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ABSTRACT 

The subcutaneous administration of insulin has been the treatment of millions of diabetics in the world. 

However, for such via insulin is invasive and not mimics the physiological action causing side effects. The 

oral route would be the most physiological and comfortable option, but the oral bioavailability of insulin is 

low by proteolytic activity and reduced permeability of the gastrointestinal tract. The aim of the study was to 

develop a nanostructured system integrating biomaterials for oral insulin delivery. Cashew gum (CG) is a 

polysaccharide extracted from the exudate of the plant Anacardium occidentale. It is a biopolymer composed 

of simple sugars and glucuronic acid and it can be used in nanostructured systems for the incorporation of 

molecules. The exudate was isolated, dissolved in water, filtered, precipitated in ethanol and purified. The 

CG was characterized by infrared spectroscopy and molecular weight by size exclusion chromatography. 

Nanoparticles were prepared through ionotropic gelation integrating cashew gum, dextran sulfate and polox-

amer containing insulin stabilized with chitosan, poly(ethyleneglycol) and coated with albumin. The particles 

were analyzed for particle size, zeta potential and insulin entrapment efficiency. The FTIR spectrum for CG 

showed a band at 3395 cm
-1

 due to the stretching vibration of O-H, a band at 2926 cm
-1

 of C-H vibrations; 

absorption at 1639 cm
-1

 of O-H type from bound water molecules and bands at 1143, 1073 and 1024 cm
-1

 due 

vibrations of the C-O-C from glycosidic bonds and O-H of alcohols. The peak molar mass of GC was 2.35 × 

10
4 
g/mol. The particles had a size of 156 nm and after coating, size of 5387 nm with 92% insulin entrapment 

efficiency and zeta potential of -51 mV indicating electrostatic stabilization. The results suggest an innova-

tive cashew gum base system for oral insulin administration. 

Keywords: Nanostructures, biomaterials, cashew gum, insulin, oral delivery. 

1. INTRODUCTION 

Diabetes mellitus is a metabolic disease that requires strict glycemic control to reduce its progression and 

complications; the therapy is based on the exogenous administration of insulin performed subcutaneously, 

however, in addition to being invasive and requiring several daily injections, administered insulin by this way 

does not mimic the physiological action of insulin causing side effects [1,2]. The oral route would be the 

most physiological and convenient for diabetics; however, because of this, insulin has low bioavailability due 

to high proteolytic activity, as well as reduced permeability of the fatty-intestinal tract [3,4]. Among the most 

promising approaches to oral insulin therapy are nanostructured biopolymers based on the incorporation of 

insulin into biocompatible, biodegradable and mucoadhesive nanoparticles that protect and promote the ab-

sorption of insulin into the gastrointestinal tract [5]. 

Cashew gum (CG) characterized as a polysaccharide, is a biopolymer from the Anacardium occi-

dentale (cashew tree), with varied applications in the food, medical and pharmaceutical industries, and can be 

used as an encapsulating agent in active ingredient release systems. GC is composed of several simple sugars 

and guluronic acid anionic chains [6]. This polycrystalline block is capable of interacting selectively with 

multivalent cations forming small nuclei that are stabilized in nanoparticles after polyolefin poly-complexing 
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with polyamines [7]. Chitosan is a cationic polymer that has amine groups in the structure responsible for 

conferring positive charge on the molecule, besides being biodegradable and biocompatible, it has mucoad-

hesive properties because it is able to interact ionically with negative charges present in the intestinal mucus 

and on the surface of the cells [8]. This interaction increases the time of permanence of the nanoparticles in 

the place favoring, consequently, greater absorption of the drug [9]. 

The incorporation of polyanions in nanostructured systems containing insulin, allows an increase of 

the electrostatic interactions, improving the efficiency of incorporation of the drug in the nanoparticles [10]. 

Dextran sulfate is a biodegradable, biocompatible, anionic polymer with a branched chain structure of anhy-

drous units grafted with free sulfate groups that interact with isolated ions such as calcium or with other cati-

onic polymers promoting stability to interactions [7]. 

In addition to the use of polymers in the nanostructured system, stabilizers have also been used in this 

work. Poloxamer, a nonionic copolymer, is capable of conferring steric stabilization to the system by its am-

phiphilic nature [11], and poly(ethyleneglycol) (PEG), a non-toxic polyether capable of reducing the interac-

tion between the particles conferring steric stabilization [12], besides it being mucoadhesive contributing to 

improve the transport of large proteins through the intestinal mucosa favoring the absorption [13]. 

