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Abstract: The use of computational simulation techniques is an important tool for the coffee harvesting 
issues, particularly the finite element method. The method is widely used in the structural analysis of 
agricultural machinery, as well as in the analysis of the stresses and vibrations of coffee branches and 
peduncles during the harvesting process. The present study aimed to develop three-dimensional finite 
element models of the plagiotropic branches of the Catuaí Vermelho variety of Arabica coffee in different 
positions along the orthotropic branches of the plant; considering high-fidelity models. Additionally, by 
considering the branches’ experimental properties (physical-mechanical), the natural frequencies and 
vibration modes of the branches were determined by means of computer simulations. First, the geometric 
properties of the coffee branches were obtained by means of two images taken using a professional camera 
to obtain the input data of the virtual simulation. For the mechanical properties, it was used a semi-analytical 
digital scale, to obtain the mass of the specimens. The modulus of elasticity was determined using a universal 
testing machine. The variability in the simulated natural frequencies could be identified, which was on the 
order of 30% for the first frequency, regardless of the position of the branch in the plant. These values were 
lower for the other frequencies. Linear regression fits showed a coefficient of determination, and correlation 
tests were used to verify the relationship between the values obtained numerically and experimentally, which 
were validated by using experimental data using the modal analysis techniques.  
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INTRODUCTION 

The use of mathematical modeling combined with computer simulation techniques is an important tool 
for performing detailed analyses of coffee harvesting. The finite element method (FEM) has been used to 
simulate several mechanical and biological systems. By using FEM and through numerical and computational 
simulation, it is already possible not only to predict the mechanical behavior of the machines but also to 
identify the stresses and vibrations of the branches and peduncles of the coffee plant during the harvesting 
process. 

The FEM can be applied in agricultural engineering for the structural analysis of agricultural machinery, 
implements and agricultural product processing and soil mechanics [1-6] The FEM to evaluate the 
mechanical behavior of coffee plants and obtained results from numerical simulations using a three-
dimensional model for coffee modeling, which showed the feasibility of predicting displacements of coffee 
branches from static analyses using finite elements [7]. 

Through models, with greater refinement, is possible to generate significant improvements in the 
modeling of physical systems, which can be achieved by using a greater number of degrees of freedom [8, 
9,10]. The FEM can be used to solve physical problems from mathematical models through simulations with 
a high degree of reliability. However, experimental tests are necessary to validate the results obtained 
numerically. Numerical models can be improved and updated when using the experimental results and 
considering reference values, which allows us to predict the dynamic behavior of the physical systems. 

The mathematical modeling of systems with multiple degrees of freedom requires the application of 
fundamental laws to determine the Equation s that govern their behavior [10]. With the advancement of new 
technologies and greater computational capacity, systems subject to mechanical vibrations can be analyzed 
by using mathematical modeling to represent the important aspects of a real physical system without 
excessive complexity. The FEM stands out among the other existing numerical methods because it allows 
the solution of problems with complex geometries, heterogeneous materials, and different properties in the 
same domain. 

Numerical simulations via finite element analysis for stresses and displacements are usually performed 
using commercial software that uses numerical packages to solve problems. To perform a finite element 
analysis, it is necessary to generate a discretized model of the geometry of the studied system [11]. The 
discretization process consists of the subdivision of a three-dimensional geometric model into small volumes 
consisting of elements and nodes [12]. Therefore, the FEM can be used to determine the modal properties 
of a system, which allows the calculation of its natural frequencies and vibration modes from the formulation 
and solution of eigenvalues and eigenvector problems. The eigenvalues correspond to the natural 
frequencies of the system, while the eigenvectors refer to the vibration modes of the system and are 
associated with each natural frequency [13]. 

However, it is necessary to obtain the physical-mechanical properties of the materials involved in the 
system to apply the FEM. To perform numerical simulations of the dynamic behavior of coffee plants, 
[7,14,15] determined the input parameters of the system, such as the modulus of elasticity, shear modulus, 
Poisson ratio, and density. [14,16] characterized the physical properties of macaw palm fruits and rachilla 
and concluded that such factors directly influence the results of the simulations, as they are related to the 
stiffness and mass of the systems. 

The main machines used in agriculture involve mechanical vibrations, such as the harvester machines 
used in the mechanized harvesting of coffee [17,18] This process needs to be better studied from aspects 
such as the influence of stem vibration and harvester speed on the mechanized coffee harvesting process 
[3]. Representative models have been shown to be effective in decision-making regarding the coffee 
management and harvesting process [18,19].  According to [20] simulations can eliminate the need for field 
experiments and have become increasingly accurate.  

