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Abstract: Cerrado is the second largest biome in Brazil and majorly contributes to the country's grain 

production. Previous studies on soil metagenomics from the Cerrado revealed an outstanding microbial 

diversity. In this study, the abundance of pathogenic fungi was analyzed using metagenomic sequences of 

the Cerrado soils under native vegetation, and under agriculture with no-tillage and conventional tillage. In 

total, 128,627 sequences of fungi were identified, with 43,439 representing pathogenic fungi and were 

distributed as follows: native 17,301 (40%), no-tillage 13,780 (32%), and conventional tillage 12,358 (28%). 

We identified 41 pathogenic fungal species associated with human and animal infections. The data analysis 

revealed that the native soils had a higher relative abundance of fungal sequences, similar to pathogenic 

species sequences, in relation to the total eukaryotic sequences, than the conventional tillage and no-tillage 

treatments, which observed a reduction in fungal abundance because of anthropogenic activities.   

Keywords: Pathogenic fungi; metagenomics; Cerrado biome. 

INTRODUCTION 

The Cerrado biome is a savannah-like region that belongs to the central part of Brazil, covering an area 

of approximately 2 million km2 area [1]. It is the second largest Brazilian biome [2] and is considered one of 

the most biodiverse sites on the planet [3]. Currently, this biome contributes to the maximum production of 

grains in the country [4], which has consequently led to changes in native vegetation due to agricultural 

activities and deforestation [5]. Studies reporting the rich biodiversity of the Cerrado encompass the fauna 

[6], flora [5], and microorganisms [7-9]. 

Pathogenic fungi complete their life cycle in a host [10] and are causative agents of infections in humans, 

animals, and plants [11]. Human pathogenic fungi are responsible for approximately 1.5 million deaths per 

year [12], causing superficial, (sub)cutaneous, and systemic infections [11]. Most etiologic agents are 

reported in soil, vegetation, and decaying matter in humid environments, which colonize the host either by 

necessity or opportunity [11]. However, the routes of infection of pathogenic fungi remain unknown. Several 

studies have reported fungal spores dispersed in air are associated with pulmonary or disseminated 

infections [13], propagules present in soil and plant debris are related to cutaneous/subcutaneous mycosis 

in the warm-blooded host [14], and the hypothesis of infection via plants or by animals [15]. In addition, fungi 

colonize the skin, hair, and nails, which use keratin as a nutrient source [16]. 

Culture-independent methods such as metagenomics, have developed into a robust technique for 

understanding and comparing microbial diversity in the most distinct environments [1], especially to 

identifying microorganisms that are scarcely recovered from the environment using conventional methods 

[17]. In this context, this study aimed to investigate pathogenic fungal sequences using the metagenomic 

data of Cerrado soils, including non-disturbed soil covered with native vegetation, and agricultural soils under 

the no-tillage and conventional tillage systems. 

MATERIAL AND METHODS  

Analyzed dataset  

The data sequences used in this study were obtained from a previous study on soil samples from the 

experimental station of Embrapa Cerrados in Planaltina, Federal District, Brazil (15°36′34”S and 47°44′36”W) 

[9]. The samples were classified by authors as native soil (undisturbed Cerrado stricto sensu with original soil 

conditions) and two cultivable soils. Cultivable soils were cropped for 23 years with soybean/maize under 

“no-till” (NT) and conventional tillage (CT) with breaks during the winter (dry season). The CT area was 

prepared annually by plowing and disking the soil before sowing, and to inclusion of weeds after harvest, 

whereas the NT area was managed without ploughing or disking [9].   

HIGHLIGHTS 
 

• Investigation of pathogenic fungi sequences from the metagenomic data of Cerrado soils. 

• The native vegetation samples show higher relative abundance of pathogenic fungi. 

• Identification of 41 pathogenic fungal species associated with human and animal infections.  
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The metagenomic sequences assessment were performed by an untargeted library (shotgun 

metagenomics) using the Ion Proton sequencer with mean read lengths of 58–288 bp. Low-quality reads 

(phred score < 15) and short reads (≤ 50 bp) were removed. High quality reads were to the MG-Rast server 

for first metagenomic analysis (https://www.mg-rast.org/) [18], using the previously defined taxonomic 

annotation parameters [9].  

The taxonomy of the microbial community of Metagenomic analysis was processed by the standard 

pipelines of the MG-RAST server [18]. Basically, the hierarchical phylogenetic profile generated was 

compared by functional analyses of genes (16S, 18S, ITS, 28S, and 26S), in addition to the taxonomy linked 

to the functional genes. The reads were compared against the M5NR database [19] based on the “best hit 

classification” method using the following parameters: Max. E-value cutoff: 1e−5; Min.% Identity cutoff: 80%; 

Min. Alignment length cutoff of 50. Then all sequences were taxonomically analyzed, the data sequences of 

eukaryote organisms were downloaded from MG-Rast server [18]. 

