Resposta da Cinética de Consumo de Oxigênio e da Eficiência Mecânica Delta de Homens e Mulheres em Diferentes Intensidades de Esforço

CIÊNCIAS DO EXERCÍCIO E DO ESPORTE

ARTIGO ORIGINAL

Oxygen Uptake Kinetics and Delta Mechanical Efficiency Response of Men and Women at Different Exercise Intensities

Lucenildo S. Cerqueira^{1,2} Fernando S. Noqueira^{1,2} Joyce Carvalho^{1,3} Fernando A.M.S. Pompeu^{1,2}

1. Laboratório de Biometria -Ladebio - PPGEF/ UFRJ 2. Laboratório de Ergoespirometria, Servico de Pneumologia, HSE - UFRJ 3. Laboratório de Fisiologia Aplicada à Educação Física – Lafisaef – IEFD/ UERJ

Correspondência:

Fernando A.M.S. Pompeu Programa de Pós-Graduação em Educação Física – EEFD/ UFRJ Av. Carlos Chagas Filho, 540 -Cidade Universitária - 21941-599 -Rio de Janeiro, RJ, Brasil E-mail: ladebio@eefd.ufrj.br

RESUMO

Introdução: A eficiência mecânica delta (EM \triangle) e a cinética do consumo de oxigênio (K $\dot{V}O_2$) são influenciadas por parâmetros metabólicos musculares e pelo transporte de O2. O objetivo do presente estudo foi determinar a diferença na K $\dot{V}O_2$ e na EM Δ em três intensidades de esforço nos dois gêneros. Métodos: 56 sujeitos (26 mulheres) foram submetidos ao protocolo de esforço escalonado, contínuo e máximo (GxT) no cicloergômetro mecânico para determinação da potência aeróbia máxima (VO_{2má}), carga máxima (W_{max}), limiar anaeróbio (AT) e ponto de compensação respiratória (PCR). O AT foi determinado através dos métodos V-slope e V_E / VO_2 ; o PCR através da relação VO_2 versus V_E ; ambos por dois avaliadores. A EM \triangle e a K $\dot{V}O_2$ foram consideradas como a inclinação entre $\dot{V}O_2$ versus Watts e $\dot{V}O_2$ versus tempo (s), respectivamente, do começo do teste até o AT (S_1), do AT ao PCR (S_2) e do PCR ao $VO_{2m\acute{a}\chi}$ (S_3), determinada por análise de regressão linear. Resultados: Para a EM \triangle , diferenças significativas foram observadas entre S_1 $versus S_3$ (p = 0,001), $S_1 versus S_3$ (p = 0,001) e $S_2 versus S_3$ (p = 0,006). Não foi observada diferença (p = 0,060) ou interação significativa (p = 0.062) entre homens versus mulheres. Para a K $\overline{\text{VO}}_2$ diferenças significativas foram observadas entre S_1 versus S_3 (p = 0,001) e S_2 versus S_3 (p = 0,001) em ambos gêneros. Diferenças (p = 0,001) e interação significativa (p = 0,006) foram observadas entre homens versus mulheres, no último parâmetro. Conclusões: A EMA decresce com o incremento da intensidade de trabalho, porém, não há diferenças quando se compara homens e mulheres. Por outro lado, as mulheres apresentam K VO2 mais rápida do que os homens.

Palavras-chave: ergoespirometria, teste de esforço, componente lento de $\dot{V}O_2$ e $\dot{V}O_{2mav}$.

ABSTRACT

Introduction and objective: Delta efficiency (DE) and oxygen uptake kinetics (K VO₂) are influenced by muscle metabolic parameters and oxygen transport. The aim of this study was to determine the difference in DE and KVO₂ in three intensities of effort in both genders. Methods: Fifth six subjects (26 women) were submitted to a graded maximal exercise test (GXT) on cycle ergometer to determine the maximum oxygen uptake ($VO_{2m\acute{a}x}$), maximal power output (W_{max}), anaerobic threshold (AT) and respiratory compensation point (RCP). The AT and RCP were determined using the V-slope and $V_{\rm F}$ / VO_2 methods; the RCP using the relationship $\dot{V}O_2$ versus \dot{V}_E both for two investigators. The DE and K $\dot{V}O_2$ has been considered as a slope between VO_2 versus Watts and VO_2 versus time (s), respectively, of start of test until AT (S₁), of AT to RCP $\stackrel{\cdot}{(S_2)}$ and of RCP to $\stackrel{\cdot}{VO}_{2m\acute{a}x}$ (S₃), determined by linear regression analysis. Results: For the DE, significant differences were observed between S_1 versus S_2 (p = 0.001), S_1 versus S_3 (p = 0.001) and S_2 versus S_3 (p = 0.006). There was no significant difference (p = 0.060) or interaction (p = 0.062) between men and women. For K VO_2 , significant differences were observed between S_1 versus S_3 (p = 0.001) and S_2 versus S_3 (p = 0.001) in both genders. Significant differences (p = 0.001) and interaction (p = 0.006) were observed between men and women, in the last parameter. Conclusions: The DE decreases with increasing intensity of power output, but there are no differences when comparing men and women. On the other hand, women have KVO₂ more fast than men.

