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Abstract
The Brazilian Cerrado biome consists of a great variety of endemic species with several bioactive compounds, 
and Anadenanthera peregrina (L.) Speg is a promising species. In this study, we aimed to perform phytochemical 
characterization and evaluate the antioxidant and antibacterial activities against Staphylococcus aureus and 
Escherichia coli of the hydroethanolic extract of A. peregrina stem bark. The barks were collected in the Botanical 
Garden of Goiânia, Brazil. The hydroethanolic extract was obtained by percolation and subjected to physicochemical 
screening, total phenolic content estimation, high-performance liquid chromatography (HPLC) fingerprinting, and 
antioxidant (IC50 values were calculated for the 2,2-diphenyl-1-picrylhydrazyl assay - DPPH) and antibacterial 
activity determination. The pH of the extract was 5.21 and density was 0.956 g/cm3. The phytochemical screening 
indicated the presence of cardiac glycosides, organic acids, reducing sugars, hemolytic saponins, phenols, coumarins, 
condensed tannins, flavonoids, catechins, depsides, and depsidones derived from benzoquinones. The extract 
showed intense hemolytic activity. The total phenolic content was 6.40 g GAE 100 g-1. The HPLC fingerprinting 
analysis revealed the presence of gallic acid, catechin, and epicatechin. We confirmed the antioxidant activity of the 
extract. Furthermore, the extract did not inhibit the growth of E. coli colonies at any volume tested, but there were 
halos around S. aureus colonies at all three volumes tested. These results contribute to a better understanding of 
the chemical composition of A. peregrina stem bark and further support the medicinal applications of this species.

Keywords: products with antimicrobial activity, high pressure liquid chromatography, HPLC, medicinal plants, 
phenolic compounds.

Resumo
O bioma Cerrado brasileiro apresenta em uma grande variedade de espécies endêmicas com diversos compostos 
bioativos, e Anadenanthera peregrina (L.) Speg é uma espécie promissora. Neste estudo, objetivamos realizar a 
caracterização fitoquímica e avaliar as atividades antioxidantes e antibacterianas contra Staphylococcus aureus e 
Escherichia coli do extrato hidroetanólico de cascas do caule de A. peregrina. As cascas foram coletadas no Jardim 
Botânico de Goiânia, Brasil. O extrato hidroetanólico foi obtido por percolação e submetido a triagem físico-
química, estimativa de conteúdo fenólico total, impressão digital por cromatografia líquida de alta eficiência 
(HPLC) e determinação da atividade antioxidante (valores de IC50 foram calculados para o ensaio 2,2-difenil-1-
picril-hidrazil) e antibacteriana. O pH do extrato foi de 5,21 e a densidade foi de 0,956 g/cm3. A triagem fitoquímica 
indicou a presença de glicosídeos cardíacos, ácidos orgânicos, açúcares redutores, saponinas hemolíticas, fenóis, 
cumarinas, taninos condensados, flavonóides, catequinas, depsídios e depsidonas derivados de benzoquinonas. 
O extrato mostrou intensa atividade hemolítica. O conteúdo fenólico total foi de 6,40 g de GAE 100 g-1. A análise 
por impressão digital por HPLC revelou a presença de ácido gálico, catequina e epicatequina. Confirmamos a 
atividade antioxidante do extrato. Além disso, o extrato não inibiu o crescimento de colônias de E. coli em nenhum 
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diseases, owing to the antioxidant, anti-inflammatory, and 
antimicrobial properties (Weber et al., 2011; Gama et al., 
2018).

A pharmacological study on the major species in the 
Cerrado reported that the stem and resin of A. peregrina 
prepared as decoctions or syrups, or macerated in cachaça 
and wine have potential to treat bronchitis and influenza 
(Souza et al., 2016). However, data on the phytochemical 
properties, and antioxidant (Mota  et  al., 2017) and 
antibacterial activities of A. peregrina stem bark, which is an 
important part of the plant used for therapeutic purposes, 
are limited. Therefore, in this study, we aimed to perform 
phytochemical analysis and evaluate the antioxidant and 
antibacterial activities of the hydroethanolic extract of 
A. peregrina stem bark.