The data accessed are available online on the MG-RAST server with the following identifications for the 

datasets: mgp10523, mgp10541, and mgp10450. The metagenome dataset sequences were derived from 

three biological replicates of each of the three treatments: native soils (NATIVE 1, NATIVE 2 and NATIVE 3), 

cultivated under no-tillage (NT 1, NT 2 and NT 3), and conventional tillage (CT 1, CT 2 and CT 3) soil 

preparations [9]. 

Data mining  

The abundance was determined from mining metagenomic data. In total, of 49,182,419 DNA sequences 

were evaluated. First, only eukaryotic sequences (406,972 sequences) were selected, followed by 

sequences related to the fungi kingdom (128,627 sequences) using in-house scripts in the Java programming 

language (http://www.java.com). A manual check was performed according to the literature for the screening 

of pathogenic fungi, totaling 43,439 sequences (Table1). The ggplot package [20] in R software (http://www.r-

project.org/) was used for the figure.  

Table 1. Summary of mining metagenomic data from surveys conducted with native vegetation of Cerrado (Native), and 

cropped with soybean/corn under no-tillage (NT) or conventional tillage (CT) systems. 

Sample 
name 

ID 
Eukaryotic 
sequences 

Fungi 
sequences 

Pathogenic  
sequences 

NATIVE 1 mgm4577669.3 46,172 18,669 6,215 
NATIVE 2 mgm4578924.3 36,052 15,208 5,158 
NATIVE 3 mgm4578925.3 40,824 17,944 5,928 
NT 1 mgm4577671.3 50,849 15,321 5,194 
NT 2 mgm4578714.3 45,729 13,077 4,381 
NT 3 mgm4577672.3 50,210 12,023 4,205 
CT 1 mgm4577670.3 49,117 12,739 4,201 
CT 2 mgm4578926.3 51,228 13,803 4,710 
CT 3 mgm4578927.3 36,791 9,843 3,447 
Total - 406,972 128,627 43,439 

Relative abundance and Richness estimate 

The relative abundance of each sample was calculated based on comparative parameters: 1) pathogenic 

sequences in relation to the community of Eukaryotic sequences; 2) fungi sequences in relation to the 

community of Eukaryotic sequences, and 3) pathogenic sequences in relation the community fungi 

sequences. The data are presented in percentage. Furthermore, Chao [21] was used to estimate the richness 

of the genera in each treatment based on the number of genera identified by data mining.  

RESULTS  

In total, 43,439 sequences representing pathogenic fungi were distributed as follows: native 17,301 

(40%), no-tillage 13,780 (32%), and conventional tillage 12,358 (28%). Considering all the evaluated 

treatments, 4 phyla, 9 classes, 11 orders, 18 families, 28 genera, and 41 different species were classified 

taxonomically (Supplementary Table 1).   

Overall, 28 genera were identified, of which 25 were observed in the native soil, 23 in the NT, and 23 in 

the CT. The most abundant genera were Aspergillus (38%), followed by Fusarium (13%), Cryptococcus 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
http://www.r-project.org/
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(10%), Coccidioides (7%), besides Candida, Talaromyces and Yarrowia (4%).  Moreover, genera with 3% 

abundance included Histoplasma and Schizophyllum while Blastomyces, Malassezia, Nakaseomyces, 

Paracoccidioides, and Trichophyton displayed 2% of abundance. Less abundant genera, representing less 

than 1%, included Clavispora, Debaryomyces, Encephalitozoon, Lodderomyces, Meyerozyma, Microsporum 

and Nannizzia. The least abundant genera included Basidiobolus, Conidiobolus, Epidermophyton, Exophiala, 

Millerozyma, Pneumocystis, and Rhinocladiella (0.1% abundance) (Figure 1).   

A comparison among the three treatments reveled that the genera Aspergillus, Coccidioides, 

Talaromyces, Histoplasma, Blastomyces, Paracoccidioides, Trichophyton, Microsporum, Nannizzia, 

Pneumocystis, Basidiobolus and Rhinocladiella displayed the highest number of sequences in the native 

soils. The NT soils featured higher abundances of Fusarium, Cryptococcus, Schizophyllum, Malassezia, 

Meyerozyma, Encephalitozoon, Epidermophyton, Exophiala and Millerozyma genera while CT soil were 

predominant by Candida, Yarrowia, Clavispora, Lodderomyces, Conidiobolus and Debaryomyces (Figure 1).  

