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Abstract: Microgrids (MD) is a new technology to improve efficiency, resilience, and reliability in the electricity 

sector. MD are most likely to have a clean energy generation, but the increase of microgrids with this kind of 

generation brings new challenges for energy management (EMS), especially concerning load uncertainties 

and variation of energy generation. In this context, this study has the main objective to propose a method of 

how to attend this matter, verifying the difference between the day before and real-time. The EMS proposed 

analyses the MD in real-time, calculating the deviation between dispatched and what was predicted to happen 

in the operation point in a three-dimensional analysis approach, considering renewable energy generation, 

battery State of Charge (SOC) and load curve. The system categorized the deviation in three possible 

quantities (small, medium, or high) and it acts accordingly. For the Next Operation Point predictor are used 

an artificial neural network (ANN) methodology. For the Decision Support System, it’s used a fuzzy logic 

system to adjust the next operation point, and it uses a mixed-integer linear programming (MILP) approach 

when the deviation is too high, and the dispatched operation is unfeasible. Simulations with real data and 

information of a pilot project of MD are carried out to test and validate the proposed method. Results show 

that the methodology used to attend the matters of uncertainties and variation of energy generation. A 

reduction of operational cost is observed in the simulations. 

Keywords: Microgrid; Real-time; Energy Management System; Fuzzy logic; Artificial Neural Networks. 

 

HIGHLIGHTS 
 

• An approach using AI techniques is proposed to evaluate real-time versus dispatch on a microgrid.  

• Artificial Neural Network is used to predict load and renewable generation operation point on a 

microgrid. 

• A novel approach with three-dimension analysis for deviation between day-ahead dispatch and 

real-time is presented. 

• Adjustments in operation point are performed using fuzzy logic or MILP according to deviation 

between dispatch and real-time operation points. 
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INTRODUCTION 

In the last couple of decades, it has been observed a great rise in electrical energy demand all around 

the world, bringing concern about how to attend to this demand with a low environmental cost [1]. 

Researchers, government authorities, and the private sector are uniting efforts to implement and strengthen 

new technologies in the electric sector to improve efficiency, resilience, and reliability in this sector, such as 

distributed generation, battery energy storage systems, electric vehicles, and microgrids. 

Microgrids (MD) can be defined as a group of interconnected loads (controllable or not) and distributed 

energy resources (DER) with defined electrical boundaries that act as a single controllable entity and can 

operate both grid-connected and island mode. DER, such as distributed energy storage systems (DES) and 

distributed generators (DG), may increase the quality and reliability of electric energy on the MD and the 

resilience of the wider grid [2-3]. However, these DER bring new challenges concerning energy management 

to the utility grid and to the MD itself, increasing interest in research about energy management systems 

(EMS).  

Stluka and coauthors [4] presents an approach of energy management optimization taking into account 

utility and demand-side objectives trying to achieve a point that is good for both sides. The problem is 

formulated separately for the utility and MD, but the optimization is realized with both as a unity. The proposed 

method is tested in a real MD and it’s observed a reduction in energy annual costs.  

A two-layer strategy has been proposed in [5–8] on which variation of energy generation with solar and 

wind resources is taken into consideration. In Jiang and coauthors [5], the first layer is responsible for 

planning the MD, generating an optimal dispatch for the given situation, while the second layer acts in real-

time trying to adjust with possible technical restrictions that may arise. Hu and coauthors [6] compares a 

system with two layers with a classic optimal dispatch using a mixed-integer linear programming system for 

the task to manage the energy resources of an MD. In Wang and coauthors [7] a high penetration of 

renewable resources is considered to the EMS proposed, on which the second layer finds and adjusts errors 

between what was planned the day before and what is happening in real-time. In Zeng and coauthors [8] the 

real-time layer also considered load and energy prices uncertainties using dynamic programming and artificial 

neural networks. 

Also, some studies focus only on real-time EMS [9–12]. In Subramanian and Garcia [9] was developed 

some algorithms that take into account the dispatch of interruptible loads and DES, seeking a reduced 

operational cost. In Rahbar and coauthors [10] minimize operational cost is also pursued, but that is possible 

by reducing the use of utility energy and optimizing the energy flow of DES, assuming to know in advance 

the energy consumption and generation on the MD in a given finite time interval. In Dehgahnpour and Nehrir 

[12] is proposed EMS using Nash Bargain Solution on which there is a controller for each DER with particular 

objective functions and restrictions and based on these. Different scenarios with demand response programs 

are considered to test the proposed method.  