In addition, insulin denaturation has been indicated as one of the causes of failure in the preparation of 

insulin delivery systems [14]. Therefore, albumin coating has been indicated to avoid degradation of insulin 

by proteases, preventing they can reach the insulin inside the nanoparticles, giving stability to the system in 

the stomach [15, 16]. 

The aim of the study was to develop a nanostructured system using cashew gum integrating bio-

materials for oral insulin delivery, making the adhesion to the treatment more efficient and significantly im-

proving the quality of life of the patients. 

2. MATERIALS AND METHODS 

2.1 Materials 

The crude cashew gum was obtained from the natural exudate from trees in Parnaíba, Piauí, Brazil and the 

samples were purified by the method described by [17]. Low molecular weight chitosan (50 kDa), bovine 

serum albumin (BSA) and Poly(ethyleneglycol) 35000 (PEG 35000) were purchased from Sigma-Aldrich 

Chemie (France); Dextran sulfate sodium salt from Leuconostoc ssp., Poloxamer 188 (Lutrol® F68, BASF, 

Ludwigshafen, Germany); Poly(ethyleneglycol) 4000 (PEG 4000) purchased from Fisher Scientific (UK); 

Calcium chloride (Riedel-de-Hae¨n, Germany); 90% lactic acid purchased from VWR BDH Prolabo 

(France); 99% trifluoroacetic acid (TFA) and acetonitrile (LiChrosolv) were obtained from Sigma-Aldrich 

Co. (St Louis, MO, USA); Insulin 100 IU/ml (Actrapid®, Novo Nordisk A/S, Bagsværd, Denmark). 

The chitosan was dissolved in 0.5% (v/v) of lactic acid solution. The solutions were filtered through, 

Whatman, qualitative 1, filter paper under vacuum. 

2.2 Purification and characterization of cashew gum 

CG was isolated from exudate from trees of the genus Anacardium occidentale L. and purified with sodium 

salt and precipitated in ethyl alcohol by the method described by Paula et al., 1998.  

2.2.1 FTIR spectroscopy analysis 

The polysaccharide obtained (CG) was characterized by infrared spectroscopy on an FT-IR PerkinElmer, 

spectrum 400, in the ATR module, in the range of 4000 to 700 cm
-1

.  

2.2.2 Proton nuclear magnetic resonance (
1
H NMR) 

The CG sample was dissolved in deuterium oxide (D2O). The spectra were obtained in the Varian 400-

vnmrs400 model, with temperature control at 50° C. 

2.2.3 Size Exclusion Chromatography (SEC)  

To determine the molecular weight, the polymer was analyzed by a size exclusion chromatography (SEC) 

system equipped with an on-line degasser, a refractive index (RI) detector and a set of columns including a 

Shodex OHpak SB-G column protector and the OHpak SB-SB-802.5HQ and OHpak SB-804HQ columns. 
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The polymers were eluted with a flow rate of 0.5 mL/min with 0.1 M Na2 SO4 (aq); 1 wt% acetic acid; 

0.02% NaN3 at 40 ° C. Prior to injection (50 μL), the samples were filtered through a polytetrafluoroethylene 

(PTFE) membrane with a pore size of 0.45 μm. The system was calibrated with five narrow PEG standards 

and the molecular weight of polymers (MnSEC) and Ð (Mw/Mn) were determined by conventional calibra-

tion using software clarity version 2.8.2.648. 

2.3 Preparation and characterization of the nanoparticles 

Nanoparticles were developed based on the methodology described by [7], with some modifications. Nano-

particles were prepared by complexation of biomaterials carrying opposite charges under controlled pH con-

ditions. An aqueous solution of 0.2% (w/v) cashew gum was prepared by stirring overnight. 0.02% (w/v) 

dextran sulfate, 0.04% (w/v) poloxamer 188 and 0.006% (w/v) insulin was added and dissolved. Complexa-

tion involved the dropwise addition of aqueous solution of 0.2% (w/v) calcium chloride, followed by a solu-

tion at pH 4.6 containing 0.07% (w/v) chitosan and 0.35% (w/v) PEG 4000 for stabilization of nanoparticles. 

Followed by dropwise addition of 1% (w/v) albumin solution. Nanoparticles were concentrated by dialysis 

using regenerated cellulose membrane with nominal dry weight of 100K MWCO (SnakeSkin Pleated Dialy-

sis Tubing-Thermo Fisher Scientific Inc., USA) and dialysis solution of 10% poly(ethyleneglycol) 35000 for 

24 hours at 4 °C. A formulation was prepared at room temperature under magnetic stirring at 800 rpm for 40 

min.   