2. Materials and Methods

2.1. Plant material and extraction

The stem barks of A. peregrina were collected from 
three plants in the Botanical Garden of Goiânia, Goiás 
State, Brazil (16°43’22”S, 49°22’54”W), with a diameter at 
breast height (DBH) of 110, 105, and 107 cm. The species 
was identified and authenticated by Dr. Lorena Lana 
Camelo Antunes, at the Laboratory of Plant Morphology 
and Taxonomy of the Federal University of Goiás, and a 
sample has been deposited in the herbarium of the same 
University (voucher code number: 61.014).

To obtain the extract, the barks were ground in a knife 
mill with Tamis 20 mesh (TE-625; Tecnal Ltd., Piracicaba, 
São Paulo, Brazil); then, 1000 g of the ground barks sample 
was percolated (Revitec Ltd., São Paulo, São Paulo, Brazil) 
with 5000 mL of hydroethanolic solution (50:50 v/v) for 
24 h in a metal percolator with a Tamis 200 mesh lined 
with a layer of paper towel and cotton to filter the barks 
particles. Next, it was extracted exhaustively (0.2 mL. min-1) 
at room temperature (percolation phase). Subsequently, 
the extract was evaporated at 40 °C in a rotary evaporator 
(TE211; Tecnal Ltd., Piracicaba, São Paulo, Brazil) under 
reduced pressure (vacuum pump - TE0581; Tecnal 
Ltd., Piracicaba, São Paulo, Brazil). The extract obtained 
(2500 mL) was stored in a closed refrigerated container 
(-2 °C to +8 °C) until further analysis. Posteriorly, after the 
rotavaporated hydroalcoholic extract was produced and 
using the Moisture Meter with an infrared heat source 
(ID 200; Scientific Mars), at 150 °C, the extract concentration 
was determined as 124 mg/mL, based on the content of 
solids in triplicate (Brasil, 2010).

2.2. pH and density

The pH and relative density of the hydroalcoholic extract 
were determined as described by Longhini et al. (2007).

1. Introduction

The World Health Organization (WHO) encourages 
countries to generate evidence-based policies and strategic 
plans for the use of medicinal plants (WHO, 2019). In 
this context, in Brazil, there are several medicinal plants 
that are used as herbal medicines by the rural and urban 
populations (Dutra et al., 2016; Pio et al., 2019). A single 
species can produce numerous chemical compounds 
with diverse pharmacological activities (Mendonça et al., 
2019), including antibacterial (Pandini  et  al., 2018; 
Emre et al., 2020; Pacheco et al., 2020), anti-inflammatory 
(Ribeiro et al., 2018; Almohawes and Alruhaimi, 2020), 
antioxidant (Barth et al., 2018; Pontes et al., 2019; Vale et al., 
2019), wound-healing properties (Ribeiro Neto  et  al., 
2020), antihyperglycemic effect (Silva et al., 2020), and 
cardiovascular activity (Moreira et al., 2019).

The Cerrado, considered a hotspot of global biodiversity, 
is the second largest biome in South America, covering 
approximately 22% of the national territory. It is recognized 
as the richest savanna in the world, with 11.627 native 
plant species. In addition to environmental aspects, the 
Cerrado has social importance to the local population 
that uses its natural resources, including 220 medicinal 
species (Brasil, 2019). Some species in the Cerrado, such as 
Stryphnodendron adstringens (barbatimão) (Almeida et al., 
2010; Ribeiro et al., 2014; Queiroz et al., 2021), Macairea 
radula (capuchina), and Pterodon emarginatus (sucupira) 
(Vila Verde et al., 2018), have been studied.

Phenolic compounds, mainly tannins, are responsible 
for the therapeutic activity of different plants in the 
Cerrado. They have been identified in the following plants 
in the Cerrado: Hymenaea stignocarpa (jatobá-do-cerrado) 
(Silva  et  al., 2019), Caryocar spp. (pequi) (Nascimento-
Silva and Naves, 2019), Inga laurina (ingá) (Martins et al., 
2019), Annona crassiflora (araticum) (Arruda et al., 2018), 
and Passiflora alata (maracujá-doce) (Pereira et al., 2018), 
making this biome a source of promising medicinal species 
for bioprospecting studies (Bailão et al., 2015).

