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ABSTRACT
Predictive models are useful tools for reliable estimations of key mechanical properties when properly cali-
brated. Several research efforts have compared calibrated models in the literature, but the sampling techniques 
adopted in the model calibration, selection, and evaluation were not the focus of these studies. This work reviews 
different sampling techniques and employs hold-out and repeated k-fold cross-validation (CV) to evaluate three 
empirical dynamic modulus equations calibrated using a database containing 1,806 records from 65 asphalt mix-
tures. The results indicate that hold-out can induce unrealistic conclusions about the estimations, while repeated 
k-fold CV is a reliable methodology.
Keywords: Asphalt mixtures; dynamic modulus; empirical predictive models; resampling methods; repeated 
cross-validation.

1. INTRODUCTION
The use of predictive models to estimate asphalt mixture properties is an interesting alternative to laboratory 
tests, especially in the initial stages of pavement design, for example, the material selection process. Such 
models allow the preliminary and expedited evaluation of different combinations of mixture constituents. Fur-
thermore, empirical models can be used to estimate design parameters, such as the dynamic modulus of asphalt 
mixtures (|E*|), an important input in the Mechanistic-Empirical Pavement Design Guide (MEPDG) [1].

Several authors proposed empirical models to predict |E*|, expressed as equations that relate charac-
teristics of the component and mix design parameters to the stiffness properties of the mixtures, including 
WITCZAK and FONSECA [2], CHRISTENSEN JUNIOR et al. [3], BARI and WITCZAK [4], MATEOS and 
SOARES [5], YANG and YOU [6], and SAKHAEIFAR et al. [7].

Recently, with the accumulation of experimental data and the use of more powerful computers, predic-
tive models developed with different machine learning techniques have emerged. These include artificial neural 
network (ANN) models proposed by FAR et al. [8], CEYLAN et al. [9], RAHMAN and TAREFDER [10], and 
BARUGAHARE et al. [11], random forests by DANESHVAR and BEHNOOD [12], and a gene expression 
programming (GEP) model by LIU et al. [13].

Empirical models are generally developed based on a statistical analysis of experimental data using 
regression techniques. The goal is to obtain a model as simple as possible, ensuring very good predictions 
regardless of the dataset considered (representation and generalization skills). However, since a model is an 
approximate representation of a real system, its predictions are uncertain and the adjustment of its parameters 
can affect the bias and variance of the results. Therefore, additional adjustments to the model parameters are 
often necessary, especially when the material characteristics differ from those used in the original dataset.

Although several |E*| predictive models have been published in the literature, the sampling techniques 
adopted in their evaluations were not the focus of these studies. A common approach is to randomly divide a 
dataset into two non-overlapping subsets, i.e., training and testing datasets. During training, the model param-
eters are fitted to the available data through regressions. Later, in the testing step, the model is evaluated based 
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on its learned parameters. The downside of this procedure, called hold-out [14], is that the model performance is 
dependent on the dataset splitting criteria and the sampled subsets may not statistically represent the population.

In search of more reliable evaluations of the performance of predictive models, this work presents sam-
pling techniques usually adopted in machine learning studies for the calibration of |E*| predictive equations. 
In the analysis, the repeated cross-validation (CV) is adopted for the calibration of CHRISTENSEN JUNIOR  
et al. [3], BARI and WITCZAK [4], and SAKHAEIFAR et al. [7] equations, considering a database of 65 
asphalt mixtures used in Brazil. The analyses indicate that even robust models present variations in the perfor-
mance when evaluated with a hold-out scheme. Therefore, the analysis of calibrated models through repeated 
cross-validation is a more reliable methodology for the evaluation of calibrated regression models, given that it 
is based on the arithmetic mean of values instead of on a single value as the performance estimator. In addition, 
it allows the determination of a confidence interval (CI), which allows a better estimate of the performance of 
a model according to different sampled data. The following section presents basic concepts about sampling and 
some of the techniques available in the literature for evaluating predictive models.

