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Abstract: wastewater treatment (WT) is of major importance on modern cities, removing wastewater 

pollutants resultant from anthropogenic activities. The unique abilities of microbes to degrade organic matter, 

remove nutrients and transform toxic compounds into harmless products make them essential players in 

waste treatment. The microbial diversity determines the metabolic pathways that may occur in WT and quality 

of treated wastewater. Therefore, understanding WT microbial community structure, distribution, and 

metabolic functioning is essential for development and optimization of efficient microbial engineering 

systems. Since cultivation methods can only detect a small fraction of the microbial diversity, the use of 

culture-independent molecular methods has circumvented this issue, allowing unprecedented access to 

genes and genomes used for microbial composition and function evaluation. Traditional approaches like 

RAPD, DGGE, ARDRA, RISA, SSCP, T-RFLP, and FISH and modern approaches like microarray, qPCR, 

and metagenomics are essential techniques for identifying and depicting the total microbial community 

structure and their interaction with environmental and biotic factors. Thus, this review describes traditional 

and state of the art molecular techniques which provide insights into phylogenetic and functional activities of 

microbial assemblages in a WT system. 

HIGHLIGHTS 
 

 Culture-independent techniques are an optimal alternative for efficient wastewater treatment. 

 Knowledge of microbial diversity is fundamental for wastewater treatment. 

 Vanguard techniques provide insights into functional activities in wastewater treatment. 
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INTRODUCTION 

The global demand for water has been continuously rising due to population growth and socioeconomic 

activities increasing. In the last hundred years the world population has tripled while water consumption has 

increased six-fold. Currently, wastewater treatment is indispensable in modern cities, removing wastewater 

pollutants resultant from anthropogenic activities. Composition of wastewaters depends on their origin, but in 

general, major contaminants include organic compounds, xenobiotics, metals, suspended soils and nutrients 

(mainly nitrogen and phosphorus) [1]. The unique abilities of microbes to degrade organic matter, remove 

nutrients and transform toxic compounds into harmless products make them essential players in waste 

removal. The microorganisms present in WT are bacteria, archaea, eukaryotes (fungi, algae, protozoa and 

metazoa), and viruses (e.g. bacteriophages). Of those, bacteria comprises the main components of WT 

community [2]. Operating parameters of WT influences the microbial structures and their species 

composition. The microbial community structure determines the metabolic pathways that may occur in WT 

and the quality of treated wastewater. In this way, to investigate the relationships between microorganisms 

responsible for pollutant removal from wastewater, various microbial techniques have been used. 

Initial investigations into the composition of wastewater microbial communities were based on culture-

dependent techniques. Its methods for microbial identification require the recognition of differences in 

morphology, growth, enzymatic activity, and metabolism to define genera and species [3]. The mentioned 

traditional techniques are based in isolation and characterization of microorganisms using growth media such 

as Luria–Broth, Nutrient Agar, and Tryptic Soy Agar [4]. However, since the majority of bacteria cannot be 

easily cultivated, these culture-dependent techniques select for fast-growing heterotrophs that are able to 

best adapt to growth conditions and therefore culturable strains do not accurately represent the composition 

and diversity of natural microbial communities [5]. For example, in pulp and paper wastewaters, total 

microscopic bacterial counts averaged 1010 cells/mL while culturable counts ranged between 107 and 108 

cells/mL [6]. 

In the last decades studies on microbial structure in a variety of treatment systems has been conducted 

through the application of culture-independent techniques such as denaturing gradient gel electrophoresis 

(DGGE) [7], terminal restriction fragment length polymorphism (T-RFLP) [8], cloning [9], and FISH [10]. These 

traditional molecular methods highlighted the dominance of the phylum Proteobacteria, followed mainly by 

Bacteroidetes, Chloroflexi, Actinobacteria, Planctomycetes and Firmicutes in activated sludge, one of the 

most broadly used technology for treating sewage [11]. These observations have been confirmed when 

further high throughput sequencing (HTS) techniques were applied. Furthermore, HTS allowed the 

identification of groups that had remained undetected with traditional molecular methods, deepening our 

knowledge on the diversity of activated sludge [12]. Additionally, metagenomic studies pointed out to the 

dominance of functional categories involved in carbohydrates, protein, amino acids derivatives and aromatic 

compounds metabolism [13,14].  