 

 

 
 

Figure 1. Abundance observed of the genera (associated with human and animal infection) based on the 

comparison of the number of sequences in each analyzed soil. In A: conventional tillage (CT), in B: 

undisturbed Cerrado soil (Native) and in C: no-tillage (NT).  In the y-axis number of sequences and on the x-

axis the treatments. 

 

Altogether, among the soils evaluates, 41 species were reportedly identified as causal agents of diseases 

in humans and/or animals. With 31 species observed in all the three treatments (NT, CT and Native soils), 

whereas certain species such as Exophiala pisciphila and E. dermatitidis were discovered only in NT soils 

(Figure 2). The predominant specie was Aspergillus fumigatus (25.35%), mainly present in the native soils, 

followed by the Fusarium solani (13.35%) and Cryptococcus neoformans (9.78%), both of which were 

predominant in the cultivated soils (Figure 2).  
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Figure 2. Distribution of species reported as causative agents of diseases in humans and/or animals on No-

tillage (NT), undisturbed Cerrado (Native), and conventional tillage (CT) soils.   

 

Furthermore, the relative abundance analyses in relation to the eukaryotic community revealed that the 

native soils have a notable fungal diversity, including pathogenic species (Table 2). 

In addition, the genera richness analysis estimated the values of 53.90, 39.33, and 41.75 for native soils, 

NT, and CT, respectively, revealing that native soils are 35% richer than the others. However, comparing the 

presence of pathogenic species sequences to the dataset sequences of the fungal community, we observed 

a similar relative abundance of pathogenic fungi in the three different soils (Table 2). Nevertheless, certain 

species from the order Onygenales predominated in the native soils, validating the relative abundance and 

richness data observed for this soil, which were 35% richer than the others (Figure 2).  

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Table 2. Fungal Relative abundance in Brazilian Cerrado soils  

 Pathogenic sequences / 

Eukaryotic sequences 

Fungi sequences / Eukaryotic 

sequences 

Pathogenic sequences / fungi 

sequences  

Native 1 13,46053885 40,43359612 33,290481547 

Native 2 14,30711195 42,1835127 33,916359811 

Native 3 14,52087008 43,95453655 33,036112350 

NT 1 10,21455683 30,13038604 33,901181385 

NT 2 9,580353824 28,59673293 33,501567638 

NT 3 8,374825732 23,9454292 34,974631955 

CT 1 8,553046807 25,9360303 32,977470759 

CT 2 9,194190677 26,94424924 34,123016735 

CT 3  9,369139192 26,75382566 35,019811033 

DISCUSSION 

The metagenomic analysis of soils belonging to the Cerrado biome from three different treatments 

(undisturbed Cerrado (Native), no-tillage (NT) and conventional tillage (CT) soils) revealed the presence of 

saprobe fungi, and opportunistic and real pathogens. In this study, we identified sequences belonging to 

pathogenic fungi, and the results highlight that native soil displays higher richness and relative abundance of 

fungal sequences and pathogenic species sequences corresponding to the number of eukaryotic sequences, 

than in soils subjected to agricultural practices (Table 2). This indicates a reduction in fungal biodiversity 

owing to anthropogenic activity, which was also observed in previous studies on the Cerrado biome [1,9,22].   

In recent times, global epidemiological data have shown a significant increase in the incidence of invasive 

fungal diseases in humans [10, 15, 23] and in animals [24]. Among the species identified, Aspergillus 

fumigatus (25.35%) exhibited the highest relative abundance (Figure 2), which is an important allergen that 

causes aspergillosis and is a major cause of human morbidity and mortality worldwide [25]. In Brazil, 

epidemiological data are rather scarce because of the difficulty in correct diagnosis [26], and studies with 

environmental isolates of A. fumigatus and A. flavus demonstrated a 20%–25% rate of the itraconazole 

resistance [27]. Furthermore, often present in soil and air samples [28], they have been abundantly identified 

as soils natives. It is suggested that soil management using certain approach seems to alter the frequency 

of the fungal occurrence in the environment.  

The second major relative abundance was Fusarium solani, was predominant in cultivated soils, which 

was higher in NT than in CT (Figure 2). Recognized as a phytopathogen that causes crop loss, this fungus 

causes opportunistic infections in humans [29]. Furthermore, studies of invasive fusariosis in Brazil have 

shown that Fusarium spp. are associated with agricultural activities [30]. Their greater abundance in 

cultivated soils may be related to the fact that the soils evaluated have been cropped with corn and soybean, 

and the incidence of fusariosis has been extensively reported in these plants [31,32]. 

