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ABSTRACT 

Alumina-Glass compositions were prepared to evaluate the effect of glass as sintering aids. The composites 

showed densification below 1100°C. The highest density values (~95%) were obtained for compositions 

based respectively on borosilicate (G2 and G3) and soda lime glasses (G4), all containing Na in the precursor 

powder. Samples G1 (K-based) and G5 (no K or Na in the precursor glass powder) presented irregular mor-

phology with the presence of intergranular porosity. The composition G2, G3, and G4 presented uniform 

morphology corresponding to higher densification. 

Keywords: Glass, Alumina, Sintering Aid, Densification. 

RESUMO 

 As composições de alumina-reforço foram preparadas para avaliar o efeito da fase vítrea como auxiliar de 

sinterização.  Os compósitos apresentaram densificação abaixo de 1100 ° C.  Os maiores valores de den-

sidade (~ 95%) foram obtidos para composições baseadas respectivamente em vidros de borossilicato (G2 e 

G3) e soda e cal (G4), todos contendo Na no pó precursor.  As amostras G1 (à base de K) e G5 (sem K ou Na 

no pó do vidro precursor) apresentaram morfologia irregular com presença de porosidade intergranular.  As 

composições G2, G3 e G4 apresentaram morfologia uniforme, correspondendo a uma maior densificação. 

 Palavras-chave: Vidro, Alumina, Auxiliar de sinterização, Densificação. 

1. INTRODUCTION 

In recent years, many efforts have been devoted to improving the thermal, chemical and mechanical behavior 

ceramic materials and composites, exploring different strategies, such as new compositions including sinter-

ing aids that make up the ceramic matrix [1], design of tailored microstructures for the production of ceramic 

laminates [2], the use of nanosized secondary phases [3,4].  

Alumina-based ceramics are widely used materials in many industrial applications. These materials 

have exceptional combined properties and are often used in advanced structural ceramics. Alumina com-

pounds with secondary oxides phases are often manufactured to improve some properties, such as corrosion 
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and oxidation resistance, hardness and mechanical stability. Particularly, the formation of a glassy phase dur-

ing sintering at high temperatures may aid the densification of alumina ceramics [5]. 

Several studies have been carried out using a mixture of glass and alumina in different proportions 

for enhancing processing conditions and final properties of a single matrix or composites based on alumina 

[6-9]. The association of aluminate a glass forming system generally contributes to the reduction of sintering 

temperatures [10]. If a suitable glass composition is selected, the composite may have controlled closed po-

rosity and properties, such as dielectric constant, thermal expansion and tightness required for high-

performance microelectronic substrates [11]. 

Sintering aids are intentional chemical modifiers that act to promote greater particle contact and al-

low reactions in the pores of the constituent oxides, thus reducing the energy required for the diffusive and 

viscous flow processes to occur improving densification of the material [12]. These aids might be combina-

tions of one or more oxides which are added as well to control grain growth, in addition to improving densi-

fication by forming a liquid phase [13,14].  

In this context, the present study aims to obtain alumina ceramics using glass compositions as sinter-

ing aids to improve physical and microstructural features. 

 

 

2. MATERIALS AND METTHODS 

The compositions chosen in this work were based on the research done by [6, 7, 8, 9] as presented in Table 1.   

  

Table 1: Alumina-glass compositions used in this work. 

 
 

Powder compositions alumina (High Purity Alumina > 99%, 150 nm, TM-DAR, Taimei, Japan) con-

taining 5 wt.% glass were blended in ethanol in a ball mill using zirconia balls for 2 h at 600 rpm. After mix-

Matrix
 

95 wt.% Al2O3 

Filler 5 wt.% glass 

Sample G1 G2 G3 G4 G5 

Reference 

Oxides 

Okamoto, et al. [8] Okamoto, et 

al. [8] 

Araújo et al.  [9] Arcaro, et al. 

[7] 

Datta and Das 

(ARDB-3) [6] 

Glass type Borossilicate Borossilicate Borossilicate Soda lime Aluminium-

borosilicate 

Al2O3 

S iO2 

B2O3 

K2O 

Na2O 

Li2O 

ZrO2 

ZnO 

 

- 

78.99 

19.04 

1.97 

- 

- 

- 

- 

 

2.96 

80.66 

12.48 

- 

3.9 

- 

- 

- 

 

2 

81 

13 

- 

3.5 

- 

- 

- 

 

- 

68.08 

- 

9.56 

22.36 

- 

- 

15 

45 

35 

- 

- 

- 

2.5 

2.5 
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ing, the powder compositions were dried at 100°C for 24 h in an oven. The resulting mixes were granulated 

through a 200 mesh continuous vibration screen for 50 min. Then, prismatic blocks (4 mm x 4 mm x 4.7 mm) 

were compacted via dry uniaxial pressing at 30 MPa followed by cold isotactic pressing at 200 MPa.  

Thermal expansion behavior of the samples was investigated trough dilatometry (Netzsch DIL 402 

PC), with heating rate of 1°C/min up to 1200°C, hold time of 5 h, and cooling rate of 1°C/min down to room 

temperature. The green bodies were then sintered in an air oven (HT Nabertherm D 2804) with a constant 

heating/cooling rate 5°C/min with hold at 1200°C for 60 min. 

The morphology of the samples was obtained by scanning electron microscopy (Zeiss Supra 55VP 

FEG-SEM) of the alumina with additives samples after sintering. 

Apparent density measurements of the sintered samples were performed using the Archimedes princi-

ple [13] using distilled water as the immersion liquid. The respective specific theoretical densities of the ox-

ides used in this work were those provided by the manufactures. The hardness of the samples was determined 

using the Vickers technique, with load of 1 kgf for 30 s in each indentation [14], in a dedicated equipment 

(Zwick 3212). 