In this review, we detailed described the traditional and emerging molecular approaches for 

characterizing microbial community composition and structure.  

Microbial community fingerprint 

In the fingerprinting techniques (Table 1) a genomic region from all community members of wastewater 

samples are amplified by PCR and used for identification. The profiles generated by these techniques are 

called DNA fingerprints.  

Random Amplification of Polymorphic DNA (RAPD) 

The RAPD method is a technique based on the amplification of nonspecific fragments of DNA. In general, 

short (8–12 nucleotides) and low annealing temperature primers are used [15]. From small quantities of DNA 

template, a single reaction and a random amplification various length products are generated. Depending on 

the microbial community complexity, different band patterns are generated during gel electrophoresis. 

Various length products variations in the microbial communities can be evaluated mainly by differences in 

the number and length of the amplicons. Although the analysis of amplicons has a lower resolution compared 

with nucleotide sequences, in many cases analysis by RAPD has been used as an efficient and economically 
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viable technique for the analysis of large numbers of microbial communities [16]. Unlike conventional PCR, 

RAPD does not require any specific knowledge about targeting organisms. Due to its feasibility, it is widely 

used for genetic fingerprinting of microbial communities and closely related microbial species and strains 

[17].  

Denaturing or Temperature Gradient Gel Electrophoresis (DGGE or TGGE) 

Denaturing gradient gel electrophoresis (DGGE) [18] and temperature gradient gel electrophoresis 

(TGGE) [19] are techniques used to separate short- to medium-length DNA fragments based on their melting 

characteristics. Both should be performed using a GC-clamp (CGC CGG GGG CGC GCC CCG GGC GGG 

GCG GGG GCA) attached to the 5′ end of one of the primers in order to not allow the complete separation 

of DNA strands during electrophoresis. In DGGE analysis, PCR products pass through polyacrylamide gels 

containing a progressive gradient of urea plus formamide (chemical denaturant). The separation of PCR 

products is based on the lower electrophoretic mobility of a partially melted double-stranded DNA molecule. 

Amplicons which has different sequence composition will migrate differently and stop at various positions, 

resulting in the formation of different band patterns [20]. TGGE is based on the same principle of DGGE 

except that a temperature gradient is applied rather than a chemical denaturalization. The sequence of 

different amplicons determines the melting behavior, so that fragments achieve different positions of the gel. 

Both techniques are been used to investigate mixed microbial communities [18–19]. In addition, for taxonomic 

identification, bands from DDGE or TGGE gel are excised, reamplified, and sequenced. 

Amplified Ribosomal DNA Restriction Analysis (ARDRA) 

The ARDRA involves amplification of the conserved region of ribosomal gene using specific primers 

through polymerase chain reaction followed by enzymatic digestion of the amplicons [21]. The cleaved 

fragments are segregated on agarose or polyacrylamide gel, and the emerging profile of bands is used for 

grouping the microbial community. Generally, for 16S rRNA gene amplicon, tetra cutter restriction enzymes 

(e.g., RsaI, HaeIII) are used. Restriction enzymes that possess the same recognition sequence should not 

be used [22]. Although ARDRA provides little about the type of microorganisms in the sample, the method is 

useful for rapid monitoring of microbial diversity over time, or to compare microbial communities in response 

to environmental condition changes [23]. 

Terminal Restriction Fragment Length Polymorphism (T-RFLP) 

The T-RFLP includes fluorescent labeling of PCR products followed by restriction digestion. For 

amplification one or both primers should have their 5’ end labeled with a fluorochrome molecule, Rox or FAM 

[24]. The mixture of PCR products is subjected to restriction digestion by using one or more restriction 

enzymes. After the restriction digestion, fragments are separated by polyacrylamide gel electrophoresis 

coupled to a DNA sequencer. Different sized labeled fragments produce a unique signature of each microbial 

community [5]. In this technique, only fluorescently labeled terminal fragments are detected, while other 

unlabeled fragments are not considered.  

