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Abstract  Introduction: The World Health Organization estimates that by 2030 the Chronic Obstructive Pulmonary Disease 
(COPD) will be the third leading cause of death worldwide. Computerized Tomography (CT) images of lungs 
comprise a number of structures that are relevant for pulmonary disease diagnosis and analysis. Methods: In 
this paper, we employ the Adaptive Crisp Active Contour Models (ACACM) for lung structure segmentation. 
And we propose a novel method for lung disease detection based on feature extraction of ACACM segmented 
images within the cooccurrence statistics framework. The spatial interdependence matrix (SIM) synthesizes the 
structural information of lung image structures in terms of three attributes. Finally, we perform a classifi cation 
experiment on this set of attributes to discriminate two types of lung diseases and health lungs. We evaluate 
the discrimination ability of the proposed lung image descriptors using an extreme learning machine neural 
network (ELMNN) comprising 4-10 neurons in the hidden layer and 3 neurons in the output layer to map 
each pulmonary condition. This network was trained and validated by applying a holdout procedure. Results: 
The experimental results achieved 96% accuracy demonstrating the effectiveness of the proposed method on 
identifying normal lungs and diseases as COPD and fi brosis. Conclusion: Our results lead to conclude that 
the method is suitable to integrate clinical decision support systems for pulmonary screening and diagnosis.
Keywords  Lung diseases, Chest CT images, Active contour models, Spatial interdependence matrix, 

Feature extraction, Image segmentation.

Introduction
A large number of diseases that affect the worldwide 
population are lung-related. Therefore, research in 
the fi eld of Pulmonology has great importance in 
public health studies and focuses mainly on asthma, 
bronchiectasis and Chronic Obstructive Pulmonary 
Disease (COPD) (Holanda et al., 2010; Winkeler, 
2006).

The World Health Organization (WHO) estimates 
that there are 300 million people who suffer from 
asthma, and that this disease causes around 250 
thousand deaths per year worldwide (Campos and 
Lemos, 2009). In addition, WHO estimates that 210 
million people have COPD. This disease caused the 
death of over 300 thousand people in 2005 (Gold Copd, 
2008). Recent studies reveal that COPD is present 
in the 20 to 45 year-old age bracket, although it 
is characterized as an over-50-year-old disease. 
Accordingly, WHO estimates that the number of 
deaths due to COPD will increase 30% by 2015, and 
by 2030 COPD will be the third cause of mortalities 
worldwide (World…, 2014).

For the public health system, the early and correct 
diagnosis of any pulmonary disease is mandatory for 
timely treatment and prevents further death. From a 
clinical standpoint, diagnosis aid tools and systems 

are of great importance for the specialist and hence 
for the people’s health.

CT images of lungs represent a slice of the ribcage, 
where a large number of structures are located, such as 
blood vessels, arteries, respiratory vessels, pulmonary 
pleura and parenchyma, each with its own specifi c 
information. Thus, for pulmonary disease analysis and 
diagnosis, it is necessary to segment lung structures. 
It is worth noting that segmentation is an essential 
step in image systems for the accurate lung disease 
diagnosis, since it delimits lung structures in CT 
images. Indeed, image processing techniques can 
help computer diagnosis if lung region is accurately 
obtained (Felix et al., 2007a; Liang et al., 2008).

Following the segmentation process, an automatic 
procedure is applied to detect possible diseases in 
lung CT images in order to guide the radiologist 
diagnosis. Some studies have yielded promising disease 
detection results as reported by Trindade (2009) that 
uses texture descriptors extracted from the gray level 
cooccurrence matrix (GLCM) (Haralick et al., 1973) 
to describe three disease patterns (nodule, emphysema 
and frosted glass) and a normal one. Shimo et al. 
(2010) also employ GLCM texture descriptors to 
determine if the lungs are healthy or not. Furthermore, 
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some papers address the detection of certain specific 
diseases, such as nodules (Ayres et al., 2010; Silva 
and Oliveira, 2010), and emphysema (Felix et al., 
2007, 2011).

This paper aims to identify and classify 
diseases proposing a new methodology for texture 
characterization and classification of lung diseases. 
It is noteworthy that lung regions considered for 
classification are segmented beforehand using the 
Adaptive Crisp Active Contours Models (ACACM) 
(Rebouças Filho et al., 2013a) in order to minimize 
misclassification. This paper also addresses the 
detection of fibrosis and emphysema diseases, which 
are the main components of COPD based on a new 
feature extraction method, the spatial interdependence 
matrix (SIM). A classification experiment is used to 
compare the performance of SIM and GLCM texture 
descriptors. The visual information fidelity (VIF) 
index (Sheikh et al., 2005) is also investigated in 
this paper, because it performs quite similar to the 
SIM based descriptors. In fact, they both employ a 
referenced image analysis approach.