KeyWords: ergospirometry, effort test, $\dot{V}O_2$ e $\dot{V}O_{2max}$ slow component.

INTRODUÇÃO

O exame ergoespirométrico com cargas escalonadas até o limite da capacidade do indivíduo, realizado para mensurar o consumo máximo de oxigênio ($VO_{2m\acute{a}x}$)⁽¹⁾, limiar anaeróbio (AT)⁽¹⁻³⁾, carga máxima ($W_{m\acute{a}x}$) e eficiência mecânica⁽⁴⁾ é prática comum em laboratórios de fisiologia do exercício^(2,5). A análise dessas variáveis adquire maior importância durante a realização de exercícios físicos de longa duração, visto que

a eficiência mecânica é um dos principais parâmetros observados em eventos de endurance⁽⁶⁾. A eficiência mecânica reflete a porção da energia química potencial estocada no músculo convertida em trabalho mecânico. Essa eficiência é geralmente estimada a partir do consumo de oxigênio^(4,7). Na avaliação desse parâmetro, o cicloergômetro é preferível, pois apresenta leituras de potência física mais próximas ao valor real(1,4).

A manutenção do exercício físico depende de um adequado fornecimento de oxigênio para os músculos ativos⁽⁶⁾. A disponibilidade de oxigênio para o tecido muscular durante o exercício pode ser mensurada através da eficiência mecânica delta (EMr), que corresponde ao quociente entre a variação do gasto energético e a variação da potência gerada^(4,7,8). Nos exercícios de alta intensidade a EMr pode inferir a capacidade de mover altas cargas de trabalho com predomínio do metabolismo oxidativo, observando-se um consumo extra de oxigênio (7,8). Estas observações comumente não são realizadas em mulheres⁽⁸⁻¹¹⁾ devido a motivos não muito claros, tais como: efeitos do ciclo menstrual e oscilações hormonais sobre a eficiência mecânica. Índices inferiores de hemoglobina e hematócrito observados em mulheres também podem contribuir para o desenvolvimento da anemia⁽¹²⁾, elevando-se os níveis de 2,3 difosfoglicerato (2,3-DPG) e, assim, diminuindo-se a afinidade do oxigênio pela hemoglobina^(13,14). A intensificação do efeito Bohr significa um desvio maior da curva de dissociação da oxiemoglobina para a direita^(13,14), podendo resultar em baixos índices de inclinação da relação VO_2 • tempo - e rápidas cinéticas de consumo de oxigênio.

Recentemente, uma técnica para determinação da cinética do consumo de oxigênio (K $\dot{V}O_2$) através de um protocolo de incrementos baseados na relação $\dot{V}O_2$ • tempo ⁻¹ foi proposta por Boone *et al.*⁽⁹⁾, porém, foram avaliados somente sujeitos do sexo masculino. Considerando-se que o comportamento da relação $\dot{V}O_2$ • tempo ⁻¹ pode fornecer importantes informações sobre a velocidade de oferta de oxigênio para os tecidos ativos, em eventos esportivos e na prática clínica, e que em mulheres tal mecanismo precisa ser melhor elucidado, o objetivo da presente investigação retrospectiva foi analisar a resposta da K $\dot{V}O_2$ e observar a diferença na EMr entre homens e mulheres em diferentes níveis metabólicos durante um teste de incrementos no cicloergômetro.

MÉTODOS

Sujeitos

A presente investigação foi constituída por 56 voluntários, estudantes de educação física, sendo 30 do gênero masculino (25 \pm 1 ano; 74,3 \pm 2,1kg) e 26 do feminino (27 \pm 1 ano; 57,4 \pm 1,1kg), aparentemente saudáveis, não tabagistas e não atletas. Foi recomendada para as 24h prévias ao exame à abstinência de atividades físicas extenuantes (>5 METs) e da ingestão de álcool. Recomendou-se também a manutenção da dieta mista nas 48h precedentes ao esforço. Solicitou-se a abstinência de alimentos que contenham cafeína nas três horas previas ao esforço. Cada sujeito foi informado quanto aos riscos associados aos procedimentos adotados. Um termo de esclarecimento e consentimento foi lido e assinado. Todos os procedimentos foram aprovados pelo Comitê de Ética Local para Experimentos com Seres Humanos (Rio de Janeiro, CEP/ HSE 000.021/99). Este estudo foi realizado conforme a Declaração de Helsinki.