Ribosomal Intergenic Spacer Analysis (RISA) 

The RISA focus on the intergenic spacer region, called ISR [25]. The most used spacer region is between 

large 23S and small 16S subunit of rRNA operon as there is a significant heterogeneity in terms of nucleotide 

sequence and length. RISA fragments can be generated by PCR with primers, which are complimentary to 

23S and 16S rRNA genes [26]. The resulting amplicons are a mixture of fragments representing the most 

dominant community members [27]; this methodology provides the microbial community structure, with each 

band corresponding at least to one microorganism of the community. RISA is used to study the microbial 

community structure in anaerobic treatment facilities or bioreactors [26]. 

Single-Strand Conformation Polymorphism (SSCP) 

The SSCP is a sensitive method used to study variations in nucleotide sequences of identical length and 

to detect polymorphism in DNA amplicons [28]. This method allows separation of different amplicons due to 

their different conformation using polyacrylamide gel electrophoresis and ultimately helps in distinguishing 

different sequences. In SSCP, the environmental DNA is first amplified using PCR and then denatured. After 

denaturation, single-stranded amplicon is separated on gel electrophoresis. Amplicons having a minute 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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difference like single base substitution may migrate differently in non-denaturing polyacrylamide gel due to 

different conformation. The technique works on the principle that under non-denaturing conditions, DNA can 

form different secondary structures based on specific sequences [29]. 

Table 1. Main advantages and disadvantages of fingerprint techniques that are commonly employed in the identification 
of wastewater microorganisms  

Technique Advantages Disadvantages WT studies employing the 
respective technique 

RAPD Cheap and does not require 
prior knowledge. 

It has poor reproducibility, and 
requires strict standardization of 
PCR conditions. Different final 
results can be obtained due to 
variations in DNA polymerase, 
DNA template and primer amount 
and annealing temperatures. 

Municipal wastewater [30 – 31]; 
Pharmaceutical wastewater [32]; 
Industrial wastewater [17, 33 –
34]. 

DGGE 
TGGE 

Good sensibility and it is 
possible to excise band from gel 
for amplification and 
sequencing. 

Dissimilar DNA sequences of 
different bacteria species can 
display the same separation as a 
result of the same GC contents. 

Municipal wastewater [30, 35 –
37]; Industrial wastewater [17, 38 
– 39]. 

ARDRA It is a fast, simple and accurate 
molecular tool to determine the 
environmental population 
profile. 

It has lower discriminatory power 
compared to other fingerprinting 
techniques such as DDGE, 
TGGE, T-RFLP, RISA and SSCP. 

Municipal wastewater [40]; 
Industrial wastewater [41–42, 85]. 

T-RFLP It gives the relative amounts of 
bacteria of a sample with good 
sensibility by using fluorochome. 

The identification of different 
bacteria depends of the restriction 
enzymes that are used. 

Municipal wastewater [43 – 46]; 
Industrial wastewater [47 – 48]. 

RISA It has good discriminatory power 
and is less likely to produce 
inconsistent results.  

Detects only differences in ISR 
fragment length. Different bacteria 
with the same ISR length will not 
be discriminated.   

Industrial wastewater [25–27,49–
50]; Pharmaceutical wastewater 
[51]. 

SSCP It is quick, simple and cost-
effective.  

There is currently no theoretical 
model for predicting the exact 
conformation of a DNA fragment 
under different parameters such 
as mutation, size of DNA 
fragment, G and C content, 
porosity of gel matrix, DNA 
concentration, ionic strength and 
pH. 

Municipal wastewater [52]; 
Industrial wastewater [53 – 54]; 
Gelatinaceous wastewater [55]. 

Nucleic acid hybridization for microorganisms detection 

Hybridization techniques (Table 2) based on the interaction between labeled single-stranded nucleic 

acids molecules (probes) and their complementary targets allow the determination of the relative and 

absolute abundance of genes and their transcriptional products. 

