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logical mechanisms modulating HR during or after an ex-
ercise program are not totally clear, and further studies are
needed.

Key words: Training. Heart rate. Autonomic nervous system. Exer-
cise.

INTRODUCTION

The regular practice of physical exercises is an impor-
tant factor to reduce morbidity and mortality rates of car-
diovascular and all other conditions1,2; there also seems to
have further and independent benefits from the practice of
physical exercises and improvement of the aerobic condi-
tion3-6, which speaks for their being practiced more and
more frequently. The American Heart Association recom-
mends individuals to practice physical exercises in most
days of the week, every day if possible, with intensity rang-
ing from moderate to strenuous, according to their physi-
cal capability, for a period of 30 minutes or more7.

Even though moderate exercises enhance health condi-
tions, there are recent and consistent evidences that high
intensity or strenuous exercises have even more significant
positive effects on lipid profile8, reducing up to two times
mortality rates over a decade9-12.

Acute and chronic effects of physical exercises on the
human body have been targeted by many researches over
the last few decades13-18, and are identified as responses to
exercise, such as higher HR at the initial transient of the
exercise, and adjustments to training, with a lower HR for
the same intensity of submaximal exercise, respectively.

Because it is easy to measure, heart rate (HR) behavior
has been extensively studied under different exercise-re-
lated types and conditions. HR is primarily controlled by
direct activity of the autonomic nervous system (ANS),
through actions on its sympathetic and parasympathetic
branches on the sinus node autorhytmicity, especially rest-
ing vagal activity (parasympathetic), which is progressive-
ly inhibited since the exercise was started19, and sympa-
thetic when exercise intensity is further incremented (figure
1). Different mechanisms act to adjust HR at different mo-
ments of a physical exercise. For instance, the mechanism
through which HR raises on the first four seconds of a phys-
ical exercise has been extensively studied, including under
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ABSTRACT

Regular physical exercise is an important factor to re-
duce the indexes of cardiovascular and all causes morbi-
mortality. However, there is, apparently, additional and in-
dependent benefits of the regular practice of physical
exercise and the improvement of the level of aerobic con-
dition. Heart rate (HR) is mediated primarily by the direct
activity of the autonomic nervous system (ANS), specifi-
cally through the sympathetic and parasympathetic branch-
es activities over the sinus node autorhythmicity, with pre-
dominance of the vagal activity (parasympathetic) at rest,
that is progressively inhibited since the onset of the exer-
cise. The HR behavior has been widely studied during dif-
ferent conditions and protocols associated to the exercise.
A reduction of the cardiac vagal tone (parasympathetic
function) and consequently a diminished HR variability in
rest, independently of the protocol of measurement used,
is related to an autonomic dysfunction, chronic-degenera-
tive diseases and increased mortality risk. Individuals with
high levels of aerobic condition have a lower resting HR,
along with a larger parasympathetic activity or smaller sym-
pathetic activity, but it is not necessarily a direct conse-
quence of the exercise training, as long as other inherent
adaptations to the aerobic conditioning can influence the
resting HR. The HR response in the onset of the exercise
represents the integrity of the vagus nerve, and the HR re-
covery on the post-exercise transient also denotes impor-
tant prognostic information; by the way, individuals that
have a slow HR recovery in the first minute post-exercise
have increased mortality risk. In conclusion, the physio-
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the effect of pharmacological block20-22, and is almost ex-
clusively mediated by vagal inhibition, with no significant
sympathetic role20, partly from different times of latency
from the two branches to this physiological stress.

HR variability was originally studied by Hon and Lee23

in newborns, and has been the target of many researches
over the past few years. At a search with the key word “heart
rate variability” on MedLine, there were over 6,000 refer-
ences, 32% between the years 1999 and 2002, showing a
raising interest on the theme within the academic/scientif-
ic fields. HR variations or variability can be measured within
the time and frequency domains, with specific protocols
for each domain24-30, even with specificity enough for an
isolated assessment of cardiac vagal tone (parasympathet-
ic branch) in the transition from rest to dynamic exercise20.