Other studies have shown a system with a third layer inserted in between the day before layer and real-

time layer, called the intra-day layer (13). This intra-day layer has the objective to reduce the divergence 

between what was planned the day before and real-time information, using the data collected by the intra-

day layer to obtain more accurate predictions in the real-time layer, improving operation in MD. A Model 

Predictive Control (MPC) approach was developed in Perez and coauthors [14] considering both connected 

and islanded mode. The authors assure an optimal system operation for both modes, seeking to reduce 

impacts of peak demand and utility energy costs in connected mode and improvements in continuity 

indicators while in islanded mode.  

An economic analysis was conducted in de Lara Filho and coauthors [15] intended to reduce energy 

costs in a public university in Brazil. A computational tool was used to optimize the contracted demand and 

simulate annual savings with three different possibilities: Demand Side Management strategies; use of the 

free market; and a PV generation system. All three possibilities result in expressive annual savings.  

In Machado and coauthors [16] a comprehensive overview of research topics and recent developments 

in microgrid operation are presented, aiming to present a broad vision of the distribution system based on 

MDs operation at all its levels.  First, a multi-objective optimization is presented aiming to minimize 

operational costs as well as maximize battery life span. Second, is presented the interaction between MDs 

and theirs DERs, and the distribution network was modeled representing the grid operation as a unity. Also, 

a collaborative optimization for multiple MGs operating together is presented. At last, a theoretical MD 

operation framework through decentralized energy markets is discussed as well.   

The main objective of the present study is to propose a method for a real-time energy management 

system for microgrids, aiming to reduce the divergence between the day-ahead dispatch and real-time 
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operation, especially concerning load uncertainty and photovoltaic variation of energy generation. A load and 

energy generation predictor is developed using artificial neural networks to predict the next operation point. 

Simulations are carried out using information from a real MD and these are used to evaluate the proposed 

method under different scenarios.  

This works presents a new approach to calculate deviation between day-ahead dispatch and real-time 

data. A three-dimension deviation calculation, considering renewable energy generation, battery State of 

Charge (SOC) and load curve, is used to analyzed possible divergence that appears, carrying the inspection 

of the operation point in a global way. The EMS will perform its action based on the calculated deviation, and 

adjustments in operation point are performed using fuzzy logic or MILP according to deviation between 

dispatch and real-time operation points. 

This paper is organized with the following section. Material and Methods brings all the information, data, 

and methods used to develop the EMS, also detailing all parts of the proposed system. Results present the 

main results obtained from the simulations of scenarios and a discussion about them is carried out. The 

conclusion summarizes the results obtained and brings the final considerations.  

MATERIAL AND METHODS  

For the development of this study, real measured data and documents were used, such as the load 

profile of a commercial building, meteorological data provided by an Itaipu Binacional’s research project, and 

information about a real MD located at the Ballroom from Barigui Park, in Curitiba. The MD has a photovoltaic 

generation with a capacity of 32,64 kWp, a DES is composed of three lithium phosphate batteries with a unit 

capacity of 9.6 kWh (total of 28,8 kWh), with a nominal power of 2.9 kW and a charge and discharge current 

of 100 A.  

The meteorological data includes irradiance (W/m²), ambient temperature (°C), the temperature of the 

photovoltaic module (°C), and wind speed (m/s). Data were collected in the city of Foz do Iguaçu, Paraná, 

Brazil, for 11 months, with a ten-minute interval. The load data were first presented in [17] and it consists of 

three load profile curves, namely: working days load profiles; Saturdays load profile; Sundays and holidays 

load profile. Each profile is represented as a curve in  

Figure 1,  

Figure 2 and  

Figure 3, respectively.  

 

 

 

 

 
 

Figure 1. Working day load profile. Adapted from [17]  
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Figure 2. Saturdays load profile. Adapted from [17] 

 
 

Figure 3. Sundays and holidays load profile. Adapted from [17] 

To reconcile the quantity of load data and meteorological data, a load emulation was carried out based 

on the three load curves presented. A curve fitting was necessary to adapt the monthly energy consumption 

on the MD in the study. The energy consumption used for it is shown in Table 1. 