Fluorescent in Situ Hybridization (FISH) 

The FISH procedure enables in situ phylogenetic identification and counting of individual microbial cells 

by culture-independent probe-based genome. A large number of molecular probes targeting 16S rRNA genes 

have been reported at various taxonomic levels [56]. The technique involves hybridization of 

oligodeoxynucleotide complementary (probe - generally 18 to 30 nucleotides long) to rRNA gene sequences 

that have phylogenetic group-specific sequence signatures. In laboratory, microbial cells from wastewater 

samples are often fixed by ethanol or paraformaldehyde treatment, and their rRNA gene is hybridized with 

fluorescently labeled taxon-specific rRNA-targeted probes. The abundance of rRNA gene in bacterial cell, 

apparently drives lack of lateral gene transfers, and a good length (e.g., 16S rRNA size is 1500 bp) serve as 

a basis for hybridization of group-specific fluorescent probes complimentary to rRNA gene. The FISH probes 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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bound to rRNA can be detected by epifluorescence microscopy because contain a fluorescent dye at the 5´ 

end. The advantages of this technique are: (i) it is a relatively fast, if the probes are available in the market; 

(ii) it allows the differentiation of active microorganisms (ii) it does not require highly trained personnel; (iv) 

the artifacts and bias introduced due to the DNA extraction, PCR artifacts, and cloning are avoided [57]. The 

disadvantages of this technique are the amount of time and work required for design the probes that in some 

cases are not as specific when taking metabolic criteria. In addition, for quantification, image analysis is often 

difficult. Few experiments have been reported to investigate and enumerate the various bacterial groups at 

particular stages through wastewater treatment systems. 

Microarray 

The microarray is based on the ability of complementary sequences of nucleic acids to hybridize one 

another. The technique was originally devised for studies of differential gene expression in health-related 

issues, but their applications goes beyond for environmental studies like differential gene expression in 

response to environment pollutants [58]. Usually, oligonucleotide probes targeting rRNA genes or functional 

genes are attached to the surface of a chemically treated glass slide (spotting). Either DNA or RNA is 

extracted from a wastewater sample of interest and incubated with slide under conditions where 

complementary sequences can hybridize. Since the hybridized material has been previously labeled with a 

radioactive or fluorescent group, intensity of radiation/fluorescence reflects the concentration of the specific 

targeted sequence [59]. The technology can allow the detection of a specific strain within an entire array of 

microorganisms from wastewater samples or analyze whether specific genes are turned on/ off in a particular 

sample [60]. The sensitivity of microarrays is always a critical factor. The advantage of this system over FISH 

is that hundreds of probes can be spotted on the microarray surface which can allow the detection of 

hundreds of specific target sequence [61]. 

Quantitative PCR (qPCR) 

The qPCR allows the quantification of a number of target genes in wastewater samples [62]. Specific 

targeted DNA sequences are amplified and quantified simultaneously in real time, with the progress of 

amplification reaction. To determine gene copy numbers of unknown wastewater samples, a calibration curve 

is created. For total wastewater bacterial estimation, the number of 16S rRNA genes is quantified using 

specific primers and the genomic DNA purified from wastewater samples [63]. The qPCR uses either 

intercalating fluorescent dyes such as SYBR Green or fluorescent probes (e.g. TaqMan probes, molecular 

beacons, scorpion probes, etc.) in order to measure the accumulation of PCR amplicons in real time as the 

amplification progress. The dynamics and metabolic activity of Pseudomonas population from pulp mill 

wastewater microbial communities were studied using qPCR [64]. This methodology was used also to study 

dominant phylogenetic groups of the bacteria in a model plant-based industrial WT system [65–66]. 

 

Table 2. Main advantages and disadvantages of hybridization techniques that are commonly employed in the 
identification of wastewater microorganisms. 

Technique Advantages Disadvantages WT Studies employing the 
respective technique  

FISH Does not require special 
training. 

Difficulty for identify targets that have 
low DNA copies; high time consumption 
and laboratory efforts. 

Municipal wastewater [43, 67–
70]; Industrial wastewater [39, 
71–72]. 

Microarray It is rapid and sensitive, 
and one protocol can be 
used to identify different 
targeted bacteria 
simultaneously on a 
single array. 

Low signal intensity due to insufficient 
penetration and improper contact of 
probes with targeted DNA; besides the 
fading away of fluorochromes upon 
excitation can lead to inaccurate 
analysis. 

Municipal wastewater [73–75]; 
Industrial wastewater [76–77]. 

qPCR Simultaneously amplifies 
and quantifies the DNA 
sequence of interest. 