A reduction of the cardiac vagal tone, thus of HR vari-
ability, regardless of the measuring protocol, is related to
autonomic dysfunction, chronic-degenerative diseases, and
increased mortality risk31-37, thus representing an impor-
tant indicator of health status38,39. An isolated decrease of
HR variability reflects a two- to five-fold increase in the
relative mortality risk due to a cardiac event33,40; when as-
sociated to a significant decrease of baroreflex sensitivity
(< 3 ms/mmHg), this relative risk may reach a 7-fold in-
crease33. On the other hand, in individuals with congestive
heart failure, even small increases in HR variability indi-
ces, such as standard-deviation of normal RR intervals (time
domain), may decrease mortality risk in up to 20%32. For
this reason, and for its predominance on resting, cardiac
vagal activity has been addressed in a number of trials,
especially when it relates to physical activity.

Today, at the light of science, one cannot deny that aero-
bic training leads to improvement in the maximum oxygen

uptake15,41,42, due to, at least in part, an increase of cardiac
output from an increase in the systolic volume. Maximal
HR does not tend to change, whereas somewhat smaller
values may be seen in rest and, especially, during submax-
imal exercise43, and are probably related to mechanisms
such as increase of venous return and myocardial contrac-
tility44. Furthermore, maximum O2 uptake, both absolute,
and gender and age-related, is an important longevity fac-
tor, i.e., the higher the aerobic conditions of an individual,
the smaller his/her mortality risk3,45,46 (table 1). These ad-
justments of HR behavior from aerobic training may also
be due to changes in the sympathetic-vagal balance or in-
trinsic adaptations, such as improvement in the atrioven-
tricular conduction system47. Some studies suggest that the
mere practice of physical exercises is not enough to effec-
tively decrease mortality risk, being necessary that the train-
ing program be capable of promoting adjustments in both,
the individual’s aerobic condition3,45,46 and the autonomic
function48.

It remains unclear if the improvement of the aerobic con-
dition from training enhances cardiac vagal tone, thus rest-
ing-HR variability. Therefore, the purpose of this review is
to discuss the effects of aerobic training on the autonomic
nervous system to control resting HR, and in the initial and

Fig. 1 – Heart rate autonomic control at rest and at exercise. Parasym-
pathetic role decreases when intensity of exercise is increased, and the
opposite happens with the sympathetic role.

TABLE 1

Mortality relative risk according to aerobic condition

Aerobic RR

condition* (CI 95%)

Laukkanen et al., 2001 > 10.6 1.0 (ref)
(asymptomatic individuals) 9.3-10.6 0.71-3.01

7.9-9.2 1.44-5.39
< 7.9 2.02-7.32

Kavanagh et al., 2002 < 4.2 1.0 (ref)
(individual with 4.2-6.3 0.54-0.71

cardiovascular disease) > 6.3 0.33-0.47

Myers et al., 2002 1.0-5.9 3.0-6.8
(asymptomatic individuals) 6.0-7.9 1.5-3.8

8.0-9.9 1.1-2.8
10.0-12.9 0.7-2.2

> 13.0 1.0 (ref)

Myers et al., 2002 1.0-4.9 3.3-5.2
(individuals with 5.0-6.4 2.4-3.7

cardiovascular conditions) 6.5-8.2 1.7-2.8
8.3-10.6 1.4-2.2
> 10.7 1.0 (ref)

* Aerobic condition measured in METs.
RR: Relative risk for cardiovascular mortality.
ref.: Value of reference.
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final exercise transients, i.e., the potential of aerobic train-
ing in inducing physiological changes of the cardiac vagal
tone.

This review was based primarily on original studies in
humans of different medical and physical conditions (lev-
els of physical activity) ranging from individuals with se-
vere heart conditions, even heart-transplanted subjects, to
healthy, but sedentary individuals to high-performance ath-
letes.

EFFECTS ON RESTING-HR

A low resting HR reflects a good health condition, where-
as higher values are apparently related to a higher mortal-
ity risk49. A mistake often made in sports area is to use
resting-HR as an indicator of the degree of aerobic condi-
tioning, since the association between low resting-HR and
maximal aerobic power is quite modest, and may be due to
higher resting vagal activity50, reducing diastolic depolar-
ization rate and prolonging duration of the cardiac cycle,
primarily on account of a proportionally longer diastole13.
However, can training induce higher resting vagal activity,
and therefore be accountable for lower resting-HR?