Table 1. Energy Consumption used for the MD 

Month / Year 
Monthly energy 
consumption (kWh) 

Month / Year 
Monthly energy 
consumption (kWh) 

January / 2019 1843 July / 2019 2507 
February / 2019 2285 August / 2019 2731 
March / 2019 3012 September / 2019 2821 
April / 2019 2938 October / 2019 3080 
May / 2019 2570 November / 2019 3383 
June / 2019 2763 December / 2019 2663 

 

Since the load profiles only dictate the loads for one day, the next step was to generate all days of the 

year using the 2019 calendar. To generate different days with the same initial data, it was inserted a noise 

with a daily variation of zero and a maximum variation of 5% for each measurement, according to the equation 

(1), in which x is the original value of load, RB is the white noise with normal distribution and x’ is the new 

value of load for each interval. 

𝑥′ = 𝑥 + (0.05 ∙ 𝑥 ∙ 𝑅𝐵),      (1) 

With the data presented, it was possible to implement, test, and validate the management system as it 

is described in the sections ahead. The EMS for MD proposed consists basically of three parts, namely: next 

operation point forecaster; decision support system; and optimization system. The flowchart in  

Figure 4 summarizes how the system works.  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Figure 4. Microgrid Energy Management System flowchart 

The day-ahead dispatch was carried out using an adaptation of the model proposed in [18]. Since the 

original model is for a one-hour time interval, it was necessary to change some information and part of the 

code so it could generate a dispatch with 10 minutes intervals data.  

Next Operation Point (NOP) Forecaster 

The NOP Forecaster has the objective to predict the operation point of the microgrid in the next interval, 

which is ten minutes from the present time. For such task, the forecaster is fed with real-time weather and 

load data, and it’s divided into four different parts: load forecaster; energy generation forecaster; DES 

forecaster; and islanding events. The first two parts consist in predicting time series and it was used methods 

of Artificial Neural Networks (ANR). The DES forecasting was carried out using a deterministic method and 

islanding events are received and passed out to the Decision Support System. A flowchart of the NOP 

Forecaster is presented in  

Figure 5. 

 
 

Figure 5. Next Operation Point Forecaster Flowchart 

Load Forecaster was implemented using a Feedforward ARN with multiple layers, in which the input 

layers receive load data from the last three operation points as well as information about the time and day of 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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the week. The output layer gives a medium value of load for the next time interval (t + 1), and this value is 

used to obtain the energy demand for t + 1. 

Energy generation forecaster first must predict the next irradiation that is going to happen. For that 

purpose, it was used a Feedforward ANN with multiple layers, with data from the last three operation points 

and information about the time of the day in the input layers. The result of this is an estimating value of 
irradiance (G) for t + 1, used for calculation of energy generation (𝐸𝑃𝑉), as shown in Equation 2 [19]. The 

constants 𝐴𝑚𝑜𝑑 , 𝑛, 𝜂, 𝑃𝑟 are respectively the module area, the number of modules, the module efficiency, and 

the loss coefficient (usually 75%).  

𝐸𝑃𝑉 =
10

60
∙

1

1000
∙ 𝐺 ∙ (𝐴𝑚𝑜𝑑 ∙ 𝑛) ∙ 𝜂 ∙ 𝑃𝑟,     (2) 

The energy generation estimation is only correct if the weather conditions are the same as the NOCT 

standards. To avoid errors in this estimation, the temperature of the module is calculated (Equation 3) and 

used to correct the energy generation in Equation 4 [20]. 

𝑇𝑚𝑜𝑑 = 𝑇𝑎 + (𝑇𝑁𝑂𝐶𝑇 − 20) ∙
𝐺

𝐺𝑁𝑂𝐶𝑇
     (3) 

𝐸𝑃𝑉𝐶
= 𝐸𝑃𝑉 −

𝑘

100
∙ (𝑇𝑚𝑜𝑑 − 𝑇𝑎) ∙ 𝐸𝑃𝑉 ,     (4) 

𝑇𝑚𝑜𝑑, 𝑇𝑎 and 𝑇𝑁𝑂𝐶𝑇 are respectively calculated temperature of the module for the given conditions, 

environment temperature, and module temperature in NOCT standards conditions. The constant k is the 

module’s temperature coefficient. 