The natural frequencies, mode shapes, and vibration amplitudes have been studied using 
numerical/computational methods to evaluate the dynamic behavior of the coffee fruit-peduncle-branch 
system [ 7,17, 18, 19, 21, 22, 23]. The results of the proposed numerical models indicate that the vibration 
modes associated with the natural frequencies at specific intervals favor coffee harvesting and consider its 
different maturation stages. The results found are consistent compared to experimental analyses using actual 
plants, which demonstrates the potential use of the methods. However, due to the complexity in modeling 
the branches, advances in the established models are extremely necessary to confer greater reliability and 
representativeness. 

Thus, the aim of this work was to develop three-dimensional models of finite elements of plagiotropic 
branches of the Catuaí Vermelho variety of Arabica coffee in different positions along the orthotropic 
branches of the plant by considering high-fidelity models. Additionally, by considering the branches’ 
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experimental properties (physical-mechanical), the natural frequencies and mode shapes of the branches 
were determined by means of computer simulations. We validate the results using experimental data 
determined by experimental modal analysis techniques. 

MATERIALS AND METHODS 

We used a total of 15 samples of plagiotropic branches of the Catuaí Vermelho IAC 144 variety without 
leaves and fruits, with 5 samples for each treatment. From the position of the plagiotropic branches in relation 
to the orthotropic branches of the plant, we defined the following treatments: upper third, middle third, and 
lower third, as presented in Figure 1. 

 

 
Figure 1. Positions of branches on the plant 

Geometric properties of the branches 

The first step of this study involved obtaining the geometric properties of the branches by means of two 
images – one vertical and the other horizontal – taken with a professional camera and showing the three 
coordinates (XYZ) necessary for later modeling. As shown in Figure 2, we used two graduated grids (mm) 
positioned perpendicular to each other as a background for the images.  

 
 

 
 

Figure 2. Images of the branches taken with a graduated grid background (mm): (a) Horizontal orientation (XY - front 
view) and (b) vertical orientation (XZ - top view). 

In a standardized manner, the coordinates and diameters of the representative points of the branch were 
extracted: anterior and posterior to the node and on the node. The three-dimensional coordinates of the 
branches were collected, one by one, by using the open-source software ImageJ [24]. 
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Mechanical properties of the branches used in the simulations 

The experimental determination of the mechanical properties was performed in a step subsequent to the 
collection of the geometric properties, as they are destructive tests. Specimens were prepared from the fifteen 
samples of plagiotropic branches collected along the plant – corresponding to the treatments (upper, middle, 
and lower in the plant) – to determine the mechanical properties. Two specimens were collected from each 
sample, one closer to the cut performed next to the orthotropic branch and the other near the free end of the 
branch. 

The masses of the specimens were determined using a semianalytical digital scale, model AD500, 
manufactured by Marte Científica® with a resolution of 0.001 g. The immersion method with a 10 mL beaker 
was used to determine the volume of the specimens. The density of each sample was obtained by the ratio 
between the experimental values of mass and volume. 

The modulus of elasticity was determined using a universal testing machine, model EMIC 23-20, 
manufactured by Instron® and equipped with a maximum load cell of 20 kN. The specimens were subjected 
to tensile tests parallel to the branch fibers, which was fixed by clamps at its ends and subjected to loading 
in its central region. A preload of 2 N was applied for pre-tensioning of the specimen at a speed of 0.01 m.min-

1; the test was ended when there was a deviation from linearity after reaching the maximum stress. 
The authors in [20] obtained Poisson ratio values of 0.09 and 0.25 for the Catuaí Vermelho (IAC 144) 

variety in compression tests for the stem and tensile tests for the branches, respectively. [7] determined the 
Poisson ratio obtained from stem samples from Catuaí Vermelho (IAC 144). By using images before and 
after compression tests, the authors defined a mean Poisson ratio of 0.37 with a standard deviation of 0.1. 

Given the difficulty in correctly determining the Poisson ratio and the different results available in the 
literature for this property, an average value found in the literature [14, 15, 16, 20] was used for this 
mechanical property as 0.30. It is noteworthy that for the purpose of simulation in this study, the sample 
material was considered to be homogeneous and isotropic. 

We subjected the values determined for the modulus of elasticity and density to analysis of variance 
according to a completely randomized design (CRD) and considering the different positions in the plant 
(Figure 1) for each natural frequency evaluated. We analyzed the means by using the Tukey test at a 
significance level of 5%. 

Modeling, convergence analysis and simulation 

We modeled the branches based on the points collected in the computer-aided design (CAD) 
environment of the Siemens NX® software Version 9.0. We performed the union of the modeled circles by 
using parameterized surfaces with G2 continuity restriction (curvature). The boundary conditions of the 
system restricted the model base to six degrees of freedom, which represented the fixation of the plagiotropic 
branch next to the orthotropic branch of the plant. 