2. RESAMPLING TECHNIQUES
A sample is a subset of elements from a population. If population data is widely available or it is feasible to 
acquire multiple datasets, both training and test subsets can be large and diverse enough to be representative. 
However, such situations are rare in science and one way to mitigate this problem is to perform sampling from 
the known dataset, treat it as a proxy for the population data, and resample it repeatedly [15]. Thus, resampling 
is the process of sampling available data several times to make more reliable inferences about the behavior of a 
statistical estimator.

Regarding predictive models, resampling techniques can be applied for different purposes, such as selec-
tion and evaluation tasks. The latter consists of estimating the predictive performance of a model on unseen data, 
which can be used as a criterion for model selection when some are considered [16]. Predictive performance 
estimates can also be used in the adjustments of model parameters, as in the calibration of asphalt mixture 
empirical models to unseen data from other sources, and in the search for the best modeling parameters (hyper-
parameters) to reduce bias and variance of the results.

Several resampling techniques have been proposed in the literature to assess the performance of predic-
tive models. Some of the main ones available in the literature are described below.

2.1. Hold-out
Hold-out is a simple sampling technique that relies on randomly dividing the available data into two mutually 
exclusive subsets: training data and testing data, only once. Often, the training set contains about 70% to 90% 
of the available data, while the testing set contains the remaining 30% to 10% [17, 18], respectively. The testing 
data are held out for evaluation purposes and they are not used for training [14].

The model performance is evaluated based on the testing sample predictions. However, considering an 
asphalt mixture dataset, these testing data can represent three different scenarios: a) The best-case condition, 
wherein the testing set comprises mixtures that closely adhere to the calibrated equation derived during training; 
b) The worst-case condition, where the test mixtures significantly differ from those employed to train the model; 
and c) an intermediate scenario, which does not fall into either the best or worst case. Thus, hold-out is sensible 
to the splitting criteria adopted and when a single sampling is performed for the training and testing datasets, 
there is no guarantee that the value obtained for the determination coefficient (R2) of a model is a strong perfor-
mance estimate.

Since part of the data is not used in the calibration, testing samples may have a different distribution than 
the full dataset, an undesirable situation for model performance reliability. Furthermore, data on the testing set 
may be valuable for training and the prediction performance may be affected if they are held out, again leading 
to skewed results [19]. In other words, model evaluations can differ significantly depending on the selection of 
elements in each subset.

2.2. Bootstrap
Bootstrap is a family of techniques that perform successive random sampling with replacement from observa-
tions. The statistical models are fitted to the sampled data, while the observations that were left out compose a 
testing set. Details of bootstrap variations are described in EFRON and TIBSHIRANI [20].

The advantage of sampling with replacement is that the training subset can be as large as the original 
dataset. However, it is important to highlight that samples must be representative, independently, and identically 
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distributed. As the sampled data with bootstrap may have different distributions than those of the available data, 
this technique is not recommended in cases of small sample sizes and when there is an interest in estimating 
extreme values of the distributions. Relying on asymptotic results in small samples or treating dependent data 
as if they were independent can underestimate sampling variation and make the results appear better than they 
are [21].

2.3. Cross-validation (CV) - general concept
It is a sampling method without replacement that allows the assessment of the generalization ability of predic-
tive models, being an interesting strategy for actions that try to avoid an overfitted modeling to a particular set of 
training data [16, 22, 23]. The CV method assumes that data are identically distributed and that the training and 
testing subsets are independent. There are different variations of CV sampling, as detailed below.

2.3.1. Leave-one-out cross-validation (LOOCV)
The method was introduced by STONE [24] and consists of splitting the data into training and testing subsets 
so that in each iteration nearly all the data, except for a single observation, are used for training and the model 
is tested on that single observation. This process is repeated until all dataset elements have been used in the test 
subset.

An advantage of LOOCV is that it has a small bias and does not tend to overestimate the testing error 
rate, as learning is repeated using training sets with almost all data (n – 1). Due to the absence of randomness in 
particular training/testing sets, different LOOCV runnings produce the same results. On the other hand, a disad-
vantage of this approach is that it can be computationally expensive for large datasets. This technique requires 
n models to be learned to evaluate a calibration process [16].