The last estimation is concerning the state of charge (SOC) of the DES. To do so must be know the SOC 

in the present and what will be charge/discharge rate in the current time interval (t). Thus, it’s determined 

according to Equation 5. Note that is the amount of energy flow in the battery and that negative values mean 

that the battery is discharging. The charge/discharge limits must be provided to the system and must be 

equal to the maximum output power for the DES divided by six, thus having the value in units of energy in 10 

minutes intervals. 

𝑆𝑂𝐶(𝑡 + 1) = 𝑆𝑂𝐶(𝑇) +
∆𝐸

𝐶
,      (5) 

For islanding information, a check is made between what was planned in the day-ahead dispatch and 

what is happening in real-time. This verification is carried out by the Decision Support System. With all those 
information, it’s possible to generate the predicted NOP (𝑃𝑂𝑝(𝑡 + 1)), containing information on energy 

demand, energy generation, SOC, and islanding data for the next time interval. 

Decision Support System (DSS) 

With the predicted NOP available, it’s possible to carry out some comparisons between the predicted 

NOP and the day-ahead dispatch. The data are received in packages only for the next time interval and are 

processed accordingly. To generate a better result, the continuous variables (energy demand, generation, 

and SOC) were normalized individually and the islanding information will be represented by a binary variable.  

The islanding information is the first one to be checked since a mismatch between dispatch and NOP 

will jeopardize the whole planning made on the day before. In that manner, the DSS makes a comparison 
between what was planned (𝐼𝐷(𝑡+1)) and what is the islanding situation of the MD (𝐼𝑃𝑂𝑝(𝑡+1)). If there’s a 

match, the DSS will proceed to the calculation of deviation. If not, the system will proceed to optimize a new 

operation point for the next time interval.  

The deviation between the dispatch and the NOP information is used as a parameter for the DSS to 

make a decision. This works proposes a method for verifying the deviation between dispatch and predicted 

NOP in three dimensions analyses, aiming to save computational work, being the distance in between the 

two points with the normalized variables. Figure 6 shows an example of this deviation on which the line 

represents the linear distance between the two points and X, Y and Z represent energy demand, energy 

generation, and SOC, respectively. According to the value of the deviation, the DSS may proceed in three 

different ways. For a small deviation (Deviation < 0.05), the MD will operate with what was planned in day-

ahead dispatch, considering that this difference will not interfere as much in the planning. In case of a medium 

deviation (0.05 < Deviation < 0.25), it’s considered that these differences will impact the operation of the MD, 

requiring adjustments in the operation point. For larger deviation, the system will decide for the same situation 

as a not predicted islanding, optimizing a new operation point. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Correia, V.T. and Aoki, A.R. 7 
 

Brazilian Archives of Biology and Technology. Vol.65: e22210711, 2022 www.scielo.br/babt 

 
 

Figure 6. Three dimensions deviation example 

For the adjustment of operational point, the system now will analyze each of the variables individually to 

discover what caused the divergence calculated in the 3D deviation. For that purpose, a Fuzzy inference 

system (Mamdami method) was implemented with three input Fuzzy sets, one for each individual calculated 

deviation, which allows 27 rules covering all possible situations, having as output two fuzzy sets, which are 

related to the DES charge and discharge rate and the MD controllable loads. For the first, the defuzzified 

output gives an alternative charge/discharge rate, according to Equation 6.  

𝑆𝑂𝐶𝑎𝑑𝑗. = 𝑆𝑂𝐶𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + (𝑎𝐵𝑎𝑡 ∙
2,4

28,8
),     (6) 

For the controllable load, the defuzzified output relates to a percentage amount of the controllable loads 

that will be turned off. Controllable loads were considered binary variables, which could be activated or not 

Four load groups were considered, with their powers of 1000 W, 750 W, 1500 W, and 1250 W. To optimize 

this selection of loads to be cutoff and taking into account the value given by the Fuzzy System, there is a 

MILP optimization process that minimizes the number of groups that will be disconnected.  