By considering a tetrahedral geometry of 10 nodes for the elements, the meshes were analyzed at the 
third natural frequency to verify the convergence of the results in relation to the numerical simulations. 
Different elements of sizes were evaluated between 3 and 13 mm and an interval of 2 mm. The results were 
compared until they converged satisfactorily, given a reasonable result associating with a low computational 
cost. 

After the discretization of the models, The simulations were in the simulation environment of the Siemens 
NX® software Version 9.0 by using the following input parameters: modulus of elasticity, density, and Poisson 
ratio. The block Lanczos algorithm was used to solve the problems of the eigenvalues and eigenvectors of 
the system, which yielded the natural frequencies and vibration modes of the systems, respectively. 

Eigenvalues and eigenvectors 

By applying external forces to the system, it is possible to model the system in matrix form represented 
by differential equations with multiple degrees of freedom, according to Equation 1. 

[𝑚] {𝑥
¨
} + [𝑐] {𝑥

˙
} + [𝑘]{𝑥} = {𝐹} (1) 

Where {𝐹} is the force vector, [𝑚] is the mass matrix, [𝑐] is the damping matrix, [𝑘] is the stiffness matrix, 

{𝑥} is the displacement vector,{𝑥
˙
} is the velocity vector, and {𝑥

¨
} is the acceleration vector. For free and 

undamped vibrations, Equation 1 can be simplified, resulting in Equation 2. 
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Equation 2 represents the system’s natural vibration conditions. The state of natural vibration can be 
called natural modes or mode shapes, and the vibration frequencies are natural frequencies of the system. 
By assuming that the free vibrations are harmonic, the eigenvalues and eigenvectors can be obtained by 
rewriting the system according to Equation 3, which represents the displacement of the system. 
 

{𝑥} = {𝜑}𝑖𝑒
𝑖𝜔𝑖𝑡 = {𝜑}𝑖(𝑐𝑜𝑠 𝜔𝑖𝑡 + 𝑖 𝑠𝑖𝑛 𝜔𝑖𝑡) (3) 

 
Where {𝜑}𝑖 represents the eigenvector associated with the i-th natural frequency of the system, 𝜔𝑖 

corresponds to the angular frequency (in rad.s-1), and t is associated with time (s). The natural frequencies 
and vibration modes can be obtained by solving the problem of eigenvalues and eigenvectors after derivation 
of Equation 3 in relation to time and substitution in Equation 2. Thus, Equation 4 is obtained, which is 
recognized as an eigenvalue problem [13]. 
 

(−𝜔2[𝑚] + [𝑘]){𝜑}𝑖 = {0} (4) 

Equation 4 presents a nontrivial solution only if the determinant of the matrix (−𝜔2[𝑚] + [𝑘]) is equal to 
zero [ 8, 13, 25]. 

Experimental modal analysis 

The natural frequencies of the samples were experimentally determined using the frequency response 
function (FRF) via an impact test. The branches were instrumented with unidirectional accelerometers, 
vertically fixed with plastic clamps. The impact hammer used has the following specifications: model PCB 
086C03, manufactured by PCB Piezotronics™, with a “super soft” tip and force sensor. Through an 
acquisition module, model NI cDAQ-9174, manufactured by National Instruments™, the acceleration data 
and the impact hammer data were collected using the Sound and Vibration package of LabView® software. 

The branches were embedded in a vise and applied the impact to obtain the FRF in the central part by 
using the acceptance/rejection criterion based on the coherence obtained in 5 effective impacts. The tests 
were rejected considering the coherence values if they were not greater than 0.8. 

The magnitude data obtained with the FRF was converted into decibels (dB) and subsequently filtered 
them (with a high pass filter), which allowed the passage of the high amplitude frequencies and attenuated 
the amplitude of the frequencies below the cutoff amplitude of 5 dB. The graphs were plotted and found that 
the curve became unstable and lacked prominent peaks after the third peak. Thus, the first three natural 
frequencies were selected, which corresponded to the first three peaks. 

Validation of the models 

The experimental natural frequency values of each of the first three natural frequencies were subjected 
to analysis of variance, according to a CRD. By considering the plant position factor, the experimental natural 
frequencies were analyzed using the Tukey test at a significance level of 5%. The study of the natural 
frequency means obtained along the plant resulted in the following validations of the proposed models. 

For each sample, the natural frequencies obtained by the numerical simulations, corresponding to the 
first three vibration modes, were compared with the experimental natural frequency values. We validated the 
proposed models by linear regression and correlation tests, with the results presented in [30]. 

