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ABSTRACT 

In this work the theoretical solutions based upon the upper-bound theorem recently proposed by 
Pérez and Luri [Mech. Mater. 40 (2008) 617] for the equal channel angular extrusion process (ECAE) are 
analyzed by performing a 25 central composite factorial analysis. The uniaxial mechanical properties of 
commercial pure aluminium are considered by assuming isotropic nonlinear work-hardening combined to 
von Mises and Drucker isotropic yield criteria to predict the ECAE load and the effective plastic strain. From 
the proposed 25 factorial analysis, the main parameters affecting the ECAE pressure may be ranked as: (1) 
Friction factor, (2) die channels intersection angle, (3) outer and (4) inner die corners fillet radii and lastly, 
(5) plunger velocity. Alternatively, the effective plastic strain is mainly controlled by the die channels 
intersection angle and, in a less extent, by the outer and inner die corners fillet radii. 

Keyword: Upper-bound theorem, factorial analysis, equal channel angular extrusion. 
 

1 INTRODUCTION 

The equal channel angular extrusion process (ECAE) is a severe plastic deformation process 
employed to produce bulk ultra-fine grained materials with improved mechanical properties [1, 2]. In the 
ECAE process, a well lubricated billet is forced to pass through a two-channel die with constant cross-
sectional area. The workpiece undergoes a large amount of plastic strain by simple shear within the 
deformation zone located at the channels die intersection [3]. Thus, the knowledge of the kinematics of 
deformation is essential to understand the basic mechanisms controlling the grain refinement in the ECAE 
process. The consideration of material nonlinear work-hardening to predict the ECAE pressure, assuming a 
frictionless condition with an outer die corner radius, was firstly proposed by Alkorta and Sevillano [4]. Their 
analytical solution is based upon the upper-bound theorem and provides a good agreement with numerical 
predictions determined from a plane-strain finite element model. Later on, Pérez [5, 6] evaluated the effects 
of equal fillet die radii located at the die channels intersection with the help of the upper-bound theorem and 
finite element simulations, respectively. Although the analytical model proposed by Pérez neglected the 
effects of material work-hardening, the benefits of adopting a non-zero inner die corner radius were revealed 
up to a maximum value from which the predominant deformation mode is bending. 

Eivani and Taheri [7] presented the first upper-bound solution in which both the friction conditions 
and nonlinear work-hardening behavior were considered for a die geometry containing only the outer die 
corner radius. By varying the die channels angle between 90º and 135º and for a given friction factor, they 
reported that both the effective von Mises plastic strain and normalized extrusion pressure decreases as the 
outer die corner radius increases. Besides, it is verified that the effect of the die channels intersection angle 
prevails over both tribological conditions and other geometrical or rheological parameters. Also, Eivani and 
Taheri [8] also analyzed the effects of the formation of a dead metal zone in sharp-corner dies and established 
an explicit dependence of the resulting strain per ECAE pass with the friction factor from the minimization of 
the extrusion force. A better agreement with the measured load was achieved by this recent work by 
comparison with the earlier results [7]. 
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Pérez [5] and Luri et al. [9] developed theoretical expressions for the shear strain calculations 
considering all the possible die configurations. The authors showed a gain close to 11% of the effective 
plastic strain per pass when the inner radius is 2.67 times larger than the outer die fillet radius. Recently, 
Pérez and Luri [10] developed upper-bound solutions for the extrusion pressure, considering all die geometry 
possibilities and including the friction effects for perfectly plastic materials. The authors pointed out that the 
increasing of the inner fillet radius leads to an elevation of effective plastic strain combined with higher 
extrusion pressure levels. 

Based upon the review presented here above, it is clear the need for more general modelling 
techniques to describe the effects of the relevant parameters on the strains and mechanical properties 
resulting from the ECAE, namely, tooling geometry, billet material, friction conditions and processing 
velocity. Into this context, the present work firstly aims at providing a sensitivity analysis with the help of the 
2K central composite factorial design to evaluate the influence of these parameters on the effective plastic 
strain and the extrusion pressure for commercial pure aluminum and some typical die configurations by 
means of the variance analysis. 