2.3.2. k-fold cross-validation (k-fold CV)
It was introduced by GEISSER [25] as an alternative to the computationally expensive LOOCV for non-small 
datasets [26]. Figure 1 illustrates the k-fold CV method, which involves randomly splitting the sample set into 
k nearly equal folds. Subsequently, k iterations of training and testing are performed such that within each iter-
ation a different fold is reserved for testing and the (k – 1) remaining folds are used as the training subset. This 
allows the use of all records in the training and testing subsets, but not simultaneously. As a result, each iteration 
provides a scenario for learning and evaluating the model, where some may be more pessimistic and others 
more optimistic. As with the other resampling methods, the final model is built using the entire dataset, but its 
expected performance is calculated as the average of the evaluations obtained in each iteration, which provides 
a more robust evaluation than hold-out, since k-fold considers several evaluation scenarios. Selecting an appro-
priate value for k is important to obtain a reliable estimation of the model’s performance. Usually, k values are 
between five and ten [27], and k = 10 was here adopted based on a study by KOHAVI [17], where different 
values were evaluated and the results indicated that most estimates were reasonably good at ten folds. Smaller 
values of k may result in a more biased estimation, while larger values of k may require longer processing time. 
Therefore, k = 10 is a common choice for k-fold cross-validation due to its balance between bias and variance, 
as well as its computational feasibility.

According to BREIMAN [28], as each training subset is used (n – 1) times during the learning, its 
iterations are not independent of each other, implying a variance of performances that may be large, but not 

Figure 1: k-fold CV (k = 10).
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as large as those observed in applying the hold-out sampling multiple times. KRSTAJIC et al. [29] performed 
10-fold cross-validations 50 times for several datasets and compared the distributions of optimal cross- 
validatory parameters for each dataset, proving that the model selected by a single cross-validation may have 
high variance, which points out the need for repeated cross-validation.

2.3.3. Repeated k-fold cross-validation
To deal with the variability of cross-validation results, some authors recommend the repeated CV [16, 17, 29, 
30], an improved method that runs k-fold CV multiple times and shuffles the data before each repetition. The 
expected performance is calculated as the average of the evaluations obtained in each CV. Although the com-
putational cost of the calibration process is increased, as the mean is a better estimate of a variable value than 
a single value, this method is an efficient tool based on a robust sampling strategy that can be adopted for the 
evaluation of asphalt mixture predictive models.

3. MODEL PERFORMANCE ASSESSMENT INDEXES
The performance evaluation of the models is accomplished by observing the determination coefficient, R2, 
calculated as shown in Equation 1.
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where: ȳ is the sample mean; SSres is the quadratic sum of the residuals, yi – ŷi; and SStot is the sum of the squared 
deviations, yi – ȳ.

The ratio between the standard error of the estimated modulus values and the deviation of the measured 
values, Se /Sy, is calculated from the results of Equations 2 and 3.
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For qualitative assessments of model calibrations, the criteria proposed by WITCZAK et al. [32], as 
shown in Table 1, were adopted in this paper.

4. DYNAMIC MODULUS EMPIRICAL MODELS
In this paper, repeated k-fold cross-validation was used in the calibration of three |E*| predictive equations, as 
described below.

4.1. Christensen Junior et al. (2003)
The model proposed by CHRISTENSEN JUNIOR et al. [3] was developed from 206 data points of 18 asphalt 
mixtures used in the United States. It is an equation based on the law of mixtures that considers three indepen-
dent variables: mixture voids in the mineral aggregate (VMA), %, and voids filled with asphalt (VFA), %, and 

ŷi

ŷi

Table 1: Criteria for qualitative model evaluation.

PREDICTIVE POTENTIAL R² Se    /Sy

Excellent > 0.90 < 0.35
Good 0.70-0.89 0.36-0.55
Fair 0.40-0.69 0.56-0.75
Poor 0.20-0.39 0.76-0.90

Very poor < 0.19 > 0.90
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binder dynamic shear modulus (|Gb
*|), psi. From this information, the contact volume between aggregate particles 

(Pc) and the |E*| are calculated, as shown in Equations 4 and 5.
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When the model was evaluated with the original dataset, it obtained a R2 of 0.98, in logarithmic scale, 
using the 90–10 hold-out scheme. However, when BARI and WITCZAK [4] applied the equations to the 
expanded dataset with 7,400 |E*| values, this model presented R2 of 0.61 in logarithmic scale and R2 of 0.23 in 
arithmetic scale.