In addition, this paper provides an algorithm for 
CT medical image analysis on personal computers. 
Thus, it can reduce software dependence and costs 
with CT workstation and therefore it optimizes the 
workstation tasks.

Methods
The proposed methodology extracts features from 
segmented CT images and uses an extreme learning 
machine (ELM) to classify the lung disease in 
three classes: Pulmonary Fibrosis (PF) or Chronic 
Obstructive Pulmonary Disease (COPD) or as a 
Health Lung (HL) sample. Figure 1 illustrates the 
methodology. We first describe the digital image 
acquisition through Computed Tomography (CT) 
and, afterwards, the lung segmentation. Finally, 

we introduce the proposed method for lung disease 
identification.

The medical image acquisition and lung 
segmentation
Prior to image acquisition, the tomograph is set to 
an air density of –1000 HU (Hounsfield units). The 
calibration is carried out within three months taking 
exams, as specified by the manufacturer (Toshiba, 
1997). Moreover, a tomographic cut with a water 
phantom with a known density is performed for 
analysis and parameter control (Holanda et al., 2010). 
The images are quantified in 16 bits and stored in a 
DICOM format (Digital Imaging and Communications 
in Medicine). To read the DICOM file format, we 
have used the free DICOM toolkit offered by OFFIS. 
This library is compatible with the C++ programming 
language.

The data set comprises an image cluster obtained 
in collaboration with the Walter Cantídio Hospital 
of the Federal University of Ceará, submitted to an 
earlier study (Holanda et al., 2010; Winkeler, 2006). 
This study was approved and evaluated by the UFC 
Research Ethics Committee – COMEPE, (Protocol nº 
35/06) and complied with the demands of Resolution 
nº 196/96 of the National Health Council, concerning 
research in human beings.

In this paper, the inner regions of lungs are provided 
by the ACACM method (Rebouças Filho, 2011). 
These regions are used to calculate the attributes 
for lung disease classification. The ACACM is 
adopted because it provides accurate lung image 
segmentation. Indeed, it outperforms other methods 
available in the literature that are based on region 
growing, watershed, and mathematical morphology 
approaches (Felix et al., 2007a; Felix et al., 2007b), in 
terms of time processing and segmentation accuracy. 
The segmentation algorithm is based on the Active 
Contour Models and encompasses computational 

Figure 1. Model for the proposed pulmonary disease classification.
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intelligence techniques and lung anatomy knowledge 
(Rebouças Filho, 2013b). Figure 2 depicts lung 
segmentation results in CT images of thorax of healthy 
volunteers and patients with COPD and fibrosis.

The proposed feature extraction method
Our feature extraction method is inspired by the 
gray-level cooccurrence matrix (GLCM) introduced 
by Haralick et al. (1973) and often used in texture 
analysis (Choi, 2005; Medeiros et al., 2010). The 
proposed method, namely Spatial Interdependence 
Matrix (SIM), uses the cooccurrence statistics to 
analyse the structural information based on how the 
human visual system (HVS) interprets scenes. In this 
context, the novel method can be used to assess image 
structural degradation. Morever, it performs quite 
similar to the visual information fidelity (VIF) index 
(Sheikh et al., 2005). Here, the VIF index assesses 
differences between an image and its degraded version 
following the procedure of our proposed feature 
extraction method.

Consider an image I and its degraded version J as a 
set of gray levels in the domain DI ⊂ Z2 ∈{0,1,2,…,N}, 
where N is the total number of gray levels. We arrange 
the transitions between the intensities of the pixels 
and spatially correspondent in both images into a N 
x N matrix whose elements Mij are defined by

 #{( , ) : ( ), ( )}= = = ∀ ∈ij IM i j i I p j J p p D  (1)

where #{·} stands for the cardinality of the set 
of intensities I(p) and J(p) for pixels p belonging 
to I and J.

Three structural attributes extracted from the 
SIM matrix describe the degraded image J when 
compared with I: correlation (Cor), inverse difference 
moment (Idm) and chi-square (Chi). These attributes 
represent the level of degradation from three different 
perspectives, respectively, structural similarity, 
structural degradation and structural independence.