Protocolo ergométrico

Foi empregado um protocolo de esforço escalonado, contínuo e máximo (GxT)⁽³⁾ no cicloergômetro mecânico (Monark[®], São Paulo, SP, Brasil) para determinação da potência aeróbia máxima ($\dot{V}O_{2m\acute{a}x}$), carga máxima ($\dot{W}O_{2m\acute{a}x}$), limiar anaeróbio (AT) e ponto de compensação respiratória (PCR). A altura do selim foi ajustada para cada sujeito, de maneira que o joelho mantivesse um ângulo próximo à extensão total (aproximadamente 175°). A potência máxima foi estimada previamente para cada indivíduo, a fim de viabilizar incrementos de 10% da carga máxima a cada minuto⁽¹⁵⁾. O protocolo GxT constou do repouso inicial por seis minutos sentado sobre o selim do cicloergômetro, seguido pelo aquecimento de quatro minutos pedalando sem carga e, posteriormente, pela fase escalonada (aproximadamente 25 W • min⁻¹). A duração máxima do exercício foi de 10 ± 2min. Os sujeitos mantiveram uma cadência fixa ao longo do exame (aprox. 1,23Hz), controlada por

um metrônomo audiovisual (Wittner Junior Plast 826, Isny/Allgäu, Alemanha).

A ventilação minuto ($\dot{\mathbf{V}}_{\rm E}$) e a fração expirada de oxigênio e dióxido de carbono foram continuamente medidas através de calorimetria indireta de circuito aberto (TEEM 100® *Total Metabolic Analysis System, Aerosport*®, *Ann Arbor*, MI., EUA)⁽¹⁶⁾. Os sujeitos utilizaram um clipe de nariz e um pneumotacômetro de fluxo médio (Hans Rudolph Inc®, Kansas City, MO, EUA). O consumo de oxigênio por minuto ($\dot{\mathbf{V}}$ O₂) e a excreção de gás carbônico por minuto ($\dot{\mathbf{V}}$ O₂) foram apresentados a cada 20 segundos. A frequência cardíaca (FC) foi monitorada continuamente ao longo do teste através de telemetria (Vantage NV®, Polar Electro Oy®, Kempele, Finlândia) e o conceito de esforço percebido (CEP), na escala de Borg de seis a 20, foi coletado ao final de cada estágio.

Controles e calibragens

O analisador metabólico e o cicloergômetro foram calibrados antes de cada teste. O ergoespirômetro foi calibrado em circuito fechado, através de uma mistura certificada de gases contendo 17,01% de oxigênio, 5,00% de gás carbônico e balanceada com nitrogênio (AGA®, Rio de Janeiro, RJ, Brasil). O fluxo foi calibrado utilizando-se uma seringa de ar de três litros (Hans Rudolph Inc.®, Kansas City, MO, EUA). Ao final de cada teste, foi realizada a medida das frações percentuais de oxigênio e gás carbônico na mistura de gases empregada para calibragem. O erro máximo admitido foi de índices entre 16,16 a 17,86% para FO₂ e de 4,75 a 5,25% para FCO₂. O cicloergômetro foi calibrado através de um lastro de 3kq.

Os testes foram considerados máximos quando observou-se pelo menos três dos seguintes critérios (17); a) platô no $\mathbf{\mathring{V}O}_2$ (aumento \leq 150ml • min⁻¹ ou 2ml • Kg⁻¹ • min⁻¹); b) razão de trocas respiratórias (RER) \geq 1,15; c) 90% da FC_{máx} prevista pela idade (220 – idade); d) conceito de esforço percebido \geq 19 (6-20); e) fadiga voluntária máxima com incapacidade de manutenção do ritmo pré-estabelecido. O $\mathbf{\mathring{V}O}_{2máx}$ foi determinado como sendo o mais alto valor encontrado ao final do teste.

Análise dos dados

Foram utilizados dois métodos para detecção do AT por inspeção visual: o método equivalente ventilatório (EqV)⁽¹⁸⁾ e o V-slope simplificado (V-slope)⁽¹⁹⁾.

O EqV foi caracterizado como o momento em que ocorre um aumento no equivalente ventilatório para consumo de oxigênio $(\mathring{V}_E / \mathring{V}O_2)$ sem o concomitante aumento no equivalente ventilatório para excreção de dióxido de carbono $(\mathring{V}_E / \mathring{V}O_2)$.