4.2. Bari and Witczak (2006)
The BARI and WITCZAK [4] model was developed considering a dataset containing 7,400 |E*| values from 
346 mixtures used in the United States. The goodness of fit was evaluated without a resampling scheme, i.e., all 
available data was used to assess the model. The results are shown in two ways: in logarithmic scale, the model 
presented R2 of 0.90 and Se /Sv of 0.32, and in arithmetic scale, R2 was 0.80 and Se /Sv was 0.45. The model, pre-
sented in Equation 6 in its logarithmic version, includes as variables the binder |Gb

*|, mixture volumetric proper-
ties, and aggregate gradation information.
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where: δb is the binder phase angle, degree; ρ200 are the particles (by weight of the total particles) passing through 
sieve No. 200, %; ρ4 are the cumulative particles (by weight of the total particles) retained on sieve No. 4, %; ρ38 
are the cumulative particles (by weight of the total particles) retained on sieve 3/8”, %; ρ34 are the cumulative 
particles (by weight of the total particles) retained on sieve 3/4”, %; Vv are the air voids (by volume of the mix), 
%; and Vbe is the effective binder content (by volume of the mix), %.

4.3. Sakhaeifar et al. (2015)
The SAKHAEIFAR et al. [7] model was developed on a database of 20,209 data points from 1008 mixtures used 
in the United States gathered from several sources. Equation 7 considers the viscoelastic material behavior, as 
well as different physical and mechanical properties of the mixtures. The final model was calibrated using hold-
out with 90% of the data for training and the remaining for testing. Considering the logarithmic scale, the model 
presented R2 of 0.98 and of 0.14 for the training dataset, and R2 of 0.99 and Se /Sv of 0.13 for the testing dataset. 
In arithmetic scale, the authors obtained R2 of 0.95 and Se /Sv of 0.22 for the training dataset, and R2 of 0.93 and 
Se /Sy of 0.27 for the testing dataset.
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5. BRAZILIAN DATASET
The dataset of this research includes information from 65 asphalt mixtures used in Brazil. The same dataset was 
utilized in the study conducted by SANTOS et al. [33], with the objective of developing an artificial neural net-
work (ANN) model for predicting the dynamic modulus of asphalt mixtures. It is a comprehensive database that 
considers aggregates from five Brazilian states, mixtures with polymer-modified and conventional (unmodified) 
asphalts, in a total of 36 different binders. The dataset consisted of 1,806 dynamic modulus master curve values, 
information about binders, gradation, and volumetric properties of those mixtures. Table 2 presents a statistical 
description of the parameters.

As the coefficient of variation is a statistical measure of the relative dispersion of values in a data series 
around their mean, the order of magnitude of a variable does not change its interpretation. The coefficient of 
variation for gradation parameters varied more significantly for fractions retained on sieves 3/4” and 3/8”, while 
the fractions retained on sieve No. 4 presented the smallest variation. In general, small variations were observed 
for the volumetric parameters, except for Vbe, which presented a coefficient of variation of 20.2%. Mixtures with 
air voids ranging between 3.9% and 7.1% and ρ200 up to 8.3% were analyzed in this research.

Table 2: Data description.

PARAMETER SYMBOL MEAN STD. DEV. COEF. OF 
VARIATION

MIN. MAX.