To extract the structural attributes Cor and Idm, 
we use a symmetric version MS = (M+MT)/2 of this 
matrix, where MT is the transpose of M. A normalization 
is applied to M, such that ΣM = 1 in order to obtain 
the weight of pair-transitions as an approximation of 
probabilities. The following equations describe the 
structural attributes in terms of Mij,
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where µi and µj stand for the average values, and 
σi and σj are the standard deviation of normalized 
symmetric M for each line i and column j; Oi refers 
to the observed weights in the diagonal (i = j) of the 
asymmetric M, and Ei refers to the expected weights 
in the diagonal of asymmetric M for J = I.

The SIM matrix provides a visual pattern useful to 
interpret the degraded image. When image structures 
are not degraded, the weights are well distributed close 
to the matrix diagonal. Otherwise, different patterns 
appear depending on the structural degradation. 
Accordingly, the SIM matrix pattern of a healthy lung 
is quite different from a fibrosis one. The structures 
of a healthy lung are small, sparse and, have high 
contrast. However, the fibrosis structures are spread 
through the lung area.

To assess the structural characterization of lung 
image, we use a set of attributes extracted from 
the SIM matrix. Cor, Idm and Chi attributes are 
related, respectively, to similarity, degradation and 
independenceof the original image structures when 
compared to the ones of the degraded image version. 
Our degradation model relies on the knowledge that 
the CT imagery system blurs lung structures. Thus, 

Figure 2. Segmentation results for lung CT images with: a) DPOC, b) fibrosis and c) healthy lung.
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we degrade the input image convolving it with a 
3x3 gaussian kernel with zero mean and unitary 
standard deviation. Our experiments have shown 
that this mask is sufficient to degrade small structures 
and furthermore, its size implies low impact on the 
overall computational cost. We set the number of 
gray-levels N = 64 to compute the SIM matrix. This 
quantization ensures structural change detection 
while preserves good numerical estimation for the 
coocurrence frequencies.

Disease identification

The COPD images present low medium intensity and 
large structures. The PF lung images, in turn, present 
particular texture and therefore are more susceptible 
to structural changes caused by blurring. In fact, 
the Idm and Chi attributes can detect this structural 
degradation. On the other hand, the fibrosis structures 
are largely distributed in the lungs and present relative 
larger sizes, when comparing them with protruding 
structures such as blood vessels. More importantly, 
the Cor attribute value exceeds the Idm and Chi ones 
for degraded structures of fibrosis images.

Regarding the HL images, they are more uniform 
than PF and COPD images. Nevertheless, HL 
images present some prominent vessels degraded 
by smoothing. In general, the SIM matrix attributes 
for HL are lower than the ones calculated for PF and 
COPD images.

The proposed disease descriptor is a set of three 
attributes in a vector A = {Cor, Idm, 1-Chi} extracted 
from the SIM matrices of 72 lung images. The dataset 
of descriptors consists of 27 vector samples of healthy 
lungs (HL), 24 vector samples of COPD and 21 vector 
samples of pulmonary fibrosis (PF), comprising left 
and right sides of CT images. Experts in pulmonary 
diseases provided the gold standard (GS) reference 
labels, which are used to training and validate the 
classifier. A subset of the sample vectors A is used 
to train a multilayer perceptron (MLP) artificial 
neural network (ANN) and the complementary set 
is used for validation in a holdout procedure. The 
train-test procedure is repeated 100 rounds and the 
performance evaluation values are registered using 
a confusion matrix.

In this paper, we employ the one step feedforward 
extreme learning machine (ELM) training algorithm 
(Huang et al., 2006). In general, the ELM reaches 
higher performances using less processing time than 
the backpropagation algorithm. However, the ELM 
often requires a higher number of neurons in this task 
(Wang et al., 2011). The learning rule of the ELM 
is expressed by
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where H is the number of neurons in the hidden 
layer and N is the number of training vectors.wi = 
[wi1, wi2,,..., win]

T are weight vectors of the hidden 
layer and bi = [bi1, bi2, ..., bim]T are weight vectors of 
the output layer. xj is the input vector of dimension 
n and tj is the gold standard label. The differentiable 
logistic activation function g(x) tackles with the neural 
network non-linearity.

Consider the matrices
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The learning rule given by Equation 5 can be 
redefined in the matricial form Hb = T. The solution 
b = H † T can be found employing least squares, given 
H † the Moore-Penrose generalized pseudoinverse. It 
can be proved that the ELM training is independent 
of the hidden weights wi, which can be initialized 
with random values (Huang et al., 2006).