Studies suggest that well-trained or physically well-fit
(aerobically) individuals present a lower resting-HR, sug-
gestive of higher parasympathetic activity51-55 or lower sym-
pathetic activity56. However, except for the later, a cross-
sectional analysis does not allow us to conclude that training
was responsible for such adjustment on the ANS. These stud-
ies did not take into consideration the level of aerobic con-
ditioning and the autonomic function of athletes prior to
training; by knowing that there is an important genetic in-
fluence in determining HR variability57, one could specu-
late that those individuals could have better cardiovascular
adjustment upon training for having a better prior cardiac
vagal tone58. Uusitalo et al.59 and Bonaduce et al.60, after
longitudinal studies, noted a reduction of resting-HR, even
though significant changes in autonomic indicators were
not seen. Exercise-induced bradycardia can also be due to
intrinsic adaptation of the sinus node61.

A lower resting-HR can also be consequence of other
factors derived from a training program60, such as the in-
crease of venous return and systolic volume. With the im-
provement of the venous return, there is an increase in the
systolic volume, and according to Frank-Starling law, when
there is an increase in the volume of blood in its cavities,
there is an increase in heart contractility62. To keep resting-
heart output constant, there is a decrease of HR in response
to a higher systolic volume, and these adaptations are ex-
pected in individuals with better aerobic conditioning62, re-
gardless of their autonomic function. However, will train-
ing effects on cardiorespiratory variables also modify ANS?

EFFECTS ON EXERCISE-HR
As previously discussed, HR behavior during the exer-

cise is mediated by ANS. HR variability is the oscillation in
time between consecutive myocardial contractions (systo-
les)23.

Studies with selective pharmacological block22 showed
the exclusive role of the vagus nerve in HR response at the
initial transient of the exercise20,21, with predominance of
the vagal activity at rest that is gradually inhibited at sub-
maximal exercise63 both active and passive64-66, up to the
maximum level of exercise, when parasympathetic activi-
ty is apparently totally inhibited67, causing smaller or ab-
sence of HR variability.

In the initial seconds of the exercise, HR increases due to
inhibition of vagal activity, which not only increases atria
contractility, but also conduction velocity of the ventricle
depolarization wave from AV node62, regardless of the lev-
el of intensity of the exercise68,69 and aerobic conditioning
of healthy individuals70,71. On other hand, an individual who
does not elevate significantly his/her HR in the beginning
of the exercise, may be signalizing an impaired vagal ac-
tivity72. After this initial stage, as one goes on exercising,
HR increases again, due to adrenergic overstimulation on
sinus node, or due to increase of serum norepinephrine, or
atrial mechanics distention and therefore, sinus node dis-
tention due to a higher venous return, and the increase in
body’s temperature and blood’s acidity73.

While Tulppo et al.74 and Goldsmith et al.75 relate de-
crease of HR variability to age, in face of decreased physi-
cal fitness from aging, and that this could be reverted by
maintaining or improving aerobic physical condition, re-
sults from Migliaro et al.76 and Byrne et al.77 suggest that
age alone could be the main factor to decrease autonomic
modulation, regardless of aerobic fitness.

The increase in maximal O2 uptake through aerobic train-
ing can lessen the age-related decrease of baroreflex sensi-
tivity78,79. A program of mild-intensity exercises would be
enough to show some improvement in the autonomic func-
tion of healthy adults80 or those with chronic heart fail-
ure81, even without direct training supervision82; changes
on vagal activity caused by physical training would be cen-
tral, possibly directly on baroreflex, whereas the sympa-
thetic activity would be primarily related to peripheral
changes (vasoconstriction)82. These changes can be seen
already in the first weeks of training in individuals with
coronary heart disease83 and post-myocardial infarction
(MI)84,85. Even though Seals et al.86 have suggested that such
improvements should be further evidenced in individuals
with abnormal cardiac function, believing that aerobic train-
ing would have a smaller impact on HR variability of healthy
individuals, Melanson and Freedson87, Stein et al.88, Al-
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Ani et al.89, and Gallo Jr et al.90 reached significant out-
comes with training on autonomic markers of healthy in-
dividuals, and Levy et al.91 further suggest that these gains
would not be age-dependent. In spite of the different meth-
odologies used, and the fact that time of effective training
had ranged from six weeks to 12 months, the results were
consonant, showing an increase in vagal activity due to an
exercise program, or even a decrease in resting sympathet-
ic activity, which aid to hemodynamic improvements56,92.