From the linear regression, we analyzed the angular coefficient values of the fitted curve and the 
coefficient of determination (R²). The Pearson correlation test and the p value at a significance level of 10% 
evaluated the correlation between numerical and experimental values. The software R was used to perform 
the statistical analyses. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Melo, W. W. A.; et al. 6 
 

 
Brazilian Archives of Biology and Technology. Vol.67: e24220331, 2024 www.scielo.br/babt 

RESULTS AND DISCUSSION 

Table 1 presents the geometrical properties obtained experimentally. The values of the XY length, XZ 
length and diameters (maximum, minimum and mean) for the upper third, middle third and lower third are 
presented. 

 Table 1. Geometrical properties of the study samples 

Position in the plant 
Length (XY) [mm] Diameter [mm] 

Minimun Maximun                 Mean    Mean 

Upper 401.98 538.17         470.08 6.86 

Middle 439.64 524.03          481.36 5.99 

Lower 414.30 541.59          477.94 6,03 

Position in the plant 
Length (XZ) [mm] Diameter [mm] 

Minimum        Maximum Mean    Mean 

Upper 403.62 536.38        469.99 6.86 

Middle 438.17 525.79         481.97 5.99 

Lower 408.88 538.38        473.63 6.03 

 
Table 2 shows the mean values of the physical-mechanical properties obtained from the two specimens 

made for each experimental unit. The values found for the modulus of elasticity and density were used in the 
correlation between experimental and simulated data, sample by sample. 

Table 2. Mechanical properties of the study samples: modulus of elasticity (E), in GPa, and density (𝜌), in g.cm-3  

Sample  E (GPa)  𝜌 (g.cm-3) 

Am_sup1 1.25 1.007 

Am_sup2 0.70 0.933 

Am_sup3 1.13 0.921 

Am_sup4 1.08 0.926 

Am_sup5 0.70 0.922 

Am_med2 0.73 0.972 

Am_med3 1.26 0.962 

Am_med4 1.11 0.998 

Am_med5 1.19 0.914 

Am_inf1 1.15 0.890 

Am_inf2 1.22 0.937 

Am_inf3 1.01 0.960 

Am_inf4 1.12 0.964 

Am_inf5 1.56 0.945 

 
For the upper third, the mean density was 0.941 g.cm-3 with a standard deviation of 0.037 g.cm-3 and the 

mean modulus of elasticity was 0.97 GPa with standard deviation of 0.25 GPa. The middle third showed 
mean density of 0.953 g.cm-3 with a standard deviation of 0.036 g.cm-3 and a mean modulus of elasticity 
equal to 1.14 GPa with standard deviation of 0.25 GPa. For the upper third, the mean density value was 
0.939 g.cm-3 with a standard deviation of 0.030 g.cm-3 and the mean modulus of elasticity was 1.21 GPa with 
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standard deviation of 0.21 GPa. The means found for the different positions in the plant, both for the density 
and for the modulus of elasticity, were not significantly different according to Tukey’s test at a significance 
level of 5%. The small number of samples may explain the high standard deviation for the means found.  

The average density equal to 0.900 g.cm-3 and a mean modulus of elasticity equal to 1.94 GPa with 
standard deviation of 0.62 GPa for Catuaí Vermelho IAC 144 branches, was determined [15]. Factors such 
as variety, age, climatic conditions, and types of management in addition to different methods for obtaining 
the properties, may explain the difference between the values obtained by the authors and those found in 
this study. The density average value of 0.978 g.cm-3 and a mean modulus of elasticity ranging between 1.79 
GPa and 3.56 GPa for the Catuaí Vermelho UFV-2237 variety [25]. The bending method used by the authors 
and the variety adopted, which were different from those used in this study, may explain the divergence 
between the values found. 

The elements size was defined using a convergence analysis, as presented in Figure 3, considering the 
third vibration mode. In this way, the convergence analysis showed results from element sizes below 5 mm, 
according to Figure 3. The grade 3 polynomial curve had a coefficient of determination of 97.04%. 

For the elements with a size equal to 5 mm, we obtained a frequency of 29.49 Hz with a mesh containing 
3353 elements. The refinement for the size equal to 3 mm showed a frequency of 29.60 Hz, which 
corresponds to an increase of 0.37% for an increase in mesh size greater than 108%. The increase in the 
mesh size directly impacts the computational cost required for the simulation; therefore, we chose an element 
size equal to 5 mm. 

 

 
 

Figure 3. Mesh convergence analysis for the 3rd vibration mode. Natural frequency in Hz and element size in mm. 

The details of the discretization of a sample are presented in Figure 4. 