The powders (G1P, G2P, G3P, G4P and G5P) and sintered samples (G1S, G2S, G3S, G4S and G5S) 

were analyzed by X-ray diffraction (XRD, Bruker AXS D8 Discover), using CuK radiation, 40 kV and 40 

mA, in the range of 2 between 20° and 80°. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Sintering Behavior, densification and mechanical performance 

Figure 1 shows the linear shrinkage (LS) plots of the alumina/glass compositions compared to pure alumina. 

Sintering occurs in the range of 1050°C to 1100°C in the case of the glass containing ceramics. These tem-

peratures are considerably low when compared to submicron pure alumina, which usually sinters in the of in 

the range of 1300°C to 1500°C [15]. 

 

 

 

 

 

 

 

Figure 1: Linear shrinkage (LS) of the ceramic glass matrix compositions. 

It was observed that compositions G2, G3 and G4 presented lower sintering temperatures, 1075°C, 

1075°C and 1050°C, respectively. This was related to a similar composition of G2 and G3, both containing 

3.5 – 3.9% Na2O in the precursor glass, which is a well-known fluxing agent. In the case of composition G4, 



                                                               SILVA, L.B.; BLAESE, D .; PERES, A. P. S. revista Matéria, v.25, n.1, 2020. 

which is based on soda lime glass, the content of Na2O in the soda lime glass is much higher (22%), so that 

it forms a liquid phase at the lowest temperature. 

For composition G1, which contains K2O, sintering started at about 1100°C. In this case, K2O 

present in the precursor glass (G1) is slightly less active as a flux when compared to Na 2O (used in G2 

and G3 for example). Alkaline oxide act as modifiers connecting through ionic bounds to anions ne t-

work and such ions act breaking covalent bonds, as in the case of Si-O-Si, thereby causing the onset of 

oxygen atoms unbound in silica-based materials [16-17]. 

Thus, the addition of fluxing aids, in special Na-based, break the links between bridges of poly-

hedrons (SiO4) forming a terminal anion which neutralizes the charge of cation, positioned in the inter-

stices of the three-dimensional structure, causing a strong flux that is slightly stronger than K-based 

aids [18]. 

The Figure 2 illustrates the values of relative density and Vickers hardness in function of the composi-

tions studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Relative density compared hardness Vickers values of alumina/glass sintered at 1200°C. 

For G4 and G2, the density values were around 95%, and for the G3 curves, the density presented a 

value above 90%. Similar results were found by Montedo et al. 2017 [19], who studied the effects of a glass 

ceramic LZSA (11.6Li2O 16.8ZrO2 68.2SiO2 3.4Al2O3) in the sintering behavior of the alumina obtained by 

phase sintering. 

The authors showed that the glass ceramic increased the densification of the alumina studied, but one 

of the samples reached a relative density of 95% in the sintered samples at 1600°C/40 min compared to 85% 

for the sintered at 1600°C/4h, being a potential candidate to improve the densification of alumina in applica-

tions where wear resistance is the primary requirement. 

The additives used in G1 and G5 have a strong influence on the hardness and the density of the sam-

ples presenting lower values in relation to the other compositions. The alpha alumina exhibits a hexagonal 

corundum structure. In this structure, the Al
3+

 cations occupy only two-thirds of the available sites and an idle 

interstitial site arises between alternating Al
3+

 pairs. The capture of the alumina filler may occur around de-

fects resulting from the dissolution of impurities (i.e. doping cations and their charge compensation defects). 

In sintered materials, it is also necessary to consider the effect of grain contours, segregation of impurities 

and defects in the interfaces [20]. These dopant atoms may have contributed to the formation of punctual 
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defects, thus increasing the concentration of native defects in the crystal, which may hinder the sintering ki-

netics, generating a high porosity for samples G1 and G5.  

The porosity produces adverse effects on the mechanical properties, since the existence of pores can 

result in the reduction of hardness. When there is a decrease in the pores, the penetrator is more difficult to 

retreat into fully dense regions. 

 
3.2 Structural and microstructural analysis 

Alumina () is in JCPDS (COD 90077496) and quartz in JCPDS (COD 9006307) were identified in all sam-

ples. In general, the appearance of the andalusite (Al2SiO5) phase in JCPDS (COD 9000919). It is possible to 

verify that the peaks referring to all the phases in the powder samples intensify with the sintering. The Figure 

3 shows the XRD results of the powdered samples and for the sintered specimens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: XRD patterns of samples prepared from milled powders and the sintered samples at 1200◦C. 

 

3.3 SEM 

The morphological aspects of the sintered samples were observed in Figure 4. It is possible to observe that 

samples G1 (a) and G5 (d) exhibited an irregular morphology with the presence of intergranular porosity. For 

G5, it was observed the formation of necks between the particles and a decrease of the voids, which was re-

lated to the beginning of sintering. In contrast, the G2 (b) and (G4) composition had higher densification, as 
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can be seen in the dilatometric curves and in the density plot. The same morphological aspect was observed 

for the G3 composition, with similar densification to the G2 composition. 

 

 

Figure 4: Representative scanning electron micrograph of the sintered samples (a) G1, (b) G2, (c) G4 and (d) G5 (50.000 

× magnification). 

 

4. CONCLUSION 

Alumina/glass systems were formulated, processed and thermally treated in order to reduce the sintering 

temperature as well as to improve microstructural characteristics. According to the SEM images, it was pos-

sible to observe an irregular morphology with the presence of intergranular porosity for samples G1 and G5. 

Samples G2, G3, and G4 were denser and more uniform. Glass used as sintering aids were effective in lower-

ing the alumina sintering temperature. However, for the compositions G1 and G5 an increase of porosity was 

observed, which influenced the mechanical properties. 
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