O método V-slope simplificado foi analisado em um gráfico de coordenadas cartesianas, tendo no eixo das abscissas o consumo de oxigênio por minuto ($\dot{V}O_2$) e no das ordenadas a excreção de gás carbônico por minuto ($\dot{V}O_2$), sendo observado o momento em que os pontos ultrapassaram a linha paralela à bissetriz do ângulo reto.

Análise do PCR⁽²⁰⁾: no gráfico de coordenadas cartesianas, tendo no eixo das abscissas o $\dot{V}O_2$ e no das ordenadas a \dot{V}_E , observou-se a interseção de dois segmentos de retas abaixo e acima desse ponto. Abaixo desse ponto a \dot{V}_E aumenta linearmente com o $\dot{V}O_2$, mas acima a \dot{V}_E aumenta mais rapidamente.

Para cada indivíduo, os dois métodos de determinação do AT e o método de identificação do PCR foram analisados visualmente por dois investigadores experientes.

ANÁLISE ESTATÍSTICA

O tratamento estatístico foi realizado através dos aplicativos *Statistical Package for the Social Sciences*® (SPSS® Inc., Chicago, IL, EUA), *SigmaPlot*® (*Systat*® *Software* Inc, Chicago IL, EUA) e Microsoft Excel® para Windows® (Microsoft®, Redmond, WA, EUA). Foi empregada a estatística descritiva através da média ± erro padrão da média (EPM). A média dos resultados obtidos pelos dois avaliadores a partir dos métodos EqV e

V-slope foi considerada como o AT⁽²¹⁾. Para o PCR também foi utilizada a média dos dois investigadores.

A eficiência mecânica delta (EMr) foi determinada em três diferentes intensidades: do início do teste até o AT (S_1), do AT ao PCR (S_2) e, do PCR ao \mathbf{VO}_{2max} (S_3)(22). A EMr foi considerada como o coeficiente angular da relação \mathbf{VO}_2 versus carga de trabalho (W) determinada por análise de regressão linear. O coeficiente angular da relação \mathbf{VO}_2 versus tempo (em segundos) também foi determinado a fim de mensurar a K \mathbf{VO}_2 (9).

Testou-se os dados à distribuição normal através do teste de Shapiro Wilk. Quando não foi observada distribuição normal, conduziu-se uma transformação logarítmica. Empregou-se ANOVA de dois fatores e teste *post-hoc* de Tukey-HSD para determinar se houve diferenças significativas entre os coeficientes angulares em cada nível metabólico e entre os gêneros. O nível de significância adotado foi p \leq 0,05.

RESULTADOS

Os resultados do AT, PCR, $\dot{V}O_{2m\acute{a}x}$ e RER foram apresentados na tabela 1. Diferenças significativas foram observadas nos três níveis metabólicos (S_1 , S_2 e S_3) tanto em homens quanto em mulheres.

Relação $\dot{\mathbf{W}}O_2 \cdot \mathbf{W}^{-1}$ – Foi observado um aumento progressivo do S_1 ao S_2 e do S_2 ao S_3 (tabela 2; figura 1). Diferenças significativas foram observadas entre S_1 versus S_2 (p = 0,001), entre S_1 versus S_3 (p = 0,001) e entre S_2 versus S_3 (p = 0,006) em ambos os gêneros (tabela 2; figura 1). Não foram observadas diferenças significativas entre homens versus mulheres (p = 0,060) ou interação significativa (p = 0,062) intensidade versus gênero (tabela 2). Esse resultado mostrou a diminuição da EMr com o aumento da intensidade de esforço independentemente do gênero.

Cinética de $\dot{V}O_2$ – Diferenças significativas foram observadas entre o S_1 versus S_3 (p = 0,001) e entre o S_2 versus S_3 (p = 0,001) em ambos os gêneros (tabela 3; figura 2). Não foi observada diferença significativa entre o S_1 versus S_2 (p = 0,753). Diferenças significativas (p = 0,001)

Tabela 1. Variáveis ergométricas obtidas no teste máximo em cicloergômetro.

	Masculino			Feminino		
	VO ₂ (L • min ⁻¹)	Watts	RER	VO ₂ (L • min ⁻¹)	Watts	RER
AT	1,64 (0,06)ª	148 (6)ª	0,87 (0,02)	1,10 (0,05)	87 (4)	0,86 (0,01)
PCR	2,79 (0,11)* ^{‡a}	237 (10)* ^{‡a}	0,99 (0,01)**	1,63 (0,07)*‡	141 (5)**	0,99 (0,02)* [‡]
VO _{2max}	3,84 (0,14)*a	297(10)* ^a	1,11 (0,02)*	2,26 (0,09)*	183 (7)*	1,09 (0,02)*

Média \pm (EPM). limiar anaeróbio (AT); ponto de compensação respiratória (PCR); potência aeróbia máxima (VO_{2max}).