The genus Anadenanthera has two species, Anadenanthera 
colubrina, which has a wide geographical coverage, and 
Anadenanthera peregrina, typical to the Brazilian Cerrado 
(Morim, 2015; Carvalho, 2003). Anadenanthera peregrina 
is distributed in the drainage areas, gallery forests, and 
rocky fields in the Cerrado. Popularly known as angico, 
A. peregrina, a rustic species of canopy-forming trees, 
resists drought and fire due to its thick bark that protects 
the plant (Souza  et  al., 2014). According to Mota  et  al. 
(2017), the bark of A. peregrina is a potential source of 
polar extracts, enabling the extraction of tannins that 
represent approximately 17% of the bark (173.3 mg CE g-1 
bark) and 59% of the hydroalcoholic extract (in catechin 
equivalents). The bark and seeds of Anadenanthera are used 
to treat wounds (Pessoa et al., 2012, 2015) and respiratory 

volume testado, mas houve halos em torno das colônias de S. aureus nos três volumes testados. Estes resultados 
contribuem para uma melhor compreensão da composição química da casca de A. peregrina e apoia ainda mais 
as aplicações medicinais desta espécie.

Palavras-chave: produtos com ação antimicrobiana, cromatografia líquida de alta velocidade, HPLC, plantas 
medicinais, compostos fenólicos.
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2.3. Preliminary phytochemical screening

Phytochemical screening was performed according 
to the procedure described by Menezes Filho and Castro 
(2018), for each phytochemical test, 3 mL of the extract 
was used. The reaction intensity was visually determined 
using the cross test: (+++) highly positive, (++) moderately 
positive, (+) less positive, and (-) negative (Marín et al., 
2018). Hemolytic activity was determined at 1 and 10 min 
of reaction of the extract with 5% red cell suspension. 
Optical micrographs were obtained to observe the 
hemolysis reaction.

2.4. Determination of phenolic compounds

The total phenolic compounds were determined 
as described by Menezes Filho  et  al. (2018), using the 
colorimetric method with Folin-Ciocalteu reagent. The 
results are expressed as gallic acid equivalent (GAE) 
100 g-1 dry weight.

2.5. High-Performance Liquid Chromatography (HPLC) 
fingerprinting

The HPLC analysis was performed using Waters 
Alliance with the e2695 separation module and 2998 
photodiode array detector; data were acquired using 
Empower software. Chromatographic separations were 
carried out using the Zorbax Eclipse XDB-C18 reversed-
phase column (250 mm × 4.6 mm, 5 μm). The column 
temperature was maintained at 35 °C and the injection 
volume was 10 μL. The mobile phases were 0.05% formic 
acid in acetonitrile (pH = 3.45) (solvent A) and 0.05% 
formic acid in water (pH = 3.15) (solvent B) at a flow rate 
of 1 mL min-1. The gradient applied was as follows: 0-5% 
A (0-5 min); 5-10% A (5-15 min); 10-15% A (15-25 min), 
15-20% A (25-35 min), and then isocratic 15 min of 20% 
A (35-50 min). The mobile phases were filtered through 
a 0.45-μm polyvinylidene fluoride (PVDF) membrane and 
degassed using an ultrasonic bath.

For the analysis, 1 mL of the extract was diluted in 
5 mL of methanol in a volumetric flask. To identify the 
peaks separated by HPLC, stock solutions (0.1 mg mL-1 
in methanol) of the following standards, procured from 
Sigma Aldrich, were used: caffeic acid, caffeine, catechin, 
chlorogenic acid, ellagic acid, epicatechin, gallic acid, 
hesperidin, kaempferol, p-coumaric acid, quercetin, and 
rutin. The chromatograms were recorded at the wavelengths 
of 254, 327, and 366 nm, according to the different 
absorptions of each compound evaluated. The compounds 
were identified by comparing the HPLC chromatograms 
of the extract and those of the pure standards based on 
the retention time (Rt) and UV spectra in the wavelength 
range of 190-400 nm. Before injection, the solutions were 
filtered through a 0.45 μm PVDF membrane.

2.6. Antioxidant activity determination

The antioxidant activity was determined as described 
by Menezes Filho et al. (2018). The results are expressed as 
the extract concentration at which 50% of 2,2-diphenyl-1-
picrylhydrazyl (DPPH) free radicals were inhibited (IC50).

2.7. In vitro antibacterial activity of A. peregrina extract

Under a laminar flow hood, Staphylococcus aureus 
ATCC 25923 and Escherichia coli ATCC 25922 samples 
were thawed to room temperature, and then transferred 
to trypticase soy broth (TSB) liquid culture medium for 
sample dilution and incubated at 37 °C for 4 h. The activated 
strains were inoculated on Cled Agar and incubated at 
37 °C for 24 h for the isolation of colonies. Using a sterile 
loop, the colonies were transferred to selective media, 
MacConkey for E. coli and mannitol salt agar for S. aureus; 
after 24 h, the isolated colonies were verified.