In our analyses, the third most abundant fungus was Cryptococcus neoformans (9.78%) distributed in 

the three treatments, but more frequently observed in no-tillage (Figure 2). This fungus is opportunistic due 

to its ability to grow at body temperature, produce melanin and polysaccharide capsules, causing 

cryptococcosis in immunocompetent and immunocompromised individuals [33,34]. Epidemiological data 

showed that the mortality in Brazil reached up to 60% in HIV-infected patients [26].  

Fungi of the order Onygenales identified in this study was significantly abundance in native soils, 

dominant with dimorphic fungi such as Paracoccidioides lutzii (1.69%) and P. brasiliensis (0.03%), which 

causes paracoccidioidomycosis, an endemic disease in the Brazilian Cerrado region and restricted to Latin 

America [35]. It is the chief systemic mycosis affecting the Brazilian population, and the eighth largest cause 

of mycoses-associated mortality [36,37], which can also infect animals [38,39]. Moreover, Histoplasma 

capsulatum has been recognized as an endemic agent in Brazil, particularly in the Midwest [40]. Followed by 

Coccidioides immitis (3.82%) and C. posadasii (2.96%). The chemical properties of soils previously described 

[9] may represent a selection factor for these agents. For example, the amount of organic matter observed 

in the native soils (3,666) was greater than that in NT (3,209) and CT (2,751) (Supplementary Table 2).   

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Likewise, the native soils are more acidic (pH 4.687) than the NT (pH 5.670) and CT (pH 5.647), which may 

influence the selection of these agents, which are epidemiologically reported in soils with a high content of 

organic matter (Supplementary Table 2).    

The most abundant opportunistic species was C. albicans (1.60%), observed as a prevalent causal agent 

of onychomycoses in northeast of Brazil [41]. In addition, Yarrowia lipolytica anamorph of C. lipolytica (3.61%) 

causing blood infections [42], and Malassezia globosa (1.55%) are considered relevant agents of superficial 

mycoses in humans and animals [43]. Yeasts grow in a wider pH range (between 5 and 6) [44,45], which 

could explain their abundance in NT and CT soils. Herpotrichilaceous fungi have been identified in low relative 

abundance (Figure 2), which include Rhinocladiella aquaspersa, a rare agent of chromoblastomycosis [46]; 

Exophiala pisciphila, associated with infection in cold-blooded animals [47], although in isolated cases, it can 

infect humans [48]; and E. dermatitidis an opportunistic pathogen that causes peritonitis [49], cystic fibrosis, 

phaeohyphomycosis, and chromoblastomycosis in humans [50]. 

Moreover, the fungus Talaromyces marneffei (4.36%) and Blastomyces gilchristii (1.91%) were more 

predominant in native soil, but at low frequencies (Figure 2). This fact may justify the rare cases in Brazil and 

Latin America [51, 52].   

Although low in relative abundance, the zygomycetes Conidiobolus coronatus and Basidiobolus ranarum 

are clinically important because they cause conidiobolomycosis and basidiobolomycosis, respectively [53]. 

Furthermore, Schizophyllum commune was identified, which is a Basidiomycetes and an occasional human 

pathogenic agent of respiratory infections [54]. With respect to animal pathogenic fungi, Pneumocystis carinii, 

which is responsible for lung infections in rats [55] were identified. In addition, to Encephalitozoon cuniculi 

and E. intestinalis were observed, which cause microsporidiosis in rats, and several other infections in 

mammals [56-58] (Figure 2). 

CONCLUSION 

Fungi are ubiquitous organisms found associated with soil, plants, rock animals, and water sources in 

the environment, wherein human and animals are frequently exposed to these fungi. However, relatively few 

fungal species are capable of infecting human and animal hosts, and their environmental isolation is rarely 

correlated with the epidemiological data, which could be attributed to the limitations of isolation methods 

and/or frequency of the species in highly specific niches. In this scenario, metagenomic assays can be a 

relevant tool to overcome this shortcoming. 

This exploratory metagenomic study of soils from the Brazilian Cerrado region identified the presence of 

forty-one fungal species considered pathogenic to human and animal hosts. The data analysis revealed that 

the native soils contained a higher relative abundance of fungal sequences and pathogenic sequences in 

relation to the number of eukaryotic sequences based on the richness, compared with the conventional tillage 

and no-tillage soils, corroborating with previous studies that observed a reduction in fungal biodiversity 

because of anthropogenic activities.   
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