Duru et al.93 were not successful in investigating posi-
tive effects of the regular physical exercises in the auto-
nomic function of post-MI individuals when compared to
sedentary matches, as, although resting-HR being lower after
training, variability indices (in frequency domain) are not
significantly altered. On the other hand, in the control group,
there was a significant decrease of these indices, showing
an advanced stage of autonomic imbalance in favor of a
sympathetic preponderance in individuals with post-MI left
ventricular dysfunction. These results can be interpreted
in another way: the regular practice of physical exercises
can, at least, maintain sympatho-vagal balance under para-
sympathetic predominance in post-MI individuals, where-
as sedentarism tends to increase sympathetic influence, even
at rest. Other studies also failed in finding differentiated
adaptations of ANS to a program of exercises. Loimaala et
al.94 did not find differences on variability indices of ap-
parently healthy sedentary individuals with age ranging
from 35 to 55 years, after 5 months of training, even at
night, when sympathetic activity is quite decreased and
there is less interference of other variables, with improve-
ment on resting-HR only, probably due to intrinsic adapta-
tions.

On the other hand, another interesting aspect is that
Boutcher and Stein58 have observed that individuals with
better cardiac vagal tone respond better to an aerobic train-
ing, with higher gains in maximum oxygen uptake, and
further decreasing resting-HR. Confirming the last studies,
Uusitalo et al.59 e Bonaduce et al.60, after investigating ef-
fects of high aerobic performance training on autonomic
modulations of young athletes, did not find differences,
neither for males nor females. It is possible that some chang-
es in ANS activity, due to training, are observed only as a
response to a stimulus, such as changes in posture or dur-
ing exercise, but not in rest85,90, as in most protocols. One
cannot state that failure in finding differences in autonom-
ic functions due to training is due to measuring in rest,
without taking into account the possibility of a ceiling-ef-
fect of ANS activities, which could justify the mere main-
taining of the magnitude of sympathetic and parasympa-
thetic influences on HR variability after training period in
athletes or physically very well-fit individuals.

EFFECTS ON HR POST-EXERCISE RECOVERY

Another very important aspect addressed by the litera-
ture over the last few years is post-exercise, maximal95-97

and submaximal98-100 HR recovery. HR behavior at the final
transient of the exercise is another indicator of vagus nerve
integrity. HR fall at the end of the exercise does not replace
other measurements of cardiac autonomic activity, but it is
a remarkable complement to a medical and/or physical as-
sessment of an individual101.

At the end of the exercise, special attention should be
paid to HR behavior, as its lowering less than 12 beats per
minute (bpm) if return to rest is active97 or 18 bpm if pas-
sive, in the supine position102, at the first recovery minute
after a maximum-exercise test, represents an unfavorable
prognosis for relative-risk of cardiovascular mortality in
asymptomatic individuals and cardiopaths95,97,102, i.e., for
both initial and final transient, the smaller the HR varia-
tion, the higher the relative risk.

This stage of the exercise has been intensively investi-
gated over the last few years, but results still differ as to
the necessary time for total restore to post-exercise ANS

resting levels. The time for HR to fall to resting levels de-
pends on the interaction among autonomic functions, the
level of physical fitness103,104, and also on the intensity of
the exercise68,105. Recovery can take one hour after light or
moderate exercise105, four hours after long-duration aero-
bic exercise106, and even up to 24 hours after intense or
maximal exercise107. The mechanisms responsible for such
discrepancies as to the time needed for total HR post-exer-
cise recovery are not fully clear, and the following expla-
nations are currently considered as the most plausible: de-
creased vagal activity105,108-110, sympathetic overactivity107,111

