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ABSTRACT 
Digital Microscopy was employed to characterize the microstructure of fiber-reinforced composite 

tubes manufactured by filament winding. Optical Microscopy was used for void characterization while 
Scanning Electron Microscopy was used for fiber and layer analysis. Acquired images were assembled in 
mosaics to reveal the microstructure of different cross-sections of the sample. Image processing was 
employed to detect either voids or individual fibers and measure their size, shape and spatial distribution. 
Void spatial distribution was analyzed with two different methods – local analysis and the tessellation 
method – revealing different behaviors along different cross-sections. Fiber layers were automatically 
detected and their average winding angle and dispersion were analyzed.  
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1 INTRODUCTION 
The microstructural characterization of a material is a key step to understand its practical 

engineering properties. For composites, the microstructural characterization is even more critical, because of 
the many possible arrangements between the reinforcing phase and the matrix. When one wants to 
characterize a composite, the volume or mass fraction of the phases is the most commonly described 
parameter. This is a direct consequence of the strong influence that the volume fraction of the reinforcing 
phase has on the properties of the composite.  

However, for heterogeneous materials like fiber-reinforced composites, the influence of the 
microstructure on the engineering properties is critical, and besides the volume fraction, the complete 
understanding of composites properties requires the determination of several microstructural parameters such 
as size, orientation and spatial distribution of the fibers and of possible defects. In fact, voids are a common 
feature appearing during the usual manufacturing processes [1, 2, 3], and even for aeronautical grade resin 
matrix composites, the presence of voids is allowed although restricted to low percentages. But, voids are 
stress concentrators and can act as crack initiation points [4]. Therefore, besides their volume fraction, other 
microstructural characteristics such as their spatial distribution and the aspect ratio should be carefully 
evaluated [1].  

Although measuring the volume fraction of voids or particles is a common practice [5, 6], the spatial 
distribution of these microstructural parameters can also be of relevance [1]. By characterizing the preferred 
distribution of voids, one can access information about the manufacturing process itself. For example, for 
filament winding parts, voids preferentially distributed among the tows of fibers are probably due to an 
inappropriate level of stress when the fibers are being wound around the mandrel [7]. On the other hand, 
voids on resin rich areas can originate from entrapped air bubbles generated during the stirring of the resin or 
are due to the evolution of by-products during the cure of the resin. Moreover, it can be of interest to 
determine if the voids are clustered or uniformly distributed on the cross section of the composite.  

The use of filament winding also brings a new level of complexity to the characterization of the 
reinforcement phase, as the composite is made up of a series of layers, with different thickness and fiber 
orientations. So it is important to discriminate individual fibers, their orientations, and groups of similarly 
oriented fibers forming layers. Gathering all this information is, however, not easy using the traditional 
methods of microstructural analysis. 

Digital Microscopy (DM) is the convergence of microscope automation, digital image acquisition, 
processing and analysis. The use of DM allows a complete characterization of a sample in fully automated 
procedures. Online acquired images can be automatically treated and the desired features can be 
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discriminated and analyzed. Moreover, a large number of fields, comprising thousands of objects can be 
quickly analyzed, providing high statistical accuracy [8]. 

In this work, the microstructure of a glass fiber-reinforced composite pipe fabricated by filament 
winding was fully characterized by Digital Microscopy. Both Optical Microscopy (OM) and Scanning 
Electron Microscopy (SEM) were employed, respectively, for void and fiber characterization.Materiais e  

2 EXPERIMENTAL 

2.1 Specimen selection and preparation 
Polyester matrix–filament wound glass fiber pipes used for the transport of water in offshore oil 

production facilities and having a nominal internal diameter of 200 mm and 7 mm thickness, were analyzed 
in this work. The pipes were sectioned in rings 25 mm thick that were then cut into 4 quadrants. Axial and 
circumferential samples were prepared for microstructural analysis (Figure 1). The preparation followed the 
usual procedures of grinding and polishing, from silicon carbide grit (#100) to alumina powder (0.5 μm). 
Whenever possible the cutting operation was performed using a low speed saw, to avoid excessive damage of 
the glass fibers [9]. 

Axial
Cut

Circumferential
Cut  

Figure 1: Illustration of axial and circumferential samples obtained from the composite tube. 