Optimization System 

The optimization system will be used in two different situations: first, mismatch in islanding information; 

second, when the deviation is high. In both cases, the MD may be connected to the utility power grid or be 

island mode and for that reason, optimization must be separated into two types: when connected to the utility 

power grid, the system will try to minimize operation costs; when the MD is an island, it will optimize the use 

of DES in order avoid curtailment. For both types, it was used a MILP approach, described mathematically 

in this subsection.  

When the MD is connected to the utility power grid, the energy demand can be attended with the energy 

generated in the photovoltaic power plant, the DES, or by the utility company. However, the system must try 

to optimize operation costs, always choosing the energy source with the lowest cost possible. For that matter, 
the MILP problem seeks to minimize the cost (Equation 7) in which 𝑃1, 𝑃2 and 𝑃3 is the quantity of energy 

supplied by the PV generation, by the DES, and by the utility company respectively. Letter a to d are binary 

decision variables for the controllable loads on which if the value is 1 it means that there was a curtailment 

of a certain controllable load. UC stands for the utility energy cost. This objective function is subject to the 

restriction on equations 8, 9, and 10. 

𝑚𝑖𝑛(𝑍) = 0,496825 ∙ 𝑃1 + 0,51321 ∙ 𝑃2 + 𝑈𝐶 ∙ 𝑃3 + 10 ∙ 𝑎 + 10 ∙ 𝑏 + 10 ∙ 𝑐 + 10 ∙ 𝑑,  (7) 

s.t. 

𝑃1 = 𝐸𝑃𝑉𝐶
,          (8) 

𝑃1 + 𝑃2 + 𝑃3 + 𝑎 ∙ 𝑐𝑐1 

+𝑏 ∙ 𝑐𝑐2 + 𝑐 ∙ 𝑐𝑐3 + 𝑑 ∙ 𝑐𝑐4 ≥ 𝑑𝑒𝑚𝑎𝑛𝑑𝑎,   (9) 

0 ≤ 𝑆𝑂𝐶 −
𝑃2

28,8
≤ 1,      (10) 
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The other possible situation is when the MD is an island and it’s completely disconnected from the utility 

 grid. In this case, the MD must manage its resources trying to minimize possible outage or load curtailment, 

making the MILP problem simpler, as shown in equations 11, 12, and 13.   

𝑚𝑎𝑥(𝑍) = 𝑃2 − (𝑎 ∙ 𝑐𝑐1 + 𝑏 ∙ 𝑐𝑐2 + 𝑐 ∙ 𝑐𝑐3 + 𝑑 ∙ 𝑐𝑐4), 

s.t. 

𝑃2 ≤ 2,4,       (12) 

𝑃2 + 𝑎 ∙ 𝑐𝑐1 + 𝑏 ∙ 𝑐𝑐2 + 𝑐 ∙ 𝑐𝑐3 + 𝑑 ∙ 𝑐𝑐4 ≤ 𝑑𝑒𝑚𝑎𝑛𝑑𝑎,     (13) 

RESULTS 

In this section are shown the simulation results of the MD EMS. First are presented some results obtained 

in the NOP Forecaster. Secondly, simulations with different scenarios are presented for the DSS and 

Optimization System in a way that all possible outcomes can be addressed. At the end of the section are 

presented some results of a full-day simulation. 

NOP Forecaster 

The first part of the NOP forecaster is the load forecast. The training for this ANN took 795 epochs and 

its best performance was 0.0047 in mean squared error (mse). In Figure 7 it’s possible to compare the original 

data set (blue solid curve) and the set generated by the ANN (orange dashed curve). It’s possible to see that 

the network predicts nicely smooth fluctuations throughout the day, having some difficulties detecting some 

load peaks. 

 
Figure 7. Comparison between emulated load profile and ARN load profile. 

For the generation forecaster, it was used ANN to predict the irradiance in the next time interval. After 

the training (113 epochs and mse of 0.0207) it was compared the original data with the data generated by 

the ANN. In Figure 8 it’s possible to see the result of two different days: the first one with several variations 

throughout the day and the other with almost no variations. Analyzing the curve on the right, for a day without 

external disturbances, the network can return very accurate results, practically bypassing the curve of real 

data. The same cannot be observed during abrupt variations, in which the network manages to trace a 

pattern, but does not respond so quickly that it returns such precise responses. This problem should be 

solved using a shorter time interval for the data used in this ANN. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Figure 8. Comparison between measured and ARN predicted irradiance 

Scenarios Results 

For the simulation of the DSS and the optimization system, it’s proposed eight different scenarios that 

cover all possible outcomes in the MD operation. The simulation results will be divided into two groups of four 

to facilitate its presentation and discussion. In the first group, it will be the situation with small and medium 

deviations, and in the second group only the ones with high deviation. 