or even increase in the activity of both ANS branches, re-
covering balance with slight vagal predominance25. Five
minutes after a moderate to intense exercise session, se-
rum norepinephrine is still higher than when in rest 110, sug-
gesting higher sympathetic activity at this stage. However,
one must take into account a latency time of about 2.5 min-
utes for serum norepinephrine to reach its peak112, leading
us to wonder that the five-minute recovery time of this study
could be too short. It seems that with aging, the time to
norepinephrine be removed from the blood is slower, and
cardiac rhythm remains faster for a longer time after the
exercise. The decrease of post-exercise norepinephrine con-
centration comes along HR decrease, but there is indica-
tion that at the beginning of recovery, vagal modulation is
primarily responsible for HR fall69,110.

Heart-transplanted individuals have a significantly slower
HR recovery at the first minute post-exercise when com-
pared to apparently healthy individuals113, endorsing the
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idea from Perini et al.110. Physical training can increase the
delta between HR at the end of the exercise and at the be-
ginning of recovery, and eight weeks of training would be
enough to augment this difference within the first 30 sec-
onds post-exercise114, with no differences in outcome for
gender or age group115; however, such adaptation may be
lost in few weeks without training79,114. In children, recov-
ery may be faster than in young adults due to their higher
central cholinergic modulation116; there are differences for
elders as well, in whom decrease of post-exercise serum
norepinephrine takes longer117. Apparently, the time for total
restoration of ANS activities is inversely related to the max-
imum level of O2 uptake55,106, in spite of Arai et al.63 not
having found evidences in their results that indicated dif-
ferences in variables such as: gender63,118, position of sub-
ject on recovery (seated or supine), and level of physical
activity among healthy individuals63. When healthy indi-
viduals were compared to heart-failure or heart-transplanted
individuals, the former required shorter time for post-max-
imal exercise HR recovery; notwithstanding, HR variability
measured under frequency domain at the peak of the exer-
cise did not show differences among the groups, probably
a sign of complete inhibition of vagal activity at this stage67.
The groups of heart-failure and heart-transplanted individ-
uals had reduced their HR less than 10 bpm at the begin-
ning of the recovery stage, which is compatible to a prob-
able autonomic dysfunction and related to a high mortality
risk95-97.

CONCLUSIONS

As discussed in this review, HR variability has been stud-
ied at a number of trials over the last few years, especially
its relation to a higher risk of cardiovascular mortality, a
common finding in many of these trials. Vagal nerve activ-
ity (parasympathetic branch) is considered to be a cardio-
vascular protection factor; therefore, ANS dysfunction, par-
ticularly reduction of the cardiac vagal tone, translates in a
significant increase of cardiovascular mortality risk. It is
not clear if the regular practice of physical exercise can
significantly increase ANS function, as shown by some ev-
idences. Perhaps some of the changes that take place in
HR control at rest and at exercise submaximal levels are
consequence of intrinsic adaptations of the sinus node, or
derived from other physiological changes, such as the in-
crease of venous return and systolic volume, and improved
myocardial contractility; or peripheral, such as improved
oxygen extraction (oxygen arteriovenous difference) or en-
hanced O2 use to generate more work (mechanical efficien-
cy), causing HR to reduce to those (submaximal) required
levels.

Apparently, aerobically well-fit individuals present a
more effective autonomic activity than sedentary ones, and
there is indication that individuals with better cardiac va-
gal tone have a better response to aerobic training, which
lead us to question whether aerobically well-fit athletes have
a higher cardiac vagal tone due to training or those indi-
viduals with genetically higher cardiac vagal tone have a
higher potential to become elite athletes if properly trained.

Certainly, the large variety of HR measuring methods,
and the features and peculiarities of the samples and the
outlines used in each trial, have added to differences among
the results and their interpretations as to the effects of ex-
ercise and training on parasympathetic ANS and HR con-
trol.

In spite of the need of other studies on immediate and
late acute effects, and chronic effects of physical exercise
on the autonomic nervous system, especially of the para-
sympathetic component, identifying possible changes on
the cardiac vagal tone, some conclusions could be reached.
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