 

Figure 4. Discretized sample of the branch of the coffee plant. 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Melo, W. W. A.; et al. 8 
 

 
Brazilian Archives of Biology and Technology. Vol.67: e24220331, 2024 www.scielo.br/babt 

After the simulations, it was observed groups of mode shapes with very similar frequency values related 
to bending modes for lateral vibration. According to [20] obtaining vibration modes in different directions for 
the same frequency is expected for a system in free vibration. Thus, the frequency values corresponding to 
the lateral vibration mode in the plane were considered at which the experimental modal analysis performed 
using by impact hammer. In Figure 5, an example of the result obtained in the simulations is presented. 

 

 
 

Figure 5. Example of results obtained in the simulations: (a) first natural frequency; (b) second natural frequency; and 
(c) third natural frequency. 

The natural frequencies obtained experimentally were subjected to analysis of variance, with the means 
presented in Table 3. Significant differences at a significance level of 5% were not observed in different 
positions in the plant for any of the natural frequencies studied (ωn1, ωn2, and ωn3).  

                           Table 3. Mean natural frequencies for each position in the plant, in Hz. 

Position in the plant 
 Mean natural frequency (Hz) 

𝝎𝒏𝟏 𝝎𝒏𝟐 𝝎𝒏𝟑 

 Upper 6.45 20.48 43.73 

 Middle 4.92 15.98 36.15 

 Lower 5.72 18.12 48.13 
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Given that the natural frequencies determined experimentally for different positions in the plant did not 
show significant differences, the first, second, and third natural frequencies were determined, the mean 
natural frequencies, and percentage variation between the numerical and experimental values, as shown in 
Table 3. 

The first natural frequency showed the highest percentage variation between the numerical and 
experimental natural frequencies. Values equal to -31%, -26%, and -29% were found for the upper third, 
middle third, and lower third, respectively. The second frequency showed the best fit between the models, 
with -1% obtained for the upper third, 1% for the middle third, and -7% for the lower third. For the third 

frequency, values of 13%, 7%, and -15% were observed for the upper, middle, and lower thirds, respectively. 
 

 

Figure 6. Comparison between experimental and numerical mean natural frequencies (in Hz) for each third of the plant, 
as well as the percentage variation between numerical and experimental natural frequencies. 

The high variability in the physical-mechanical properties adopted as input parameters in the simulations 
may explain the divergence between the experimental and numerical results, which was more pronounced 
for the first natural frequency, as shown in Figure 6. In addition, the discrepancy between the results may be 
related to the imprecision of the methods used to determine the mechanical properties since they are 
considered systems of complex physiology that are in the development phase, with different topologies within 

the same sampling field [15, 17, 21, 26]. 
For the first natural frequency, it was obtained a mean experimental value of 5.70 Hz and a mean 

numerical value of 4.04 Hz, which corresponds to a mean percentage variation of 29%. The numerically 
determined values were, on average, lower than the experimental values. The second natural frequency had 
a mean experimental value of 18.19 Hz and a mean numerical value of 17.73 Hz. The mean percentage 
variation for the second natural frequency was 3%, and the numerical values were below those obtained 
experimentally. The values observed for the third natural frequency had a mean experimental value of 42.67 
Hz and a mean numerical value of 43.03 Hz. The mean percentage variation was 1%, with the numerical 
value higher than that obtained experimentally. 

In the study of the natural frequencies of the plagiotropic branches of the Catuaí Vermelho variety, [23] 
found values of 14.57, 16.83, and 19.45 Hz for the minimum, mean, and maximum values, respectively. The 
range of natural frequencies we found corresponds to the values obtained for the second frequency 
determined in this study. 

The experimental studied performed by [21] the effect of the frequency and amplitude of vibration on 
coffee fruit harvesting, and the authors observed that the frequency of 26.67 Hz tended to have a higher 
mean harvesting efficiency for the fruits in the mature stage. In addition, the authors concluded that the fruits 
in stages prior to ripening or cherry tended to have lower harvesting efficiency for this frequency. Thus, it is 
possible to relate the values found in the second natural frequency of this study with a better harvesting 
efficiency. 

The authors in [24] had also evaluated the influence of the modulus of elasticity on the simulated natural 
frequency using the FEM. By using an algorithm, they compared the increase or decrease in the value of the 
modulus of elasticity with the percentage deviation between the experimental and simulated frequencies. The 
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geometry and physical-mechanical properties of the model used by the authors were determined by [15], 
with the following specifications: diameter of 5.06 mm, density of 0.90 g.cm-3, and Poisson ratio of 0.34. For 
better representation and approximation of the actual system, the method used by the authors can be used 
to evaluate the influence of the physical-mechanical properties in simulated models. 