Binder dynamic shear modulus at 20°C (MPa) |Gb
*| 90.184 153.843 170.6% 1.39E-4 1.12E+3

Binder phase angle (°) δb 52.660 20.541 39.0% 8.158 89.202
Aggregates passing sieve No. 200 ρ200 0.047 0.010 21.3% 0.030 0.083

Cumulative retained material on sieve No. 4 ρ4 0.488 0.070 14.3% 0.300 0.601
Cumulative retained material on sieve 3/8” ρ38 0.246 0.084 34.1% 0.050 0.342
Cumulative retained material on sieve 3/4” ρ34 0.020 0.028 140.0% 0.000 0.072

Air voids Vv 0.054 0.008 14.8% 0.039 0.071
Effective binder volume Vbe 0.094 0.019 20.2% 0.038 0.130

Voids in the mineral aggregate VMA 0.149 0.015 10.1% 0.107 0.175
Voids filled with asphalt VFA 0.628 0.083 13.2% 0.352 0.764
Dynamic modulus (MPa) |E*| 13,328 13,331 100.0% 62 70,873

Figure 2: Variation of stiffness and phase angle for the binders evaluated in the study.
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The plots in Figure 2 illustrate the variation in stiffness and phase angle values of the binder master curves 
at 20°C. The amplitudes of |G*| values are reduced for higher frequencies, with some tendency of stabilization 
near 2 GPa at the upper limit of |G*|, regardless of the binder. The phase angle values, however, presented more 
dispersed values for extreme frequencies, which was expected, given the diversity of binders in the database.

6. MODEL CALIBRATION PROCESS USING REPEATED k-FOLD CV
In this work, CHRISTENSEN JUNIOR et al. [3], BARI and WITCZAK [4], and SAKHAEIFAR et al. [7] pre-
dictive equations were calibrated using a code written in Python language and run in a conventional computer. 
The purpose of the calibration was to adjust the coefficients of each equation to the Brazilian Dataset by the 
minimization of an objective function. In this work, the root mean-square error (RMSE) was adopted as objec-
tive function.

 
RMSE
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n
i�
�� ( )  2
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where: RMSE is the root mean-square error; yi is the experimental value of |E*|; ŷi is the predicted |E*| value; and  
n is the sample size.

The L-BFGS-B (Limited-memory, Broyden-Fletcher-Goldfarb-Shanno, Bound-constrained) optimiza-
tion algorithm [31] was adopted to perform the calibration, which is a family of quasi-Newton methods that 
implement the BFGS optimization algorithm in limited computational memory environments for bound con-
strained minimization. The L-BFGS-B is a variation of the BFGS algorithm that utilizes a limited approximation 
of the inverse Hessian matrix to guide the search for the optimal solution. This approximation is constructed 
based on gradient information from previous iterations, enabling the algorithm to efficiently navigate towards 
the best solution through the variable (coefficients) space. It provides an efficient approach to optimization by 
avoiding the need to calculate and store the complete Hessian matrix.

To obtain statistically robust assessments for R2, a 10-fold CV was repeated 30 times with random splits 
and confidence intervals for R2 and RMSE were calculated. In addition, Se /Sv was also calculated based on 
Equations 2 and 3 to perform the qualitative model evaluation.

At the end of this process, a final model equation was produced using the entire dataset and the expected 
performance of this model was estimated by the mean R2 through the repeated CV. A pseudo-code adopted in the 
model calibration process with repeated CV is presented below.

6.1. Pseudo code for the k-fold cross-validation
State the model equation and the value of k
Initialize coefficients with values from the original model
Load dataset
For repetition from 1 to 30
    Shuffle dataset
    Randomly split dataset into k folds
    For fold from 1 to k
  Test_set(i) = ith fold
  Train_set(i) = dataset without ith fold
  Calibration = minimize MSE over Train_set(i) with L-BFGS-B optimizer
  Calculate |E*| for Test_set(i)
  Evaluate model performance on Test_set(i)
    Calculate average performance over k-folds
Calculate average performance after repetitions and obtain confidence intervals

Finally, to verify how often the results produced with the hold-out sampling may represent unlikely sce-
narios (outside the CI of the results obtained with repeated cross-validation), the three models were calibrated 
with this same dataset, using the 90–10 splitting ratio adopted in each iteration of the 10-fold CV.