2.3.1 Particle size and zeta potential analysis 

Particle size and zeta potential measurements were performed on Zetasizer Nano ZS (Malvern Instruments 

Ltd.). Surface charge was determined by laser doppler electrophoresis and measurements were carried out in 

a folded capillary electrophoresis cell. The size distribution was measured by dynamic light scattering (DLS) 

and represented by normalized intensity distribution. The measurements were performed in triplicate at 25ºC, 

with a detection angle of 90º. The results were presented as mean particle size distribution and zeta potential. 

2.3.2 Insulin entrapment efficiency 

Insulin entrapment efficiency was determined by the difference between the total amount of insulin used to 

prepare nanoparticles and the amount of free insulin per total amount of insulin. Nanoparticles containing 

insulin were separated from aqueous supernatant containing free insulin by centrifugation (10.000 rpm for 10 

min at 4 ºC, and the amount of free insulin was determined in triplicate by high-performance liquid chroma-

tography (HPLC). 

2.3.3 Insulin quantification 

Insulin was determinated according to the methodology validated by [10]. Insulin was analyzed by high-

performance liquid chromatography (HPLC) using an LC-2010 HT HPLC system (Shimadzu, Japan) 

equipped with a quaternary pump, a UV detector set at 214 nm, a reversed-phase X-Terra RP 18 column, 5 

µm, 4.6 x 250 mm (Waters, USA) and Purospher STAR RP-18 precolumn 5 µm, 4 x 4 mm (Merck KGa, 

Germany).  The mobile phase consists of acetonotrile (A) and 0.1% trifluoroacetic acid (TFA) aqueous solu-

tion (B) operated in gradient mode at flow rate of 1.0 ml min
-1

 set to 30:70 (A:B), changed to 40:60 (A:B) in 

5 min for elution over 5 min, and changed to 30:70 (A:B) in 1 min for elution over 1 min. The chromato-

grams were recorded and the peak area responses were measured using an automatic integrator. 

3. RESULTS AND DISCUSSION  

3.1 Purification and characterization of cashew gum 

The cashew gum was characterized by infrared spectroscopy and the spectrum showed a band at 3395 cm
-1

 

by O-H stretching vibration, a band at 2926 cm
-1

 by C-H vibrations; absorption at 1639 cm
-1

 of O-H type 

from bound water molecules and bands at 1143, 1073 and 1024 cm
-1

 due to the presence of C-O-C vibrations 

from glycosidic bonds and O-H of alcohols (Fig. 1) [18]. 
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Figura 1: FTIR spectra for cashew gum. 

The 
1
H NMR spectrum for CG is shown in Fig. 2. The CG spectrum showed a signal at 1.1 ppm due 

to the presence of CH3 of rhamnose and signals at 3.0 - 4.5 ppm due to the presence of OH and H-1 to H-6 

protons present in the polysaccharide [18, 19]. 

 

Figura 2: 1H NMR spectra for the cashew gum. 

The cashew gum presented molar mass of 2.35 x 10
4
 g/mol. The molecular weight of CG was deter-

mined by the size exclusion chromatography technique using the molecular weight distribution characteriza-

tion markers, Mn (mean molecular weight), Mw (mean molecular weight) and Đ (polydispersity) calculated 

by the quotient Mw/Mn (Table 1). The chromatogram from which these values were exported is presented in 

figure 7. During the process of purification of the material, it is of extreme importance that the treatments 

applied to the polysaccharide do not discharacterize it, guaranteeing the intact maintenance of its structure 

and/or average molar mass. 

Tabela 2: Mean molecular weights (Mn and Mw) and polydispersity (Đ) of cashew gum. 

Mn Mw Đ 

19700 23500 1,20 
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Figura 3: Chromatogram of the molecular mass of cashew gum. 

Similar molar mass value was also observed by [20], where cashew gum showed a peak molar mass of 

2.3 x 10
4
 g/mol, corroborating the results. 

3.2 Preparation and characterization of nanoparticles 

The prepared nanoparticles formed a multilayer complex with the insulin protected and retained, containing 

the outermost layer of albumin. Polyelectrolyte complex nanoparticles were formed by interaction of oppo-

site charges of biopolymers.  

The mean uncoated particle size containing insulin determined by the dynamic light scattering was 

156 nm. After coating the particles had an average size of 522 nm and 5387 nm, respectively, for chitosan 

and albumin coating.  

The particle size is important for the assessment of gastrointestinal absorption [21, 22], because it in-

fluences the body distribution [23], mucoadhesion [24, 25] and drug release profile [26]. The particles had a 

particle size lower than the critical value reported in the literature indicating that they can be absorbed orally. 