It does not determine the number of 
cells but estimates the number of 
copies of the tagged gene. 

Municipal wastewater [35, 45, 
52, 65, 73, 78–80]; Industrial 
wastewater [48, 64, 66]. 
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6 Urrea-Valencia, S.; et al.  
 

 
Brazilian Archives of Biology and Technology. Vol.64: e21200193, 2021 www.scielo.br/babt 

DNA sequencing for taxonomic classification  

Advances in molecular biology in the last decades, together with the accessibility to high-throughput 

sequencing techniques (Table 3), empowered the study of environmental DNA (eDNA) [81]. The knowledge 

of microbial ecology is fundamental to improve bioprocesses such as wastewater treatment [82]. High-

throughput sequencing techniques have the potential, not only to access the global diversity of microbiomes 

but also to determine the biogeography of sludge bacterial communities of wastewater treatment plants 

increasing the ecological knowledge of these systems [83]. 

Clone Library  

Before next-generation/high-throughput sequence-based microbial diversity analysis, the most widely 

used technique was clone library-based. The construction of the library consists of the following steps: i) DNA 

extraction, ii) cloning of DNA fragments at random into a suitable vector, iii) transforming a host bacterium, 

and iv) sequencing the clone library [23]. Later, the fragments compared with known sequences of a database 

such as GenBank, RDP Ribosomal Database Project (RDP), Silva, Greengenes, etc. for taxonomic 

assignment. Based on good-quality sequence size, cloned sequences are assigned at a taxonomic level like 

phylum, class, order, family or genus. However, one of the limitations of this technique is being time-

consuming and labor intensive. Large libraries insertions of DNA fragments (100 to 200 kb) are suitable for 

research multigene and are considered a powerful approach to isolate new microbial genes. DNA recovery 

of high molecular weight is, however, a requirement for use vectors with high capacity. This technique has 

been used to study microbial diversity in wastewater [84] and slaughterhouse treatment filters [85].  

454 Pyrosequencing  

The method 454 is based on the “sequencing by synthesis” principle. In this method the target gene, 

generally 16S rRNA gene is amplificated by PCR or DNA is randomly fragmented (400–600 base pairs). 

Adapters (short sequence of DNA) are attached to the DNA fragments, and tiny resin beads are added to the 

mixture. The adaptor sequences complementary bind with template DNA which helps DNA fragments to bind 

directly to the beads. The DNA fragments are polymerized several times by polymerase chain reaction on 

each bead. Beads without sequence are filtered to remove, and the remaining DNA-containing beads are 

placed into wells on a sequencing plate for sequencing. Nucleotides are added to the wells in turns of one 

type of base at time. After single base incorporation into DNA, the chemical signals, i.e., light generated by 

luciferase enzyme, are converted into light that is recorded by CCD camera. The intensity of light varies 

proportionally with the consecutive number of nucleotides [86–87]. To determine the sequence of DNA 

fragment sequenced, this pattern of light intensity is plotted in a graph. This technique has been widely used 

in recent years to analyze microbial communities from different wastewater treatment plants [88–92]. 

Illumina 

The Illumina technology is based on sequencing-by-synthesis method using reversible dye termination 

nucleotides. Along with DNA polymerase, all four fluorescent label nucleotides are added consecutively to 

the flow cell channels to sequence millions of clusters on the flow surface. The DNA is randomly fragmented 

(200–600 base pairs) or 16S rRNA gene is amplificated by PCR, and adapters are linked to the end of the 

fragments. Unlabeled nucleotides and DNA polymerase are added to join DNA strands which create “bridges” 

between double-stranded DNA (dsDNA). Using heating, dsDNA is denatured into single-stranded DNA. The 

denaturation step leaves several millions of condensed clusters of DNAs that are produced in each flow 

channel. After that, sequencing cycles started by adding primer, DNA polymerase, and four labeled reversible 

terminators [87]. Using laser excitation, the emitted fluorescence from each cluster is captured and bases 

are identified. In Illumina sequencing, DNA sequence is analyzed base by base, making it a highly accurate 

method [93]. This technique has been an important tool for study of microbial community of waste from leather 

industry [66], water basin treatment [83] and WT sludge [94]. 