2  ECAE THEORETICAL MODELLING 

2.1 Extrusion pressure 

The upper-bound solutions developed by Pérez and Luri [10] for the extrusion pressure, p, for all 
possible die geometries and including frictional effects are recalled. The tooling configurations are shown in 
Figure 1 where the inner and outer fillet radii are defined by Rinner and Router, respectively, and have local 
origin along line O. At the same time, Φ is the die channels intersection angle whereas β denotes the angle 
associated to nonzero fillet radii values. Also, r and x define the radial and horizontal directions. 

 

(a) (b) 

Figure 1: Die design for the extrusion pressure analytical solutions: (a) Rinner < Router and (b) Rinner > 
Router. 

Considering the material point q and its position vector Oq  and assuming the constant velocity V0 
hypothesis for both the plunger and the point q, the extrusion pressure of rectangular samples can be 
calculated by, 
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where κ is the material pure shear yield stress and f is the Tresca’s friction factor. Also, H, L and W 
denote the billet total height, width and thickness, respectively. 

According to Pérez and Luri [10] the angle β is given by, 
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2.2 Plastic Material Behaviour 

The billet material plastic behaviour is assumed as isotropic and temperature independent including 
nonlinear work-hardening with strain-rate effects. Moreover, the yield surface shape influence on the pure 
shear yield stress κ and, therefore, on the extrusion pressure is evaluated by considering both von Mises and 
Drucker [11] isotropic yield criteria. Thus, the plastic loading condition is defined as, 

0),(σ)(σF),,(σf pp
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pp
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where f denotes the yield function, F (σij) is a first degree homogeneous function of the Cauchy 
stress tensor, σij = σkkδij + Sij, defining the yield surface shape whereas σy is the uniaxial yield stress 
identified as a function of the equivalent plastic strain and strain-rate scalar measures. 

The von Mises and Drucker yield criteria are defined for the second and third invariants of the 
deviatoric stress components of the Cauchy stress tensor, Sij, that is, 

ijijMisesij SS3)(F =σ
2

 (4a) 

1/6
2
3

1/6
2
31/2 JJ ⎥

⎤
⎢
⎡

⎟
⎞

⎜
⎛

−σ=⎥
⎤

⎢
⎡

⎟
⎞

⎜
⎛

−=σ
3
2

Misesij3
2

2Druckerij
J

c1)(F
J

c1)J(3)(F
⎥
⎦

⎢
⎣

⎟
⎠

⎜
⎝⎥

⎦
⎢
⎣

⎟
⎠

⎜
⎝  (4b) 

And assuming in-plane pure shear (S12 = S21 = κ other Sij = 0) combined with Equation 3, 
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where c is a material constant satisfying the condition – 27/8 ≤ c ≤ 2.25 [12] for the yield locus 
convexity. Drucker’s yield criterion is suited to describe the crystallographic yield loci of both isotropic f.c.c. 
and b.c.c. metals. In the present work, the parameter c is assumed to be equal to 2.0. This value has been 
adopted by Ferron et al. [13] to fit the isotropic f.c.c. yield loci determined by Barlat and Lian [14] with the 
Bishop and Hill [15] model. 

The uniaxial tension yield stress σy is calculated by means of the average stress obtained from the 
material Swift hardening law with multiplicative strain-rate sensitivity as, 
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wherein 
p
ε is the effective plastic strain, and the strain-rate effect is accounted for by introducing 

the dwelling time in the ECAE deformation zone, tD, defined in section 2.3. Also, B, ε0, n and m denote 
strength coefficient, pre-strain, work-hardening exponent and strain-rate sensitivity exponent, respectively. 
Equation. 6 is numerically solved through the trapezoidal rule in order to accurately determine the mean 
stress. It should be noted that Equation 6 is restricted to a constant strain-rate deformation process. This 
assumption is adopted hereafter based upon the idea of a total time resulting from the ECAE deformation 
zone geometry. In the following, we assume that the elastic strains are small in comparison to the resulting 

ess and can, thus be neglected. 