 

 
 

Figure 9. Scenarios 1 to 4. 

In scenario 1, there’s a deviation of 0.0095, meaning a small deviation. For that reason, the performed 

operation point will be the same as what was planned on the day-ahead dispatch. For scenario 2, the system 

finds a larger deviation equal to 0.1961 (medium deviation), making it necessary to adjust the operating point. 

This deviation is due to a higher-than-expected demand with also an increase in power generation. To adjust 

this issue, the DSS adjusts operation by using the extra power generated to charge batteries.  

In scenario 3, there are considerable divergences in two of the magnitudes, with the generation being 

smaller than planned and the SOC also having a lower value. Despite a different situation from scenario 2, 

the DSS will also choose for the adjustment of the predicted OP. The difference lies in the fact that the 

adjustment will be charging the DES and controllable load curtailment.  

Scenario 4 would be the one considered perfect, with zero deviation. However, the probability of this 

point happening is very remote, especially due to the variation of the energy generation and some 

unpredictable aspects of the load that can hardly be predicted a day in advance. 

For the simulation of the optimization system, four scenarios are presented. This situation happens in 

two different situations: islanding information mismatch (unscheduled islanding, for example); the second is 

when the calculated deviation is greater than 0.25, characterizing a high deviation.  
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Figure 10. Scenarios 5 to 8 

Scenario 5 consists of having a power generation greater than the load in the observation period. In this 

case, the generation is sufficient to meet the entire energy demand and, in addition, use the spare energy to 

load the storage system. Scenario 6 is that there is a null generation, despite the load being greater than 

zero. In this case, the system only has one way of meeting the demand, which is through battery discharge. 

This scenario is complemented by the next two. 

Both scenarios 7 and 8 have the situation in which the generation is smaller than the load, diverging only 

in terms of the SOC on DES, which will interfere with the result obtained. In scenario 7, there is enough SOC 

to meet the spare load, while in 8, the SOC is insufficient. In the latter, a controllable load curtailment will be 

carried out to meet the maximum demand power possible. 

With this simulation, it was possible to see that the proposed EMS react to the scenarios as expected 

and planned in the flowchart presented in  

Figure 4. The next step was to make the EMS run in a full-day simulation. The results are presented in 

the next subsection.   

Full-day Simulation 

For the full-day simulation, a day-ahead dispatch with a ten-minute interval was needed so it could be 

the other set of data that the EMS needed to carry on the real-time management. Figure 11, Figure 12 and 

Figure 13 shows the optimal dispatch used, on which the intervals are numbered from 1 to 144. It’s possible 

to see that the dispatch only uses the DES when the tariff is higher, reducing the utility bill. During the day, 

the energy generation overcomes energy demand, and the surplus energy is absorbed by the utility and the 

MD receives energy credits for it. In the other periods of the day, since the energy tariff is lower, the dispatch 

uses the utility to meet MD’s energy demand. Also, the DES only discharges at a one percent rate for each 

period. 
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Figure 11. Day-ahead dispatch energy balance – Low load period. 

 

 
Figure 12. Day-ahead dispatch energy balance – PV generation period. 

 
Figure 13. Day-ahead dispatch energy balance – night time. 

With the dispatch data set, and with the EMS in place, the simulation was carried out for the 144 points 

of the full day. Previously performed OPs are used to predict the NOP. For every single point, the deviation 

calculus is carried out, and then it is verified its magnitude, so the EMS makes its decision.  
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Figure 14, Figure 15, Figure 16, bring the intervals on which happened a small, medium, and high 

deviation. The small deviations happened at the end of the night and at dawn where there is no PV generation 

and load uncertainties are smaller.  