ŷi
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7. RESULTS AND DISCUSSION

7.1. Performance of original models
CHRISTENSEN JUNIOR et al. [3], BARI and WITCZAK [4], and SAKHAEIFAR et al. [7] original equations 
were used to predict |E*| experimental values of all 65 asphalt mixtures evaluated in this work. Table 3 presents 
R2, RMSE, and the predictive potential of each model in arithmetic scale, which was between fair and good for 
the analyzed dataset.

These performances are probably related to the fact that all models were designed for mixtures used 
in the United States, which were produced with materials different than those adopted in the composition of 
Brazilian mixtures. Among the models evaluated, the BARI and WITCZAK [4] equation presented the worst 
performance, while SAKHAEIFAR et al. [7] was the original model that best fitted the Brazilian mixtures.

7.2. Performance of calibrated models
The calibrated equations obtained using the L-BFGS-B optimization algorithm with the entire dataset are pre-
sented below.

Calibrated CHRISTENSEN JUNIOR et al. [3]:
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Calibrated BARI and WITCZAK [4]:
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Calibrated SAKHAEIFAR et al. [7]:
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Table 4 shows the results obtained from the calibration process, including each model with their respec-
tive R2 and RMSE in arithmetic scale, according to the sampling techniques used to evaluate the models during 
calibration, and the predictive potential of the calibrated models. 10-fold CV values were presented with four 
decimals to show the CI with 95% of confidence level. The CI for a population sampled mean was calculated. 
The statistical assumptions for this method include that the observations in the data should be independent of 
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each other, the population should have a sufficiently large sample size or the population itself should follow a 
normal distribution, and the sampling process should be random.

All models were calibrated in less than one minute and provided at least good predictions. Considering 
the use of a regular computer and numerous iterations involving the repetition of the 10-fold calibration process 
30 times, achieving the calibration of all models in less than one minute can be considered an impressive feat 
in terms of execution time. The calibration experiments based on 90–10 hold-out scheme, the minimum and 
maximum values for the R2 of 30 runnings are presented.

The results showed a remarkable improvement in the predictive potential for all models after calibra-
tion, which was expected. The model predictive potentials were considered good for CHRISTENSEN JUNIOR  
et al. [3] and excellent for the other two. The model by SAKHAEIFAR et al. [7] remained the highest R2 value 
after calibration, considering the Student’s t-test with 95% of confidence level for two independent samples with 
unequal variances (p-value = 5.7E-31). The underperformance of the CHRISTENSEN JUNIOR et al. [3] model 
may be related to the fact that it only uses three variables in the equation, which may potentially affect the ability 
of the model to explain the behavior of mixtures from this dataset.

The CI is an indicator of the uncertainty margin in relation to a sampled mean value, informing the region 
where the population mean is at a certain confidence level. For instance, if the analysis is repeated many times 
at 95% confidence level, in 95% of the times the CI would contain the population mean. A narrower CI for 
high confidence levels indicates a smaller uncertainty about the sample mean value, which may be considered 
a good estimate of the population mean. The small CIs for 95% confidence levels presented in Table 4 indicate 
the robustness of the obtained R2 values. It should be noted that CI calculation requires multiple samples, which 
does not make sense when using resampling techniques such as hold-out. Furthermore, the use of individual 
assessments as in hold-out sampling often produced R2 values outside the CIs obtained from repeated cross- 
validation, as suggested by the maximum and minimum values shown in Table 4 and observed from the results, 
since only 2% of them were inside the calculated CIs. Variations of less than 5% in R2 may not be relevant for 
estimates in pre-design phases, but rigorous care is needed when concerns the process of sampling, develop-
ment, and evaluation of prediction models for pavement design parameters in order to reduce the uncertainty 
about the expected performance of these models.

When analyzing the results of the 90–10 hold-out scheme, it is observed that the predictive potential of 
the CHRISTENSEN JUNIOR et al. [3] calibrated model was classified as fair in 30% of the runs or as good in 
the others, depending on the sampling. Furthermore, the performance of the BARI and WITCZAK [4] calibrated 
model might be erroneously considered superior to the SAKHAEIFAR et al. [7] one since its best result was 
superior than the worst of the latter. Thus, hold-out can induce unrealistic conclusions about the performance 
estimated for the models, even for robust and widely tested ones, such as those evaluated in this study. There-
fore, hold-out is strongly not recommended as sampling scheme for model assessment.