Classification evaluation

In order to measure the performance of our method 
in classification experiments, we first compute a 
confusion matrix C whereas the instances Cij of 
the true and the estimated classes are distributed 
over rows i and columns j, respectively. The overall 
performance is defined by the sum of the instances 
in the diagonal of C, i.e., Accuracy = ∑i Cii. We also 
evaluate the classifier performance using the multi-
class classification measures defined by Labatut and 
Cherifi (2011),

= = =
+
TP

i
TP FN

CSensitivity TPR Recall
C C

,

= =
+
TN

i
TN FP

CSpecificity TNR
C C

,

assuming that true positive (TP), false negative (FN), 
false positive (FP) and true negative (TN) correspond 
to CTP = Cii, CFN = C+i – Cii, CFP = Ci+ – Cii and CTN 
= 1 – CTP – CFP – CFN, respectively. The proportions 
C+i and Ci+ represent the sums of the instances over 
row i and column j, respectively.

In fact, we have chosen these performance 
measures because they exhibit invariance property 
under uniform change of positives and negatives 
(Sokolova and Lapalme, 2009). Thus, Accuracy, 
Sensitivity and Specificity produce stable results 
regardless changes in data size, which is expected 
for different exams.
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Results
This section presents the performance evaluation 
of the proposed approach for pulmonary disease 
classification on CT lung thorax images of healthy 
and unhealthy patients (COPD and fibrosis diseases).

In this paper, we have applied two evaluation 
schemes to the proposed lung disease descriptors. 
The first scheme concerns a discriminant analysis 
using a U-Matrix projection of the descriptors 
(Ultsch, 2003). To extract the GLCM texture 
features namely correlation (Cor), homogeneity 
(Hom), energy (Ene) and contrast (Con), we adopt 
the neighbor parameters δ =1 and θ = {0°, 45°, 90°, 
135°} (Haralick et al., 1973). The GLCM set of 
texture attributes is, { , , , }=glcmA Cor Hom Ene Con  where 
each element represents the mean value of the four 
directions for a given displacement. The VIF index 
is a one-dimensional descriptor, i.e., a scalar value.

Figure 3 illustrates the projection of both sets 
of descriptors in a bi-dimensional space using a 
U-Matrix (Ultsch, 2003) projection. This n-dimensional 
visualization tool reveals the discriminant power of 
the descriptors through a distance map that indicates 
how close is an entity from their neighbors in the same 
class. The color intensity in Figures 3a, 3b and 3c, is 
proportional to the distance, i.e., the darker the color 
the closer the entity is to their neighbors in the same 
class. Two classes are well discriminated when there 

is a well-delimited light region between them. Thus, 
this map provides a visual interpretation of the spatial 
arrangement of the samples in clusters of similar 
meaning. We can observe that the SIM U-Matrix 
presented the best discrimination due to the presence 
of three well-defined regions, one for each class. The 
GLCM U-Matrix presented more than three regions, 
which means that there was sample superposition of 
different classes. The VIF U-Matrix, in turn, presented 
only two well-defined regions and it was not sufficient 
to discriminate three classes. Figures 3d, 3e and 3f 
illustrate these U-Matrices using color labellings 
for the data samples. Indeed, we can observe that 
both GLCM and VIF descriptors performed poorly. 
However, it is noteworthy that texture descriptors 
are able to provide a good discrimination of COPD 
samples.

The second evaluation scheme consists of a 
disease classification experiment. We performed 
an exhaustive search from 2 to 20 hidden neurons. 
Each one of the corresponding network architecture 
was evaluated using cross-validation to increase 
hit rates. We computed the average result for 100 
classifications employing 70% of the dataset for 
training, chosen at random, and the complement for 
test. The performance of the network architecture 
providing the best overall result was registered. 
Tables 1, 2 and 3 present confusion matrices that 
summarize the average classification and standard 

Figure 3. (a-c) SIM, GLCM and VIF descriptor U-Matrices for disease discrimination. (d-f) The colors identify the classes HL (red), PF 
(yellow) and COPD (blue).
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deviation results of our experiments for lung disease 
detection using SIM, GLCM and VIF descriptors.