2.2 Image Acquisition 
To characterize the microstructure in respect to the distribution of voids and fibers, as well as their 

spatial orientation, it was desirable to obtain images combining high magnification and a large area of 
analysis. These requisites are not fulfilled by a single image. Therefore, it was necessary to capture several 
images, with the same magnification, and to join them together generating a mosaic image [10]. 

For void characterization, the samples were observed by optical microscopy using a Zeiss AxioPlan 
2 motorized optical microscope. The use of this computer-controlled equipment, with a motorized x-y-z 
sample holder, allows controlled sample displacement and the acquisition of a sequence of images with any 
spatial distribution and with automated focus control [8]. The images were captured using an AxioCam HR 
digital camera, with 1300 x 1300 pixels resolution. 

Image mosaics were constructed by joining low magnification images, obtained using a 5x objective 
lens (Zeiss EPIPLAN, NA = 0.13). These images covered an entire cross-section of the samples, from the 
outer to the inner diameter. Each field occupied an area of 2750 x 2180 µm2, with a spatial resolution of 2.10 
µm/pixel. To cover the entire sample area, 7 fields on the x direction and 3 on the y direction were necessary, 
leading to a total area of 19.2 x 6.5 mm2. This procedure permitted a complete visualization of each sample, 
clearly revealing the spatial distribution of voids, and allowing the measurement of features on the entire 
sample. 

For fiber and layer characterization the images the samples were observed by scanning electron 
microscopy, using the backscattered (BSE) mode of image formation. BSE was preferred instead of 
secondary electrons imaging, because the intensity of the BSE signal is a function of the atomic weight of the 
elements on the sample. Therefore, a good contrast is obtained between the polymeric matrix and glass 
fibers. Moreover, the images do not show topographical information, which is beneficial in the image 
processing steps, as residual artifacts from sample preparation are blurred. The images were captured with 
512 x 480 pixels resolution, at a magnification of 200x, corresponding to 0.88 µm/pixel. 

In this case, mosaic images were generated combining 28 images – 4 fields in the x direction and 7 
in the y direction. This procedure allowed for a complete visualization of the cross-section, clearly revealing 
the spatial distribution of the fiber layers, and allowing the measurement of features on the entire sample. 
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3 RESULTS AND DISCUSSION 

3.1 Spatial Distribution of Voids 

Figure 2a shows the image of a mosaic from a circumferential sample. The larger white rectangle 
depicted represents one of the 21 (7 x 3) mosaic tiles, also shown magnified in Figure 2b. As one can see, the 
mosaic offers a global view of the sample, clearly showing the spatial distribution of voids and fibers. In this 
view, the fibers are mainly aligned perpendicular to the plane of cut and appear as circles. Most large visible 
voids are also approximately round, as can be seen in Figure 2b. It is worth mentioning that the 
circumferential sample actually shows the spatial distribution of voids along the axis of the tube. 

2 mm

(a)

(b)

400 µm  

Figure 2: Circumferential sample. (a) Mosaic image obtained with a 5X objective lens (2.1 µm/pixel). (b) 
Digital magnification of the area outlined by the white rectangle. 

Figure 3a shows a mosaic image of an axial cut through the sample. The fibers appear as elongated 
objects while both round and elongated voids are visible. The presence of very elongated voids (Figure 3b), 
illustrates the relevance of observing the sample in different orientations. Moreover, such long objects also 
highlight the usefulness of the mosaic image – in a regular field scan microscopy procedure these objects can 
be too large to fit any individual field, precluding their accurate characterization of size and shape. Again, it 
is worth mentioning that the axial sample actually shows the spatial distribution of voids along the 
circumference of the tube. 

Voids can be discriminated by their grey shade. As seen in Figures 2 and 3, they appear darker than 
the fibers and the polymer matrix. However, small regions of fibers damaged during sample preparation 
exhibit similar contrast, and may lead to wrong results. Therefore, an image processing and analysis routine 
was developed to discriminate the several kinds of dark regions appearing on the images, and recognize the 
voids. This routine is described in detail elsewhere [10]. The results are shown in Figure 4 for a 
representative field in Figure 2a. 