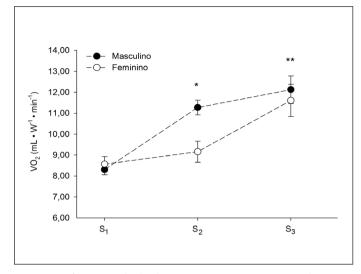

^a Diferença significativa entre homens e mulheres; *Diferença significativa para as variáveis na intensidade do AT (p \leq 0,05); [‡] Diferença significativa para as variáveis no esforço máximo (p \leq 0,05).

Tabela 2. Parâmetros da eficiência mecânica delta (mL • min-1 • W-1) durante o teste graduado de esforço máximo (GxT).

	Masculino			Feminino		
	S ₁	S ₂	S ₃	S ₁	S ₂	S ₃
Inclinação	8,30 (0,24)	11,27 (0,36) ^a	12,12 (0,66) ^{b,c}	8,57 (0,37)	9,16 (0,50) ^a	11,61 (0,77) ^{b,c}
Intercepto	305,17 (34,83)	20,24 (75,07)	263,35 (199,66)	331,03 (21,82)	243,98 (39,61)	- 42,80 (134,33)
EPE	141 (8)	187 (13)	202 (14)	90 (5)	97 (8)	131 (10)
r ²	0,85 (0,01)	0,74 (0,03)	0,64 (0,03)	0,83 (0,02)	0,74 (0,04)	0,64 (0,05)

Média \pm EPM (erro padrão da média); EPE = erro padrão da estimativa; VO₂ (mL. min-1) versus W: início do teste até AT (S₁); AT até PCR (S₂); PCR até VO_{2máx} (S₃). *Diferenças significativas entre S₁ versus S₂ (p = 0,001), *Diferenças significativas entre S₂ versus S₃ (p = 0,006) em ambos openeros para o coefficiente apoular.

foram observadas entre homens *versus* mulheres (tabela 3; figura 2) e interação significativa (p = 0,001) entre intensidade *versus* gênero (tabela 2; figura 2). Foi observada uma K \dot{V} O₂ significativamente mais rápida no gênero feminino comparado ao masculino independente da intensidade de esforço.

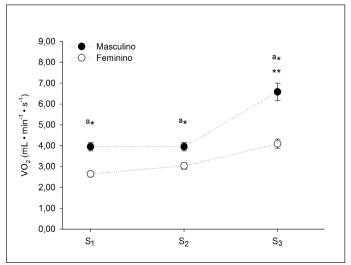


Figura 1. Coeficiente angular da relação VO $_2$ (mL.min-1) versus W: início do teste até AT (S $_1$); AT até PCR (S2); PCR até VO $_2$ máx (S $_3$). *Diferença significativa entre S $_1$ versus S $_2$ (p = 0,001); **Diferença significativa entre S3 versus S $_2$ (p = 0,006).

Tabela 3. Índices para a relação VO2 (mL.min-1) *versus* tempo (s) durante o teste graduado de esforço máximo (GxT).

		Masculino)	Feminino			
	S ₁	S ₂	S ₃	S ₁	S ₂	S ₃	
Inclinação	3,94 (0,20)	5,98 (0,32)	6,58 (0,42)ª	2,64 (0,13)	3,00 (0,15)	4,08 (0,25) ^{a,b}	
Intercepto	369,30 (29,03)	-173,00 (75,47)	-244,40 (203,38)	378,10 (21,87)	237,00 (33,20)	-227,27 (127,30)	
EPE	127 (6)	152 (10)	176 (12)	82 (5)	87 (7)	103 (7)	
r ²	0,88 (0,01)	0,83 (0,02)	0,74 (0,03)	0,86 (0,02)	0,80 (0,03)	0,78 (0,03)	

Média \pm (EPM); EPE= erro padrão da estimativa; VO $_2$ (mL. min $^{-1}$) versus tempo: início do teste até AT (S $_1$); AT até PCR (S $_2$); PCR até VO $_{2max}$ (S $_2$). 2 Diferença significativa entre S $_1$ versus S $_3$ (p = 0,001); 4 Diferença significativa entre S $_2$ versus S $_3$ (p = 0,001) em ambos gêneros para o coeficiente angular.