Ion Torrent 

The Ion Torrent method also uses the technology of sequencing by synthesis, but its technology differs 

from the previous one; instead of fluorescence it measures the H+ ion release during base incorporation [95]. 

Chemical signals are directly transferred into digital information in Ion Torrent sequencer. The first step in Ion 

Torrent workflow is the target amplification or DNA cleavage and it is binding to Ion Torrent adapters. The 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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library binds to beads and is amplified by emulsion PCR. Beads coated with million copies of the template 

are placed in chip wells. The template-loaded chip is placed in Ion Torrent sequencer [96]. Individual bases 

are introduced one at time and are incorporated by DNA polymerase. For each base incorporated, a proton 

is released that results in pH change, which is detected by ion sensor that transforms the chemical changes 

into digital information. The chip records two bases if voltage is doubled by detection of two identical 

nucleotides. Ion Torrent technique has proven to be quite versatile, having already been used to detection of 

silver nanoparticle residues in sludge [97], in treatment of laundry wastewater [98], food waste-recycling 

wastewater [99] and removal of nitrogen from urban water treatment [65]. 

Table 3. Main advantages and disadvantages of DNA sequencing techniques that are commonly employed in the 
identification of wastewater microorganisms 

Technique Advantage Disadvantages WT Studies employing 
the respective technique 

Clone Library Average read length up to 1500 
bp with paired-end sequencing. 

It is laborious and time-
consuming. Typical gene 
clone libraries include fewer 
than 1,000 sequences. 

Municipal wastewater [84, 
100 – 102]; Industrial 
wastewater [25, 85, 103]. 

454 
Pyrosequencing 
(GS FLX 
Titanium XL+ 
model) 
 

Clonal amplification by emulsion 
PCR. Average read length up to 
1000 bp with paired-end 
sequencing. Throughput up to 
450 Mb. 

It is an expensive technology, 
approximately US$ 9,500 per 
Gb. 

Municipal wastewater [14, 
90 – 91, 104 – 106]; 
Industrial wastewater [66, 
92]. 

Illumina  
(MiSeq model) 

Clonal amplification by bridge 
amplification. Average read 
length up to 300 bp with paired-
end sequencing available. 
Throughput up to 15 Gb. 

It is an expensive technology, 
approximately US$ 110 per 
Gb. 

Municipal wastewater [35, 
79, 83, 107 – 110]; Industrial 
wastewater [95, 111]. 

Ion Torrent  
(Ion S5 530 
model) 

Clonal amplification by emulsion 
PCR. Average read length up to 
400 bp with paired-end 
sequencing available. 
Throughput up to 8 Gb. 

It is an expensive technology , 
approximately US$ 475 per 
Gb. 

Municipal wastewater [65, 
112 – 115]; Industrial 
wastewater [97, 116 – 118]. 

CONCLUSION 

The dynamic and composition of wastewater treatment systems microbial communities have advanced 

with molecular methods development and appliance. Molecular methods allowed researches glimpsing into 

the “black box” and getting information to improve wastewater treatment process. Almost a decade of 

research on metagenomic techniques showed its ability to identify novel and rare unculturable organisms 

and their function in maintaining biogeochemical cycles. However, conventional techniques of microbial 

community analysis still remain important as many findings of high-throughput studies need to be validated 

and substantiated using conventional techniques like qPCR, FISH, Microarray etc. For the next steps in 

understanding wastewater microbiomes, richer multi-omic studies will be necessary. This goal can be partially 

accomplished by adapting current sequencing techniques to probe under-appreciated aspects of microbial 

community behavior, such as strain-level phenomena, temporal dynamics and functional activity. However, 

a complete understanding of nature and functioning of microbial community with environmental interactions 

will require the development and application of alternative, high-throughput molecular biological screens. To 

achieve success in this field will not be possible without the widespread adoption of integrative methods for 

managing and exploring such data. These include basic statistical considerations, such as methods for 

normalizing functional activity measurements against metagenomic potential, as well as the continued 

application and development of supervised and unsupervised approaches for identifying patterns in large 

multi-omic databases.  
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