The plastic strain-rate components are determined assuming isotropic work-hardening from the 
associated flow rule applied to the yield function, see Equation 3, as, 
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where, according to Figure 1, the plastic shear strain-rate components are defined as V0 / x by 
assuming x = L into the regions AEB and DFC. Also, for the portion ABCD the associated shear strain 
contribution is equal to V0 / r [10]. The solutions for the shear plastic strain associated to die geometries 
presented in Figure 1 were proposed by Pérez [5] and Luri et al. [9], that is, 
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2.4 Deformation time 

In the present work, the during which the billet undergoes severe plastic deformation along the die 
channels intersection was assumed as the contributions from the regions AEB, ABCD and DFC depicted on 
Figure 1 by considering that the inlet and outlet surfaces AE and DF have the same length. Thus, for the 
continuous kinematically admissible velocity field defined by a constant velocity V0, the time between the 
inlet and outlet surfaces is given by, 
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2.5 The 2K Factorial Central Composite Factorial Design 

The methodology proposed by Montgomery [16] for the single-replicate 2K central composite 
design of experiments is adopted for theoretical simulations to classify the interesting parameters influence 
on both extrusion pressure and effective plastic strain by means of a variance analysis. The parameters 
considered are die geometry (Rinner, Router and Φ), friction conditions (Tresca friction factor f) and plunger 
velocity (V0). These parameters and their corresponding values are listed in Table 1. 

Table 1: Parameters for the ECAE 2K factorial design. 

Parameter Letter for the 
combinations 

Adopted levels 

Low  Center Axial - Axial + High 

Router (mm) (a) 3.5 5.5 0.7432 10.2568 7.5 

Rinner (mm) (b) 3.5 5.5 0.7432 10.2568 7.5 

Φ (degrees) (c) 90 105 69.5 140.35 120 

f (d) 0.08 0.12 0.02486 0.21514 0.16 

V0 (mm / s) (e) 2.5 3.75 0.7776 6.723 5.0 
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Also, the rotatability parameter α is considered when the central and axial points are added on the 
factorial analysis. Thus, for the 25 central composite design we have, 

3784.224 5 ±≅±=α  (13) 

To perform the variance analysis related to central composite factorial design, the calculations of 
parameters effect (A, B,..., K), sum of the squares (SSA,B,…, K) for each individual effect, total sum of 
squares (SSTA,B,…, K), pure quadratic curvature SSPQ, error (E) and mean error  are needed. The 
Equations 14 to 19 define each one of these variables, that is, 
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where nr, nF, nCP, Fy  and CPy  denote number of replicates, numbers of factorial and central 
points, averages between factorial and central points, respectively. 

Finally, the variance, Fo, is defined by, 

E
SS

oF l=  
(20) 

where the index l takes into account from I to N-th value in the summation over the most important 

effects on either p or 
p
ε  denoted by SSl. Also, the combinations between the considered parameters for 

each case simulated are listed on Table 2. 
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Table 2: Combinations for the 25 factorial design treatment*. 

Treatments Coded factors * 
Router Rinner Φ f V0 

1 -1 -1 -1 -1 -1 
a 1 -1 -1 -1 -1 
b -1 1 -1 -1 -1 
c -1 -1 1 -1 -1 
d -1 -1 -1 1 -1 
e -1 -1 -1 -1 1 
ab 1 1 -1 -1 -1 
ac 1 -1 1 -1 -1 
ad 1 -1 -1 1 -1 
ae 1 -1 -1 -1 1 
bc -1 1 1 -1 -1 
bd -1 1 -1 1 -1 
be -1 1 -1 -1 1 
cd -1 -1 1 1 -1 
ce -1 -1 1 -1 1 
de -1 -1 -1 1 1 
abc 1 1 1 -1 -1 
abd 1 1 -1 1 -1 
abe 1 1 -1 -1 1 
acd 1 -1 1 1 -1 
ace 1 -1 1 -1 1 
ade 1 -1 -1 1 1 
bcd -1 1 1 1 -1 
bce -1 1 1 -1 1 
bde -1 1 -1 1 1 
cde -1 -1 1 1 1 

abcd 1 1 1 1 -1 
abce 1 1 1 -1 1 
abde 1 1 -1 1 1 
acde 1 -1 1 1 1 
bcde -1 1 1 1 1 
abcde 1 1 1 1 1 

Central point 0 0 0 0 0 
Axial - : Router -2.3784 0 0 0 0 
Axial + : Router 2.3784 0 0 0 0 
Axial - : Rinner 0 -2.3784 0 0 0 
Axial + : Rinner 0 2.3784 0 0 0 