Figura 2. Coeficiente angular da relação VO_2 *versus* tempo: início do teste até AT (S_1); AT até PCR (S_2); PCR até VO_2 máx (S_3). aDiferença significativa entre homens *versus* mulheres (p = 0,001). *Diferença significativa entre S_1 *versus* S_3 (p = 0,001); **Diferença significativa entre S_2 *versus* S_3 (p = 0,001).

DISCUSSÃO

A presente investigação considerou que a determinação da cinética de $\dot{V}O_2$ em protocolos de incrementos a partir de um método baseado na relação $\dot{V}O_2$ • tempo ⁻¹ precisa ser melhor elucidada em sujeitos do gênero feminino. Até o presente estudo, a resposta da K $\dot{V}O_2$ em testes com incrementos a cada minuto ainda não havia sido investigada em mulheres. Para tanto foi analisado o efeito do aumento da intensidade sobre a resposta da K $\dot{V}O_2$ em homens e mulheres durante o teste de incrementos. Observou-se também a EMr durante o exercício com incrementos a cada minuto para mulheres e homens.

O padrão de recrutamento das fibras musculares tipo II, predominantemente glicolíticas, pode ser apontado como explicação para a redução da eficiência mecânica delta e o aumento do componente lento do $\rm VO_2$ em intensidades a partir do $\rm AT^{(7,8,10,22-26)}$. Bonne et al. (25) mostraram um aumento progressivo da amplitude da atividade eletromiográfica, demonstrada pela EMG integrada (iEMG) em testes de esforço máximo realizados no cicloergômetro. O RMS vem sendo empregado para estudar o aumento da atividade mioelétrica total em testes de esforço máximo no cicloergômetro e pode ser empregado como um indicador de recrutamento de unidades motoras de elevado limiar de excitação (25-27). No presente estudo, corroborou-se a hipótese do elevado metabolismo glicolítico e o alto RER (tabela 1) observado nas altas cargas de trabalho.

Embora não se tenha constatado diferença (p = 0,060) nem interação (p = 0,062) significativa entre os gêneros, foi observado um fenômeno de diferente magnitude da EMΔ (tabela 2). Um aumento de 2,97 mL• W⁻¹ • min⁻¹ entre S_2 - S_1 (S_2 - S_1) nos homens e apenas $0,60 \pm 0,51$ (mL • W⁻¹ • min⁻¹) nas mulheres foi observado. Estes resultados sugerem uma importante fase na qual parece existir o maior recrutamento de fibras do tipo Il após o AT⁽²²⁻²⁷⁾. Bell e Ferguson⁽²⁸⁾ mostraram, em mulheres jovens, altas correlações da cadeia pesada da miosina do tipo I em 60 e 75 revoluções por minuto no cicloergômetro (r = 0.80 e r = 0.84, respectivamente), quando confrontados com a eficiência mecânica. Essas cadências foram similares às empregadas na presente investigação. As diferenças entre os gêneros parecem ocorrer fundamentalmente em função do tamanho e composição corporal. Apesar da composição de fibras musculares ser semelhante em ambos os gêneros^(7,28), o volume de cada fibra parece ser maior nos homens.

Boone et al.⁽⁹⁾ encontraram em estudantes de educação física do gênero masculino, submetidos a testes progressivos (incrementos de 25W-1), valores médios de inclinação de 4,09mL•W⁻¹•s⁻¹ para a K VO₂. Estes valores foram similares aos observados nos homens avaliados, na presente investigação, na intensidade do AT (tabela 3). Esta mesma variável apresentou valores de 2,64 mL•W⁻¹•s⁻¹ nas mulheres, indicando um rápido fornecimento de oxigênio para os tecidos ativos. O componente lento do consumo de oxigênio nos homens de 2,03 ± 0,22 mL•W $^{-1}$ •s $^{-1}$ determinado pela relação VO_2 • tempo $^{-1}$ e, o baixo valor nas mulheres 0,36 \pm 0,14 (mL \cdot W⁻¹ \cdot s⁻¹) entre S₂-S₁ apresentou comportamento similar à eficiência delta (tabela 2; figura 1). Lamentavelmente, Boone et al. (9) não determinaram a relação do $ilde{V}O_2$ • tempo $^{-1}$ nas intensidades acima do AT alegando complexidades adicionais por causa da cinética lenta do VO₂. A presente investigação foi a primeira, segundo nossas buscas nas bases ISI e Medline, a analisar a relação VO₂ • tempo⁻¹ em mulheres, o que dificulta comparações com outros estudos. A decomposição de um teste progressivo em três níveis distintos metabólicos (S₁, S₂ e S₃) permitiu analisar e identificar em um teste progressivo o momento onde o componente lento do $\dot{V}\mathrm{O}_2$ se tornou mais significativo.

