for insoluble starch and the starch amounts of immature 

green apple were determined as 0.52 g/L for soluble starch and 3.68 g/L for insoluble 

starch. Digesting of soluble starch of immature red and green apple was experimented 

for 30, 45, and, 60 min. The degrading percentages of soluble starch contents of red 

apple and green apple were found as 61% and 58%, 74% and 71%, 85%, and 80% for 

30, 45, and 60 min, respectively. The finding results demonstrated that purified α-

amylase should be applied in apple juice industry.  

 

CONCLUSIONS 
 

A thermo and pH stable α-amylase were produced, purified, characterized and utilized 

for various starch industries. The amylolytic activity did not meaningfully change 

between pH ranges of 4.0-8.0 and temperature degrees of 40, 50, and 60 °C for 120 

min. The purified enzyme exhibited stability in the presence of surfactants and metal 

ions. The purified enzyme obtained from B. mojavensis SO-B11 was capable of 

hydrolyzing wheat and corn raw starch granules. G1, G2, G3, G4, and 

maltooligosaccharides were obtained after TLC analysis. In addition, the newly 

purified alpha amylase should be used in domestic washing detergents and apple juice 

clarification industries.  
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