Thus, to evaluate the relationship between the natural frequency values obtained numerically and those 
obtained experimentally, linear regression analyses and Pearson’s correlation tests were performed, as 
shown in Table 4. 

Table 4. Linear regression equation (𝑓(𝑥) = 𝑏𝑥 + 𝑎), coefficient of determination (R²), and Pearson correlation 
coefficient (ρ) between numerical and experimental values for each sample. 

Sample Linear regression equation  R²  ρ  p-value 

Am_sup1 f(x) = 0.8822x + 3.6327 1.00 1.00 0.0311 

Am_sup2 f(x) = 0.7553x + 4.6894  0.99 0.99 0.0698 

Am_sup3 f(x) = 0.6352x + 4.8608 0.97 0.99 0.0698 

Am_sup4 f(x) = 1.0227x + 1.0077 1.00 1.00 0.0270 

Am_sup5 f(x) = 0.8519x + 1.9673 0.99 1.00 0.0606 

Am_med1 f(x) = 0.8975x + 1.6655 1.00 1.00 0.0062 

Am_med2 f(x) = 0.8078x + 4.4529 0.93 0.97 0.1657 

Am_med3 f(x) = 0.8776x + 0.1561  0.99 1.00 0.0621 

Am_med4 f(x) = 0.9262x + 2.3278 1.00 1.00 0.0090 

Am_med5 f(x) = 0.9178x - 0.1765 0.99 0.99 0.0745 

Am_inf1 f(x) = 1.2339x + 2.8352 1.00 1.00 0.0069 

Am_inf2 f(x) = 1.2411x - 1.0381 0.99 1.00 0.0632 

Am_inf3 f(x) = 0.819x + 2.1078 1.00 1.00 0.0163 

Am_inf4 f(x) = 0.9632x - 0.8722 0.97 0.99 0.1084 

Am_inf5 f(x) = 1.6956x - 2.7144 1.00 1.00 0.0361 

 
Through the regression analysis, it was possible to evaluate whether the numerically proposed model 

faithfully describes the actual system with the data obtained experimentally. The fit of the proposed lines to 
the models showed little dispersion, with R² values greater than 0.99 in twelve of the fifteen samples. The 
results show that the geometric models are optimally similar to the branch topology. In addition, the analysis 
of the slopes (b) of the linear regression equations allowed us to evaluate the relationship between the 
dependent variable and the independent variable because values of b close to 1 (one) indicate a greater 
association between the variables. The results found for the Pearson correlation test (ρ) were close to or 
equal to one for all samples analyzed, which represents a perfect positive correlation between the two 
variables. For a significance level of 10%, we could conclude that there was a significant relationship between 
the numerical and experimental variables for all samples, except for Am_med2 and Am_inf4. 

Through the regression analysis, it was possible to evaluate whether the numerically proposed model 
faithfully describes the actual system with the data obtained experimentally. The fit of the proposed lines to 
the models showed little dispersion, with R² values greater than 0.99 in twelve of the fifteen samples. The 
results show that the geometric models are optimally similar to the branch topology. In addition, the analysis 
of the slopes (b) of the linear regression Equation s allowed us to evaluate the relationship between the 
dependent variable and the independent variable because values of b close to 1 (one) indicate a greater 
association between the variables.  

The results found for the Pearson correlation test (ρ) were close to or equal to one for all samples 
analyzed, which represents a perfect positive correlation between the two variables. For a significance level 
of 10%, we could conclude that there was a significant relationship between the numerical and experimental 
variables for all samples, except for Am_med2 and Am_inf4. 
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Similarly, [20] experimentally and numerically determined the natural frequencies of the coffee plant of 
the Catuaí Vermelho (IAC 144) cultivar. To experimentally obtain the natural frequencies, the authors used 
a free vibration system so that the samples did not touch the soil. Through the FRF, accelerometers installed 
throughout the plant detected a higher incidence of natural frequency peaks between 10 Hz and 30 Hz. In 
turn, they determined the natural frequencies and vibration modes through the generation of representative 
models and simulation via the FEM. The input parameters in the simulation used by the authors were 
experimentally determined, sample by sample. The authors found an association between experimental and 
simulated data through linear regression analysis and correlation tests, which validated the proposed models. 

Considering the deterministic FEM, the high variability and complexity found in obtaining the geometric, 
physical, and mechanical properties of the coffee system directly influence the simulated results [17,21]. To 
verify the effect of the values of modulus of elasticity and density on the results of the proposed models’ 
simulations, [18] used the stochastic FEM to study the fruit-peduncle-branch system. The authors concluded 
that the natural frequencies increased with an increasing modulus of elasticity or a decreasing density of 
fruits, peduncles, and branches. 