Axial - : Φ 0 0 -2.3784 0 0 
Axial + : Φ 0 0 2.3784 0 0 
Axial - : f 0 0 0 -2.3784 0 
Axial +: f 0 0 0 2.3784 0 

Axial - : V0 0 0 0 0 -2.3784 
Axial +: V0 0 0 0 0 2.3784 

* - 1= "low" ; 0 = "center"; -2.3784 = "axial-"; 2.3784 = "axial+"; 1 = "high" 

3 RESULTS AND DISCUSSION 

The mechanical properties considered in the present work are related to the commercial pure 
aluminium tested in uniaxial tension by Bressan et al. [17], according to Equation. (6), defined by B = 235 
MPa, ε0 = 0.045, n = 0.21 and m = 0.027. Firstly, an evaluation of the adopted yield criteria and friction 
effects on the extrusion pressure, p, is realized assuming a die with Φ = 90º wherein the die fillet radii are 
taken equal to zero together with a plunger velocity (V0) value of 2.5 mm / s. Then, a 2K central composite 
factorial design is employed to classify, in order of relevance, the die geometrical, frictional conditions and 
process parameters upon the predictions of either p and assuming the billet dimensions as H = 75 mm and L 
= W = 15 mm. The levels assumed for each parameter are listed in the Tab. 1. 
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Table 3: Combinations for the 25 factorial design treatment. 
Source of 
variance Sum of squares 

Degrees of 
Freedom Mean square Fo 

Main 
effects p (MPa) 

pε  
p 
(MPa)

pε p (MPa)
pε p (MPa) 

pε  
A  (Router) 3354.613484 0.013763313 1 1 3354.61348 0.013763313 0.63052866 0.53328489 
B  (Rinner) 2540.422764 0.020234735 1 1 2540.42276 0.020234735 0.477494463 0.784032039 
C (�) 147977.2759 1.818131421 1 1 147977.276 1.818131421 27.81361072 70.4468481 
D (f ) 193720.0477 0.000621995 1 1 193720.048 0.000621995 36.41136089 0.024100351 
E (V0) 463.1281321 0.000621995 1 1 463.128132 0.000621995 0.087048944 0.024100351 
2 factors - - - - - - - - 
AB 10.96155461 0.000623089 1 1 10.9615546 0.000623089 0.002060319 0.024142735 
AC 1333.252108 0.009000828 1 1 1333.25211 0.009000828 0.250596282 0.348753646 
AD 0.286393932 0.000622807 1 1 0.28639393 0.000622807 5.38302E-05 0.024131794 
AE 0.293721652 0.000622807 1 1 0.29372165 0.000622807 5.52075E-05 0.024131794 
BC 1010.606521 0.009003914 1 1 1010.60652 0.009003914 0.189952249 0.348873226 
BD 3.882144835 0.000621995 1 1 3.88214484 0.000621995 0.000729683 0.024100351 
BE 0.222432828 0.000621995 1 1 0.22243283 0.000621995 4.18082E-05 0.024100351 
CD 315.5369051 0.000622807 1 1 315.536905 0.000622807 0.059307894 0.024131794 
CE 12.95651113 0.000622807 1 1 12.9565111 0.000622807 0.002435288 0.024131794 
DE 16.9616313 0.000621995 1 1 16.9616313 0.000621995 0.003188086 0.024100351 
3factors - - - - - - - - 
ABC 3.70769399 0.000621713 1 1 3.70769399 0.000621713 0.000696893 0.02408942 
ABD 0.063314433 0.000622807 1 1 0.06331443 0.000622807 1.19005E-05 0.024131794 
ABE 0.000959768 0.000622807 1 1 0.00095977 0.000622807 1.80397E-07 0.024131794 
ACD 0.386801023 0.000621995 1 1 0.38680102 0.000621995 7.27026E-05 0.024100351 
ACE 0.116736046 0.000621995 1 1 0.11673605 0.000621995 2.19416E-05 0.024100351 
ADE 2.50774E-05 0.000622807 1 1 2.5077E-05 0.000622807 4.71351E-09 0.024131794 
BCD 0.907500191 0.000622807 1 1 0.90750019 0.000622807 0.000170573 0.024131794 
BCE 0.088486042 0.000622807 1 1 0.08848604 0.000622807 1.66317E-05 0.024131794 
BDE 0.000339927 0.000621995 1 1 0.00033993 0.000621995 6.38922E-08 0.024100351 
CDE 0.027627542 0.000622807 1 1 0.02762754 0.000622807 5.19284E-06 0.024131794 
4 factors - - - - - - - - 
ABCD 0.003135805 0.000621995 1 1 0.00313581 0.000621995 5.89402E-07 0.024100351 
ABCE 0.000324628 0.000621995 1 1 0.00032463 0.000621995 6.10166E-08 0.024100351 
ABDE 5.54445E-06 0.000622807 1 1 5.5445E-06 0.000622807 1.04213E-09 0.024131794 
ACDE 3.38665E-05 0.000621995 1 1 3.3866E-05 0.000621995 6.36549E-09 0.024100351 
BCDE 7.94682E-05 0.000622807 1 1 7.9468E-05 0.000622807 1.49367E-08 0.024131794 
5 factors - - - - - - - - 
ABCDE 2.74541E-07 0.0006 1 1 2.7454E-07 0.000621995 5.16023E-11 0.024100351 
Pure 
quadratic 66.034 0.0006 - - 66.034 - - - 