Once voids are reliably recognized, their spatial distribution can be measured. This analysis was 
performed on the mosaic images, with two different methods: local mapping and neighborhood analysis. In 
local mapping the mosaic images were scanned with an analysis window of 250 x 250 pixels and, for each 
window, two parameters were obtained: void count and void area fraction. To avoid multiple counting of 
objects at the edges of the windows, a guard frame was used in which voids touching the bottom or left edges 
of the window were not considered. Thus, if a void straddles an edge between windows it will be counted 
only once. These parameters were then plotted as contour maps as shown in Figures 5 and 6 for the 
circumferential and axial samples, corresponding to Figures 2a and Figure 3a. 
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(a)

2 mm

(b)

400 µm  

Figure 3: Axial sample. (a) Mosaic image obtained with a 5X objective lens (2.1 µm/pixel). (b) Digital 
magnification of the area outlined by the white rectangle. 

(b)

(c)

(a)

200 µm

 

Figure 4: Void discrimination. (a) Original image (5X objective lens, 2.1 µm/pixel). (b) Detected dark 
objects (green and red). (c) Magnified view of the region outlined in (b) – voids are shown in green while red 

objects are smaller than 40 pixels in area and correspond to broken fiber tips. 

The maps provide a global view of the desired parameters across the whole cross-section, and 
indicate variations in spatial distribution. Comparing Figure 5 to Figure 6 one can state that the spatial 
distribution of voids for the circumferential sample is more uniform than for the axial sample. However, even 
though the maps contain quantitative information, the level of uniformity of the spatial distribution is still 
deduced in a qualitative way. To obtain a quantitative parameter that describes the uniformity of spatial 
distribution, a neighborhood analysis was applied. 

 175



PACIORNIK, S.; D’ALMEIDA, J.; Revista Matéria, v. 15, n. 2, pp. 172–181, 2010.  

(b) Void Area Fraction

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

Horizontal Units

V
er

tic
al

 U
ni

ts

0%
5%
10%
15%
20%
25%
30%
35%

(a) Void Count

2 mm

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

Horizontal Units

V
er

tic
al

 U
ni

ts

0
1
2
3
5
6
7
8
9

0
1
2
3
5
6
7
8
9

(b) Void Area Fraction

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

Horizontal Units

V
er

tic
al

 U
ni

ts

0%
5%
10%
15%
20%
25%
30%
35%

(a) Void Count

2 mm

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

Horizontal Units

V
er

tic
al

 U
ni

ts

0
1
2
3
5
6
7
8
9

0
1
2
3
5
6
7
8
9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

Horizontal Units

V
er

tic
al

 U
ni

ts

0
1
2
3
5
6
7
8
9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

Horizontal Units

V
er

tic
al

 U
ni

ts

0
1
2
3
5
6
7
8
9

0
1
2
3
5
6
7
8
9

 

Figure 5: Local mapping for circumferential sample. (a) Void count. (b) Void area fraction. Horizontal and 
vertical units refer to the count of 250x250 pixels windows in each direction. See text for details. 
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Figure 6: Local mapping for axial sample. (a) Void count. (b) Void area fraction. Horizontal and vertical 
units refer to the count of 250x250 pixels windows in each direction. See text for details.  
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In this analysis, the neighborhood of each relevant object, a void in this case, is analyzed and its 
nearest neighbors are identified by the so-called tessellation technique [11]. See Figure 7 for the sequence 
steps shown in a small section of one of the mosaics. The original grayscale image (Figure 7a) is segmented 
and post-processed as described above, leading to a binary image showing the voids (Figure 7b). All particles 
are then simultaneously dilated until a one pixel boundary is left around each particle (Figure 7c). This 
technique is based on the well-known Voronoi diagram [12]. Through a sequence of dilation and intersection, 
the neighboring regions to any given reference region can be automatically identified. Another intersection 
operation shows the corresponding original voids (Figure 7d). Then, the edge to edge distances between the 
reference void and its nearest neighbors are obtained (Figure 7e). A set of vectors is obtained for each void 
(Figure 7f) and the sequence is repeated for each and every void. 

 

(a) (b) (c)

100 µm

(d) (f)(e) 

 

Figure 7: Image processing sequence to measure void nearest neighbors’ distances. (a) Original image 
fragment. (b) Detected voids. (c) Voids (in color) superimposed on their regions of influence. The reference 

void is shown in green. (d) Detection of nearest neighbors (shown in red). Grey voids are not nearest 
neighbors. (e) Determination of distances between reference void and its neighbors. (f) Distribution of 

distances. 

Thus, a distribution of distances is measured for each void, with its average and standard deviation. 
The coefficient of variation (cov) is defined as the ratio of the standard deviation to the average distance. It 
has been shown previously [11] that for a uniform random spatial distribution cov = 0.36 ± 0.02. Deviations 
from this value indicate some degree of clustering of the analyzed phase. 