In addition, the simplification of the mechanical properties of the materials by considering them 
homogeneous and isotropic materials was considered a predominant factor in the differences found in the 
study by [7]. The authors also observed that branches of different sizes along coffee plants exhibit different 
patterns of mechanical stiffness. According to [13], differences between the density and stiffness of the 
system affect the system vibration mode. 

Thus, stochastic methods can be used to analyze how the physical-mechanical properties affect the 
results of the simulations, in which input data are selected by random values and a set of results is obtained 
for a given parameter [27, 28, 31, 32]. In this way, the obtained results in the present research could serve 
as reference to use different approach to quantify uncertainties from the inherent variability of the Coffee 
plant. Uncertainty analysis using stochastic modeling with low computational cost could use the range 
parameters obtained here [29, 33, 34].  

CONCLUSIONS 

Regarding the study of the dynamic behavior of coffee branches using the FEM, the following 
conclusions were reached: 

 

• For the first natural frequency, the natural frequencies simulated using the FEM showed deviations 
of -31%, -26%, and -29% for the upper, middle, and lower thirds of the plant, respectively. The high 
variability in the physical-mechanical properties used as input parameters in the simulations may 
explain the high deviations found for the first natural frequency. 

• The second natural frequency presented the best fit between the models and had percentage 
variations of -1%, 1%, and -7% for the upper, middle, and lower thirds, respectively 

• For the third frequency, we observed percentage variations with values equal to 13%, 7%, and -15% 
for the upper, middle, and lower thirds, respectively. 

• Linear regression fits showed a coefficient of determination above 0.99 in twelve of the fifteen 
samples. In addition, correlation tests indicated that there was a significant relationship between the 
numerical and experimental variables. 

Acknowledgments: The authors thank the Minas Gerais State Agency for Research and Development (FAPEMIG), 
and National Council for Scientific and Technological Development (CNPq), Brazil, for financial support. 
Conflicts of Interest: The authors declare no conflict of interest. 
 

REFERENCES  

1. Silva EP, Silva FM, Magalhães RR. Application of finite elements method for structural analysis in a coffee 
harvester. Engineering. 2014;6(3):138. 

2. Magalhães AC, Teixeira MM, Couto SM, Resende RC. Modeling of pneumatic machine collector of coffee fruits on 
yard using finite elements analysis. Eng. Agríc. 2006;6(2):483-92. 

3. Oliveira ED, Silva FM, Nilson Salvador N, Figueiredo CAP. The influence of the sticks vibration and the speed in 
the displacement of the harvester machine on mechanized coffee harvest process. Eng. Agríc. 2017;27(3):714-21. 

4. Fadai NT, Please CP, VAN Gorder RA. Modelling structural deformations in a roasting coffee bean. Int. J. Non-
Linear Mech. 2019;110:123-30. 

5. Sachak-Patwa R, Fadai N, VAN Gorder RA. A homogenization approach for the roasting of an array of coffee 
beans. SIAM J. Appl. Math. 2019;79(4):1550-80. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Melo, W. W. A.; et al. 12 
 

 
Brazilian Archives of Biology and Technology. Vol.67: e24220331, 2024 www.scielo.br/babt 

6. Velloso NS, Costa ALG, Magalhães RR, Santos FL, Andrade ET. The Finite Element Method Applied to 
Agricultural Engineering: A review. Curr. Agric. Res. J. 2018;6(3):286-99. 

7. Carvalho EA, Magalhães RR, Santos FL. Geometric modeling of a coffee plant for displacements prediction. 
Comput. Electron. Agric. 2016;123:57-63. 

8. Zienkiewicz OC, Taylor RL, Zhu JZ. The Finite Element Method: Its Basis and Fundamentals. Butterworth-
Heinemann; 2013, 756 p. 

9. Huebner KH, Dewhirst DL, Smith DE, Byrom TG. The finite element method for engineers. Wiley-Interscience; 4ª 
ed, 2001, 744 p. 

10. Bathe K. Finite element procedures, Englewood Cliffs: Prentice Hall; 1996, 1037 p. 
11. Knight CE. The finite element method in mechanical design. Cengage Learning; 1992, 336 p. 
12. Savary SKJU, Ehsani R, Schueller JK, Rajaraman BP. Simulation study of citrus tree canopy motion during 

harvesting using a canopy shaker. Trans. ASABE. 2010;53(5):1373-81. 
13. Rao SS. Mech. Vibrations. São Paulo: Prentice Hall Upper Saddle River, rev. 5, 2010, 1084 p. 
14. Velloso NS, Santos FL, Pinto FAC, Villar FMdM, Valente DSM. Mech. properties of the macaw palm fruit-rachilla 

system. Pesq. Agropec. Trop. 2017;47(2):218–25. 
15. Coelho ALF, Santos FL, Pinto FAC, Queiroz DM. [Determination of the geometric, physical and mechanical 

properties of the fruit peduncle-branch system of the coffee tree.] Rev. Bras. Eng. Agríc. Ambiental. 
2015;19(3):286-292. 