Absolute 
error 1.7025E+05 0.8259 32 32 5320.3188 0.0258 - - 

TOTAL 180581.5835 2.7128 31 31 - - - - 
 
 

 

Figure 2: Influence of yield criterion and friction conditions on the pressure. 
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Figure 2 presents the effects of the plasticity criterion defined in terms of the ratio κ/σy equal to 0.54 
for Drucker and 0.58 for von Mises isotropic descriptions and the friction factor f on the ECAE pressure 
assuming Φ = 90º, Rinner = Router = 0 mm along with V0 = 2.5 mm / s. As expected, one can observe the 
existence of a direct effect from the frictional conditions, namely, the ECAE pressure increases significantly 
with the friction factor f or in a less extent with the yield stress ratio κ/σy. The Drucker yield surface presents 
a flattening between plane tension/compression and pure shear stress states which is responsible for the 
decreasing of the ratio κ/σy in comparison to the von Mises yield criterion. Hereafter, the Drucker isotropic 
yield criterion is adopted for all the analysis related to factorial analysis on the pressure predictions. 

Table 3 presents the variance (Fo) analysis associated to the 25 central composite design employed 
in the present work. In relation to the pressure, p, the influence of the parameters considered for the factorial 
design can be classified in order of importance as: (1) friction factor m, (2) intersection die angle Φ, (3) outer 
fillet radius Router, (4) inner fillet radius Rinner and (5) the plunger velocity V0, respectively. As expected, 
in the case of the effective plastic strain the variance results confirmed the large dependence only with the die 
geometrical parameters ordered as: (1) intersection die angle Φ, (2) inner fillet radius Rinner and (3) outer 
fillet radius Router. 

4 CONCLUSIONS 
Analytical investigations based upon the upper-bound method, including the material strain-rate 

effects and two isotropic plasticity yield criteria are proposed in the present work in order to evaluate the 
extrusion pressure and the effective plastic strain associated to the processing of a commercial pure 
aluminium. The effects of the plasticity criteria on the extrusion pressure are evaluated to point out the 
formulation responsible to processing load decreasing. Finally, a variance analysis based on the 25 central 
composite factorial design was performed to quantify the relevance of these parameters on the ECAE 
pressure and the effective plastic strain. From these analyses, the following conclusions can be outlined: 

1) The analysis of the influence of yield surface shape and friction conditions on the extrusion 
pressure proved to be a useful tool to better understand the frictional conditions effects arising from a single 
pass of ECAE at room temperature. In particular, the isotropic Drucker yield criterion is more appropriate to 
reproduce the pure shear and plane tension /compression stress states than the von Mises criterion and, thus, 
should be adopted in the analytical predictions of fcc materials deformed via ECAE; 

2) From the performed variance analysis, the ECAE parameters most affecting the extrusion 
pressure can be classified in the following order of importance: (1) friction factor, (2) intersection die 
channels angle, (3) outer fillet radius, (4) inner fillet radius and (5) the plunger velocity, respectively. Also, 
for the effective plastic strain the significance order for the affecting parameters is: (1) intersection die 
channels angle, (2) inner fillet radius and (3) outer fillet radius. 
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