The variability of R2 values can be observed, particularly, in the analysis of the histograms shown in 
Figures 3 and 4. Figure 3 shows RMSE and R2 histograms for the 90–10 hold-out scheme, while Figure 4 shows 

Table 3: Performance of the original predictive models.

MODEL R² RMSE PREDICTIVE POTENTIAL
BARI and WITCZAK (2006) 0.532 9084 Fair

CHRISTENSEN JUNIOR et al. (2003) 0.605 8347 Fair
SAKHAEIFAR et al. (2015) 0.861 4942 Good

Table 4: Performance of the models after the calibrations.

MODEL HOLD-OUT
(90–10 SCHEME)

REPEATED 10-FOLD CROSS-VALIDATION

R² MIN R² MAX R² RMSE PREDICTIVE 
POTENTIAL

BARI and WITCZAK (2006) 0.90 0.96 0.9344 ± 0.0010 0.1829 ± 0.0013 Excellent
CHRISTENSEN JUNIOR et al. (2003) 0.60 0.85 0.7256 ± 0.0011 6954.3688 ± 13.7838 Good

SAKHAEIFAR et al. (2015) 0.94 0.97 0.9603 ± 0.0001 0.1430 ± 0.0001 Excellent
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Figure 4: RMSE and R2 histograms for repeated 10-fold CV.

Figure 3: RMSE and R2 histograms for 90–10 hold-out scheme.
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them for the repeated 10-fold CV. Note in the histograms that the ranges of R2 and RMSE values obtained for CV 
were considerably smaller compared to those obtained with hold-out. Regarding the histograms obtained with 
hold-out, it is noted that most of the cases evaluated are outside the values calculated with confidence intervals, 
which reinforces the idea that the results obtained with hold-out present a higher degree of uncertainty.

In general, it may be observed that repeated CV is a resampling technique that allows an evaluation of 
predictive models that is less sensitive to the subset of data used, providing estimates with smaller variances. 
Thus, as in machine learning community, this technique is strongly recommended to be adopted in calibrations 
of models that attempt to predict the mechanical characteristics of asphalt mixtures, such as their dynamic mod-
ulus.

8. SUMMARY AND CONCLUSIONS
This work reviewed several resampling techniques used in the calibration, selection, and evaluation of predic-
tive models. Among them, although repeated k-fold CV is recognized as a good technique for the evaluation of 
the generalization ability and robustness of a model, it is not widely adopted on some other engineering tasks, 
such as the calibration of empirical models.

Hold-out and repeated k-fold CV were employed to evaluate the performance of the calibration of three 
dynamic modulus predictive models available in the literature. Those were proposed by CHRISTENSEN 
JUNIOR et al. [3], BARI and WITCZAK [4], and SAKHAEIFAR et al. [7]. For that, a dataset containing 1,806 
dynamic modulus experimental values from 65 asphalt mixtures was applied.

The results using repeated k-fold CV demonstrated a considerable improvement in the predictive poten-
tial of the models after calibration, as expected. All calibrated models presented good or excellent predictive 
potentials. The results using the 90–10 hold-out scheme revealed that hold-out may induce unrealistic conclu-
sions about the estimated performance of models, even for robust and widely tested ones, such as those evalu-
ated in this study. Therefore, hold-out is strongly not recommended as sampling scheme for model assessment.

As each calibration took less than a minute to be performed using a regular computer, the recommenda-
tion to adopt more robust evaluation procedures becomes stronger, even if they have higher computational costs. 
The impact of multiple iterations in repeated k-fold CV on the calibration running time was irrelevant in view of 
the gain in performance reliability, since the method allowed finding better estimates and confidence intervals. 
The calibrated models presented small intervals, which gives less uncertainty to their R2 values and expected 
performances when they are applied to new predictions. So, repeated k-fold CV is a highly recommended res-
ampling technique to be adopted in model calibration processes, as it allows better assessment of the model’s 
predictive capabilities regardless the subset of data considered.
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