Durante o teste de incrementos, as alterações hemodinâmicas, principalmente o aumento no fluxo intramuscular, aumento na 2,3-DPG, temperatura corporal e diminuição do pH provocado pelo aumento da intensidade^(3,5) têm potencial efeito sobre a liberação do oxigênio da hemoglobina na musculatura ativa⁽¹⁴⁾. Esses fatores podem causar um desvio à direita da curva de dissociação da oxiemoglobina que indicam uma liberação do oxigênio para atender a maior demanda energética dos músculos esqueléticos em contração. O 2,3-DPG parece apresentar importante papel redutor da afinidade do oxigênio pela hemoglobina^(13,14). As mulheres sexualmente maduras apresentam concentrações de hemoglobina mais baixas do que os homens e frequentemente apresentam quadros anêmicos devido ao sangramento menstrual⁽¹²⁾. Este fenômeno pode explicar os baixos valores da inclinação VO₂ • tempo ⁻¹ encontrados nas mulheres no presente estudo (tabela 2), indicando que o oxigênio é fornecido rapidamente para atender as demandas metabólicas e, assim, indicando um mecanismo compensatório nas mulheres.

É essencial que haja precisão das medidas das trocas gasosas e ventilatórias para que os dados sejam reproduzidos, sendo necessário o controle da qualidade das medidas através dos procedimentos de calibragem, de operação e de análise por técnicos experientes⁽²⁹⁾. Testes em que esses cuidados são tomados apresentam baixa variação nas medidas repetidas em momentos próximos^(1,15). A variação diária intraindivíduo, devido ao erro e às flutuações fisiológicas do $\dot{V}O_2$, \dot{V}_E , e FC, são⁽³⁰⁾, respectivamente, de 3,8%, 8,0% e 3,0%. Granja Filho et al.(1) observaram um índice de variação intraindivíduo de 5,5% para o VO_{2máx}. Nogueira e Pompeu⁽²¹⁾ e Magrani e Pompeu⁽³¹⁾ observaram índices satisfatórios para as medidas analisadas em equipamento usado nesse estudo. Há diferenças nas medidas obtidas, por esse equipamento comparando-as às oriundas de equipamentos mais sofisticados (3,8% versus 5,5%), o ergoespirômetro aqui adotado foi validado por outro grupo⁽¹⁶⁾ e é amplamente empregado em laboratórios brasileiros.

Considerando-se que a determinação da K $\dot{V}O_2$ em protocolos de incrementos a partir de um método baseado na relação $\dot{V}O_2$ • tempo ⁻¹ precisava ser melhor investigada em sujeitos do gênero feminino, conclui-se que a eficiência mecânica delta decresce com o incremento da intensidade de trabalho, quando se analisa o coeficiente angular da relação $\dot{V}O_2$ • W ⁻¹ em diferentes níveis metabólicos, porém, não há diferenças quando comparados ambos gêneros. Por outro lado, as mulheres apresentam K $\dot{V}O_2$ mais rápidas em relação aos homens.

AGRADECIMENTOS

Os autores deste estudo expressam seus agradecimentos à Associação dos Amigos do Centro de Estudos e Aperfeiçoamento do Hospital dos Servidores do Estado do Rio de Janeiro, na pessoa do Dr. Aluysio S. Aderaldo Jr. pela contribuição significativa para a realização deste trabalho e ao colega Gilberto Sabóia Pompeu Neto. Este estudo recebeu o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq).

Todos os autores declararam não haver qualquer potencial conflito de interesses referente a este artigo.