16. Villibor GP, Santos FL, Queiroz DM, Khoury Jr J, Pinto FAC. Dynamic behavior of coffee fruit-stem system using 
modeling of flexible bodies, Comput. Electron. Agric. 2019;166:105009. 

17. Tinoco HA, Campo DA, Peña M, Uribe JRS. Finite element modal analysis of the fruit-peduncle of Coffea arabica 
L. var. Colombia estimating its geometrical and mechanical properties. Comput. Electron. Agric. 2014;108:17-27. 

18. Coelho ALdF, Santos FL, Queiroz DM, Pinto FAC. Dynamic behavior of the coffee fruit-stem-branch system using 
stochastic finite element method. Coffee Sci. 2016;11(1):1–10. 

19. Souza VHS, Dias GL, Santos AAR, Costa ALGC, Santos FL, Magalhães RR. Evaluation of the interaction 
between a harvester rod and a coffee branch based on finite element analysis. Comput. Electron. Agric. 
2018;150:476-83. 

20. Velloso NS, Magalhães RR, Santos FL, Santos AAR. Modal properties of coffee plants via numerical simulation. 
Comput. Electron. Agric. 2020;175:105552. 

21. Santos FL, Queiroz DM, Valente DSM, Coelho ALF. Simulation of the dynamic behavior of the coffee fruit-stem 
system using finite element method. Acta Sci. Technol. 2015;37(1):11-7. 

22. Ciro H. Coffee harvesting: determination of the natural frequencies of the fruit stem system in coffee trees. Appl. 
Eng. Agric. 2001;17(4):475–9. 

23. Coelho AL dF, Santos FL, Pinto FAC, Queiroz DM. Dynamic test for determining the elastic modulus of coffee 
fruit-stem-branch system. Acta Sci. Technol. 2017;39:579-86. 

24. Tinoco HA. Modeling elastic and geometric properties of Coffea arabica L. var. Colombia fruits by an 
experimental-numerical approach. Int. J. Fruit Sci. 2017;17(2):159-74. 

25. Alawadhi EM. Finite element simulations using ANSYS. CRC Press; Second edition., 2016, 429 p. 
26. Rueden CT, Schindelin J, Hiner MC, Dezonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next 

generation of scientific image data. BMC Bioinformatics. 2017;18(1):1-29. 
27. Filgueiras WH, Queiroz DM, Dias GP, Lucia RMD. Propriedades mecânicas da madeira do café. In: Simpósio de 

Pesquisa dos Cafés do Brasil, Poços de Calda. Anais do Simpósio de Pesquisa dos Cafés do Brasil – Resumos 
Expandidos, Brasília – DF: EMBRAPA Café e MINASPLAN, 2000, v. 2, p. 1081-4. 

28. Herrera JJC, Torres IDA, Tascón CEO. [Evaluation of physical and mechanical properties of the coffee fruit 
(Coffea Arabica l. var. Colombia) during its development and maturation] Dyna. 2012;79(173):116-24. 

29. Reh S, Beley J, Mukherjee S, Khor EH. Probabilistic finite element analysis using ANSYS. Struct. Safety. 
2006;28(1-2):17-43. 

30. Niemeyer F, Wilke HJ, Schmidt H. Geometry strongly influences the response of numerical models of the lumbar 
spine—a probabilistic finite element analysis. J. Biomech. 2012;45(8):1414-23. 

31. Kaminski M. The stochastic perturbation method for computational mechanics, Wiley, 2013, 352 p. 
32. Melo Junior WWA, Scinocca F, Santos FL, Magalhaes RR. Physical and mechanical properties of the coffee 

branch determination: An experimental approach. Coffee Sci. 2022;17:172012. 
33. Santos FL, Scinocca F, Marques DS, Velloso NS. Modal properties of the macaw palm fruit-rachilla system: An 

approach using the stochastic finite element method (SFEM). Comput. Electron. Agric. 2021;184:106099. 
34. Scinocca F, Nabarrete A. Parametric Stochastic Analysis of a Piezoelectric Vibration Absorber Applied to 

Automotive Body Structure. J. Vibr. Eng. Technol. 2020;8:199-213. 

 
 

© 2024 by the authors. Submitted for possible open access publication under the terms and 
conditions of the Creative Commons Attribution (CC BY NC) license 
(https://creativecommons.org/licenses/by-nc/4.0/). 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4