For the circumferential and axial samples shown, respectively, in Figures 2 and 3, the values 
obtained were cov = 0.37 and cov = 0.50. These results confirm the qualitative analysis that indicated that the 
spatial distribution of voids was almost perfectly random for the circumferential sample while the axial 
sample showed substantial clustering. 

3.2 Fiber and Layer Analysis  

Figure 8a shows a typical mosaic obtained operating the SEM in BSE mode. The contrast between 
fibers and matrix is sharp and one can easily distinguish fibers in different orientations, and the several layers 
resulting from filament winding. This image has undergone background correction to eliminate intensity 
variations between the several image tiles and noise filtering. The details of the procedure are described 
elsewhere [13]. 
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Fibers were automatically discriminated by their gray shade, as shown in Figure 8b. A few steps of 
post-processing were necessary to eliminate spurious objects in the background and holes in fibers. 
Boundaries between touching fibers were also obtained by the traditional watershed method [14]. 

  

Figure 8: (a) Example of a mosaic image obtained by assembling 28 (4x7) individual images, after 
equalizing the illumination of each field. (b) Fiber discrimination. 

Once fibers were accurately detected, a sequence of image processing operations was employed to 
discriminate layers. The basic principle behind this discrimination was the separation by fiber shape. Fibers 
normal to the image plane appear round, while fibers inclined relative to this plane appear as ellipsoids. Thus, 
shape parameters such as the aspect ratio and the circular shape factor [8] where used. Thus, the original 
image was separated into two intermediate images containing normal and inclined fibers. See Figure 9. 

  

Figure 9: (a) Fibers normal to the image plane. (b) Fibers inclined to the image plane. 

A sequence of morphological operations was then applied to join neighboring fibers, eliminate stray 
or broken fibers, and detect each fiber layer. The details are described elsewhere [13]. The result is shown in 
Figure 10, where each layer is identified by a different color, superimposed on the original image. 

The winding angle of each fiber can be obtained through the measurement of its major and minor projections 
(Fmax and Fmin) and the equation 

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞⎜

⎝
⎛=

π
φ 180

max

min
F

FarcsenFiber
 

(1) 

the winding angle of a layer is estimated as the average of the winding angles of all fibers that belong to that 
layer. The results are show in Table 1, where one can see that a nonsymmetrical stacking sequence was used. 
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From a mechanical behavior point of view this is not a good result, since nonsymmetrical laminates have 
bending-stretching coupling that can cause warping due to in-plane forces [15]. 

It is apparent from the results listed in Table 1 that larger standard deviations were found for the 
layers with more inclined angles (especially layers 3, 8, and 11). This is consistent with the comments above, 
regarding the difficulty to separate touching fibers in these layers. In certain cases, the separation lines of the 
watershed method break elongated fibers, creating objects with varying shapes within a layer, and thus 
biasing the winding angle measurement. 

 
 

Figure 10: Final discrimination of fiber layers according to fiber orientation. 

Table 1: Winding angles of the fiber layers 

 
Layer # Angle (degrees)* 

1 38.8 ± 4.9 
2 14.0 ± 3.8 
3 34.4 ± 11.4 
4 49.4 ± 5.0 
5 63.6 ± 5.3 
6 10.5 ± 3.2 
7 63.0 ± 4.6 
8 36.6 ± 10.5 
9 63.2 ± 4.0 
10 7.5 ± 4.0 
11 36.9 ± 10.1 
12 64.9 ± 2.8 
13 41.2 ± 8.8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

*Angle is shown as average ± standard deviation. 
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The methodology of identification of the actual lamina stacking sequence, however, proves its 
robustness, since the microstructural characterization of the entire cross section can be used to monitor 
deviations from the manufacturing designed lamina stacking sequence. A correction in the fabrication routine 
can thus be made, and better quality pipes can be manufactured. 

4 CONCLUSIONS 

The use of mosaic images covering the entire cross section of the fiber-reinforced composite was 
fundamental to reveal the complete microstructural arrangement, showing the spatial distribution of voids 
and fibers. 

The developed methodology was able to discriminate voids from preparation defects, and obtain 
their spatial distribution in a quantitative way. It was also possible to identify each individual lamina wound 
during the manufacturing process of a composite pipe. The image processing and analysis procedure 
developed to measure fiber size and shape allowed the determination of the average winding angle for each 
identified layer.  
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