REFERÊNCIAS

- Granja Filho PCN, Pompeu FAMS, Ribeiro P. A acurácia da determinação do VO_{2máx} e do Limiar Anaeróbio. Rev Bras Med Esporte. 2005;11:167-71.
- Diefenthaeler F, Candotti CT, Ribeiro J, Oliveira AR. Comparação de respostas fisiológicas absolutas e relativas entre ciclistas e triatletas. Rev Bras Med Esporte. 2007;13:205-8.
- Wasserman K, Whipp BJ, Koyal SN, Beaver WL. Anaerobic Threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35:236-43.
- Denadai BS, Ruas VDA, Figueira TR. Efeito da cadência de pedalada sobre as respostas metabólica e cardiovascular durante o exercício incremental e de carga constante em indivíduos ativos. Rev Bras Med Esporte. 2005;5:286-90.
- Denadai BS, Ortiz MJ e Mello MT. Índices fisiológicos associados com a "performance" aeróbia em corredores de "endurance": efeitos da duração da prova. Rev Bras Med Esporte. 2004;10:401-4.
- Basset DR, JR. and Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70-84.
- Coyle EF, Sidossis LS, Horowitz JF and Beltz JD. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc. 1992;24:782-8.
- Barstow TJ, Jones AM, Nguyen PH, Casaburi R. Influence of muscle fibre type and fitness on the oxygen uptake/ power output slope during incremental exercise in humans. Exp Physiol. 2000;85:109-16.
- Boone J, Koppo K, Bouckaert J. The VO₂ response to submaximal ramp cycle exercise: Influence of ramp slope and training status. Respir Physiol & Neurobiol. 2008;161:291-7.
- 10. Jones AM, Campbell IT, Pringle JSM. Influence of muscle fibre type and pedal rate the VO_2 -work rate slope during ramp exercise. Eur J Appl Physiol. 2004;911:238-45.
- Marles A, Mucci P, Legrand R, Betbeder D, Prieur F. Effect of prior exercise on the VO₂/ Work rate relationship during incremental exercise and constant work rate exercise. Int J Sports Med. 2006;27:345-50.
- 12. Di Santolo M, Stel G, Banfi G, Gonano F, Cauci S. Anemia and iron status in young fertile non-professional female athletes. Eur J Appl Physiol. 2008;102:703-9.
- Dash RK and Bassingthwaight JB. Blood HbO2 and HbCO2 Dissociation Curves at Varied O2, CO2, pH, 2,3-DPG and Temperature Levels. Ann Biomed Eng. 2004;32:1676-93.
- Shikama K. Nature of the FeO2 bonding in myoglobin and hemoglobin: A new molecular paradigm. Prog Biophys Mol Biol. 2006;91:83-162.
- Nogueira FS, Pompeu FAMS. Modelos para predição da carga máxima no teste clínico de esforço cardiopulmonar. Arg Bras Cardiol. 2006;87:137-45.
- Novitsky S, Segal KR, Chatr-Aryamontri B, Guvakov D, Katch VL. Validity of a new portable indirect calorimeter: the Aerosport TEEM 100. Eur J Appl Physiol Occup Physiol. 1995;70:462-67.

- Howley ET, Basset Jr. DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27:1292-301.
- Caiozzo VJ, Davis JA, Ellis JF, Azus JL, Vandagriff R, Prietto CA, et al. A comparison of gas exchange indices used to detect the anaerobic threshold. J Appl Physiol. 1982;53:1184-9.
- Schneider DA, Phillips SE, Stoffolano S. The simplified V-slope method of detecting the gas exchange threshold. Med Sci Sports Exerc. 1993;25:1180-4.
- Beaver WL, Wasserman K and Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020-7.
- 21. Nogueira FS, Pompeu FAMS. Precisão da medida do limiar anaeróbio através do calorímetro portátil. Arg Bras Cardiol. 2010 (in press).
- 22. Lucía A, Hoyos J, Chicharro JL. Kinetics of VO_2 in professional cyclists. Med Sci Sports Exerc. 2002;34:320-5.
- 23. Pedersen PK, Sorensen JB, Jensen K, Johansen L and Levin K. Muscle fiber type distribution and nonlinear VO₂-power output relationship in cycling. Med Sci Sports Exerc. 2002;34:655-61.
- Jones AM Carter H. Oxygen uptake-work rate relationship during two consecutive ramp exercise tests. Int J Sports Med. 2004;25:415-20.
- Bonne J, Koppo K, Barstow TJ, Bouckaert J. Aerobic fitness, muscle efficiency, and motor unit recruitment during ramp exercise. Med Sci Sports Exerc. 2010;42;402-8.
- 26. M. Lenti, De Vito G, Sbriccoli P, di Palumbo AS, Sacchetti M. Muscle fibre conduction velocity and cardiorespiratory response during incremental cycling exercise in young and older individuals with different training status. J Electromyogr Kinesiol. 2010;20:566-71.
- Camic CL, Housh TJ, Johnson GO, Hendrix CR, Zuniga JM, Mielke M, et al. An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry. Eur J Appl Physiol. 2010;108:337-45.
- Bell MP, Ferguson RA. Interaction between muscle temperature and contraction velocity affects mechanical efficiency during moderate-intensity cycling exercise in young and older women. J Appl Physiol. 2009;107:763-9.
- 29. Guimarães JI, Stein R, Vilas-Boas F et al. Normatização de técnicas e equipamentos para realização de exames em ergometria e ergoespirometria. Arg Bras Cardiol. 2003;80:458-64.
- 30. Jones NL, Kane JW. Quality control of exercise test measurements. Med Sci Sports. 1979;11:368-72.
- Magrani P, Pompeu FAMS. Equações de predição do VO_{2máx} de Jovens adultos Brasileiros. Arq Bras Cardiol. 2010;94:763-70.