The polydispersive index of coated and finished particles was 0.2 indicating good particle size distribution. 

The confirmation of the formation of nanoparticles was given by the presence of Tyndall effect, by the visu-

alization of the opalescent suspension. The granulometric distribution of the nanospheres was unimodal as 

shown in figure 4.  

 

Figura 4: Particle size distribution (determined by DLS) of nanoparticles with insulin. 

The increase of the nanoparticles resulting from the coating with chitosan was also described in algi-
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nate nanoparticles prepared by [27], where the coating with the chitosan contributed to the increase of the 

size of the alginate nucleus in relation to its initial diameter. The result of the albumin coating on particle size 

may be related to changes in the electrical state causing the particles to increase or shrink in size, depending 

on whether the electrical repulsions increase or decrease within the particles [28]. 

The zeta potential characterizes the global electric charge of the surface of a particle, determining the 

electrophoretic mobility of the particles that is measured by their velocity per unit of electric field that is ap-

plied on the dispersion of ions in the diluent with ionic force. The result of the zeta potential indicates the 

electrostatic stability of the NP with values greater than 30 mV or less than 30 mV, related to nanoparticles 

with higher suspension stability and low tendency of aggregate formation [29]. 

The results show that the nanoparticles are negatively charged with zeta potential values of -27 mV 

for the uncoated nanoparticles. After coating with chitosan the particles had a surface charge of -6.8 and the 

coated and finished particles after the albumin coating presented a -51 mV loading indicating stable system 

[30]. Suspension stability, allows less formation of aggregate formation due to the high repulsive force be-

tween the particles [31]. The changes in the surface charges of the particles observed after the coatings con-

firm that the polyelectrolyte complexation occurred. The chitosan coating altered the surface charge of the 

particles, making it less negative, evidencing that the interaction with the chitosan occurred in fact and the 

change in the load after the albumin coating also confirms the efficiency of the interaction.  

The albumin coating was added for protection of insulin against proteolytic enzymes from the gastric 

environment, improving the resistance of the nanoparticles in this medium. In alginate and dextran sulfate 

nanospheres containing insulin coated with chitosan and albumin, the second coating with albumin worked as 

a target for pepsin degradation by keeping the encapsulated insulin protected from proteolytic attack in the 

stomach and exposing the underlying layer of the coating with chitosan, allowing the nanospheres to exert 

mucoadhesive properties in the intestinal environment [32]. 

3.2.1 Insulin entrapment efficiency 

The efficiency of insulin encapsulation is a measure of the amount of insulin entrapped and retained by the 

nanoparticle formulation. The value of insulin encapsulation efficiency was 92%, higher than previously re-

ported (90%) by WOITISKI et al. [7], in alginate and dextran sulfate nanoespheres coated with chitosan and 

albumin. 

Such results of high level of encapsulation indicate that there was an effective result in the formulation 

of the nanospheres with the cashew gum under the proposed conditions. The effect of pH on the components 

of the formulation may have contributed to the good result. Insulin has an isoelectric point at pH about 5.3, 

when the pH is above the isoelectric point, insulin has a negative charge and when it is below the point it has 

a positive charge. In the isoelectric point the hormone presents minimal solubility, since the lack of its total 

charge indicates that the molecules no longer repel, tending to agglutinate and precipitate [33]. 

In addition, the cashew gum, at pH less than 5.0, presents the carboxylic groups more ionizable, be-

sides showing better rheological characteristics by the high viscosity [34,35]. Thus, strong electrostatic at-

tractiveness can occur at the final pH of 4.6, providing high encapsulation efficiency of the oppositely 

charged insulin. 

Calcium ions interacting with the glucuronic residues of cashew gum can establish ionic bridges of the 

negatively charged carboxylic residues with insulin, strengthening the interaction [27]. The inclusion of 

poloxamer 188 may also favor the efficiency of insulin encapsulation due to promoted steric stabilization [7]. 

4. CONCLUSIONS 

In conclusion, cashew gum was successfully purified and characterized with results corroborating with the 

literature, with a molar mass of 2.35 x 10
4
 g/mol. The particles shows a mean final size of 5387 nm, after the 

coatings, it being below the critical value required for instestinal absorption and could then be absorbed by 

the oral route. The final zeta potential of the formulation (-51 mV) indicated nanoparticles with high electro-

static stability. The polyelectrolyte complexation methodology applied with mild conditions for insulin and 

easy to perform procedures allowed the preparation of particles with 92% retention of insulin, being promis-

ing as a formulation for oral insulin administration using biopolymers. 
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