Discussion
From the U-Matrix in Figure 3, we observed that PF and 
COPD samples are grouped in different clusters. The 
number of regions in Figures 3a, 3b and 3c reveal the 
strength of each descriptor set concerning its clustering 
result. Indeed, the well-defined discrimination region 
between the COPD class and the other two for SIM 
descriptors confirms this observation. Conversely, 
the discrimination between HL and PF classes is 
more difficult, because they appear very close in 
the U-Matrix projection. The weakeness clustering 
for GLCM and VIF descriptors is confirmed in the 
labeled U-Matrices presented in Figures 3e and 3f. 
It is noteworthy that they present at least two mixed 
lung classes.

Table 1 presents the confusion matrix for the SIM 
attributes obtained for an ELM neural network with 4 
hidden neurons. The overall performance measured by 
the accuracy was above 96% and it was penalized by 
the low sensitivity (85%) for PF and low sensitivity 
(88%) for HL classes. However, both sensitivity and 
specificity for samples containing pulmonary diseases 
(COPD) are equal to unity. Sensitivity measures 
the goodness of positive disease identification and 
specificity measures the system goodness in avoiding 

false positive. Thus, for this experiment, it means that 
the method succeeded in detecting most of PF and 
COPD sample images. The mean processing time 
was 5 milliseconds per image, measured on a regular 
four-core 3.2 GHz computer.

The results for the other two descriptors sets are 
presented in Table 2 and Table 3. For both GLCM 
and VIF descriptors, the performance measures 
reached lower values than the SIM ones. Indeed, 
the accuracy achieved with GLCM (85%) and VIF 
(79%) descriptors and both sensitivity and specificity 
measures revealed that its disease discrimination is 
more pruned to misclassification. The GLCM texture 
descriptors tend to confuse HL with the other two 
diseases, especially in their initial stages. On the other 
hand, VIF index produced a good result for COPD 
detection, although the majority of PF samples were 
false negatives.

Figure 4 displays a diagram that highlights 
segmented lung images on the boundaries between 
classes and their respective SIM. The matrices exhibit 
a particular pattern for each lung image and similarities 
between samples that belong to a same class. The 
largest dispersion around the diagonal shows that high 
contrast structures were degraded, as in the COPD 
images. The matrices in Figures 4a and 4e display a 
similar pattern region in a “V” format, showing that 
their lungs present high contrast between adjacent 

Table 1. Confusion matrix for the SIM attributes.

Class
Prediction

HP PF COPD
HP 0.3333 ± 0.0247 0.0417 ± 0.0237 0.0000 ± 0.0000
PF 0.0417 ± 0.0249 0.2500 ± 0.0237 0.0000 ± 0.0041

COPD 0.0000 ± 0.0021 0.0000 ± 0.0000 0.3333 ± 0.0041

Table 2. Confusion matrix for the GLCM attributes.

Class
Prediction

HP PF COPD
HP 0.3333 ± 0.0297 0.0625 ± 0.0458 0.0000 ± 0.0183
PF 0.0417 ± 0.0297 0.2292 ± 0.0474 0.0417 ± 0.0212

COPD 0.0000 ± 0.0042 0.0000 ± 0.0129 0.2917 ± 0.0255

Table 3. Confusion matrix for the VIF attributes.

Class
Prediction

HP PF COPD
HP 0.3333 ± 0.0552 0.1667 ± 0.0464 0.0000 ± 0.0148
PF 0.0417 ± 0.0554 0.1250 ± 0.0464 0.0000 ± 0.0029

COPD 0.0000 ± 0.0042 0.0000 ± 0.0000 0.3333 ± 0.0151
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structures. However, for the HR image in Figure 4e, 
the contrast is related to the noise presence.

It is worth noting that samples of the PF lung class 
are close to the HL class border, and it is determined 
by a few number of small structure alterations. 
Concerning the HL class, it is quite close to the PF 
one, since  vessels can be confused morphologically 
with the fibrosis anatomy.

Our experimental results show that SIM descriptors 
can be used to discriminate pulmonary diseases on 
CT images within high sensitivity and specificity 
criteria. We concluded that texture attributes from 
GLCM matrix and the image quality VIF measure 
are less pruned to discriminate diseases. Moreover, 
the proposed methodology can be used as a tool in 
CT screening for lung disease tracking and it can also 
be an auxiliary tool to help pulmonary diagnosis and 
monitoring. Our experiments have shown promising 
results regarding the main objective to provide a 
computer aided screening tool.

Although we have employed a robust automatic 
segmentation algorithm to provide the inner regions of 

the right and left lungs, the use of other segmentation 
methods will be further investigated.
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