 
 

Figure 14. Small Deviation points 

The medium deviation occurs throughout the day, on which load and generation are more responsible 

for the bigger value of deviation. When energy tariffs are higher (109 to 126), the systems adjust the DES 

discharging rate so it can reduce even more the utility bill and avoid load curtailment, which will only happen 

in case MD is disconnected from the wider grid and energy demand is greater than what the DES can provide 

in the 10 minute-interval. 

 

 
 

Figure 15. Medium deviation points 

High deviation occurs especially because of the uncertainty with the load during the day, where the 

performed energy in certain periods where halved in comparison to what was planned in day-ahead dispatch. 

This way, the optimization system was called to generate a new operation point.  
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Figure 16. High deviation points 

Regardless of the deviation encounter, the utility flow is used to perform the load balance in real-time. In 

Erro! Fonte de referência não encontrada. Figure 17, Figure 18 and Figure 19 it’s possible to see the new 

energy balance with the MD’s performed operation points. The differences between this and the one 

presented in Erro! Fonte de referência não encontrada. Figure 11, Figure 12 and Figure 13 are in the 

intervals where it was encountered a medium or high deviation. When the tariff is in higher prices, the EMS 

made the DES discharging rate a little higher to reduce the utility bill cost for the MD. After the prices reduce 

(after 126) there is a huge amount of energy flow coming from the utility to the MD to be used to charge the 

DES again. During the day there are some divergences between the planned and performed generation as 

well. That was correct by DSS. 

 

 

Figure 17. Performed Operation Point energy balance – Low load period. 
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Figure 18. Performed Operation Point energy balance – PV Generation period 

 

. 

 
 

Figure 19. Performed Operation Point energy balance – Night Period. 

DISCUSSION 

In the small deviation situations (Figure 20) it’s possible to see that the energy balance of what was 

performed by the MD is the same as the planned dispatch. The reason for that is that the EMS understands 

that a small deviation will not interfere in the operation of the MD, so no action is taken.  
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(a) 

 
(b) 

 
Figure 20. Small deviation Discussion. (a) Day-ahead dispatch. (b) Performed Operation Point. 

For the medium deviation (Figure 21) is possible to see that there is a difference in energy demand, due 

to the load uncertainties, making it almost halved. The EMS increases the discharge rate to reduce to almost 

zero the need for the utility energy in this period on which the energy tariff is higher and consequently, 

reducing operational costs. After the tariff returns to the low value, there’s a huge amount of energy coming 

from the utility grid to charge the DES back again. The EMS has chosen a way to meet the needs for energy 

at a lower operational cost.  

 

 
(a) 

 
(b) 

 
Figure 21. Medium deviation discussion. (a) Day-ahead dispatch. (b) Performed Operation Point. 

In Figure 22, points 80 to 84 happen high deviations situations, caused by the great differences in load 

prediction as well. The optimization system searches for the best way to attend this matter, meeting energy 

demand with MD’s generation and the surplus energy is injected on the utility grid in exchange for energy 

credits.  
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(a) 

 
(b) 

 
Figure 22. High Deviation discussion. (a) Day-ahead dispatch. (b) Performed Operation Point. 

CONCLUSION 

The main objective of the present study was to propose a method for a real-time energy management 

system for microgrids that could overcome possible divergence between what was planned on the day-ahead 

dispatch and real-time operation, especially in terms of load uncertainty and variation of energy generation 

on PV systems. The proposed method achieves this matter by analyzing the MD collect data ten minutes 

before operation, calculating the deviation, and acting accordingly to this deviation size and how much it 

makes planned operation in day-ahead unfeasible.  

The NOP predictor has shown to be a powerful ally to real-time energy management since it has the task 

only to predict the next operation point 10 minutes from in the future, its predictions errors are really small, 

helping in solving the uncertainties and variation of energy generation problems encounter in EMS with only 

a day-ahead management tool. Also, the three-dimension deviation way of categorizing the divergence and 

serving as a measure of how much the system must act on the operation point showed to be a good way to 

treat this divergence as well. 

The simulation of eight possible scenarios was carried out to show that the system can cover all possible 

outcomes that could happen during an MD daily operation. Finally, a full-day simulation was carried out, using 

real data, and comparing it with a day-ahead dispatch. This way was possible to test and validate the 

proposed method, and it’s possible to see that the uncertainties are carried out nicely by the system, changing 

the MD operation point to get a better result and even reducing operational cost.   
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