Using sterile loops, the isolated colonies were collected 
from each selective medium, and then a bacterial 
suspension in saline solution (0.85% NaCl) was prepared 
for each strain until the turbidity reached 0.5 on the 
McFarland scale. For this procedure, a McFarland 0.5 
calibrated tube was used as the reference. A swab soaked 
in bacterial suspension solution was inoculated (for each 
sample) on Mueller-Hinton agar, covering the entire plate. 
Immediately, wells of diameter 10 mm were created in the 
agar plate using autoclave and ultraviolet light-sterilized 
glass tubes. Each well was identified with letters A, B, and 
C and filled with 50, 100, and 200 µL A. peregrina extract, 
respectively. Meropenem discs were used as the positive 
control and 200 µL of saline solution as the negative control. 
The plates were incubated in a bacteriological oven for 
24 h. There were five replicates for each microorganism 
on different days (Silveira et al., 2009).

3. Results

3.1. Preliminary phytochemical screening

The extract was clear, homogeneous, and dark 
brown. Table  1 presents the results of the preliminary 
phytochemical screening. The hydroethanolic extract of 
A. peregrina stem bark was positive for glycosides, based 
on the moderate-intensity reaction with Kedde and 
Keller-Kiliani reagents, and a highly positive reaction 
with Raymond-Marthoud reagent. However, the result of 
Baljet reagent test was negative. The reaction with Baljet 
and Kedde reagents was positive due to the presence of 
compounds with cardenolide unsaturated pentagonal 
lactone ring. The reaction with Keller-Kiliani reagent was 
positive due to the presence of deoxygenating compounds 
(deoxysugar) with a free end. The reaction was positive 
with Raymond-Marthoud reagent due to the presence of 
an aglycone (genin), a non-glycidyl group that forms a 
part of glycosides.

The extract showed negative results in the tests for 
alkaloids, including the Libermann-Bouchardat, Wagner, 
and Mayer tests. The test for organic acids was positive 
with medium intensity according to the cross test. The 
test with Fehling’s reagent for reducing sugars was also 
positive. The test for coumarins was positive. Foamed 
saponins were not observed in the extract.

A strong hemolysis was observed in a short time, that 
is, 1-10 min after incubation of the hydroethanolic extract 
with red blood cell suspension (Figure 1). Furthermore, 
in the micrographs, erythrocyte hemolysis was apparent.

The extract showed a positive reaction for condensed 
tannin compounds and intense reaction in the tests for 



Brazilian Journal of Biology, 2022, vol. 82, e2344764/12

Marinho, T.A. et al.

catechins and flavonoids. Benzoquinone and depside and 
depsidone derivatives were detected in the extract, based 
on the positive results with an intense reaction in the 
respective tests. The tests for purine compounds, steroids, 
triterpenoids, and sesquiterpene lactones were negative.

3.2. HPLC fingerprinting analysis

The data obtained from the HPLC fingerprinting analysis 
revealed that the following compounds were present in the 
extract: gallic acid (the Rt for extract and standard was 6.735 
and 6.648 min, respectively), catechin (the Rt for extract 
and standard was 16.375 and 16.479 min, respectively), 
and epicatechin (the Rt for extract and standard was 21.335 
and 21.387 min, respectively); the UV spectra of the extract 
and standard were identical. The chromatogram is shown 
at the wavelength of 254 nm, at which all compounds 
identified can be visualized (Figure 2).

3.3. Physicochemical properties and antioxidant activity

Table  2 presents the results of the physicochemical 
analysis and antioxidant activity assays, reduction of DPPH 
free radical and total phenol content expressed in g of gallic 
acid 100 g-1 extract. The pH of the hydroalcoholic extract of 
the stem bark of A. peregrina was 5.21. The relative density 
was 0.956 g/cm3. The antioxidant activity expressed as IC50 
was 44.13 mg mL-1 for extract and 0.25 mg mL-1 for butylated 
hydroxy toluene (BHT). Although the IC50 value of BHT was 
lower than that of the extract, the results showed that 
the plant material possess antioxidant activity. The total 
phenolic compound content was 6.40 g GAE 100 g-1 extract.

3.4. Antibacterial activity

The antibacterial activity of the extract is presented in 
Table 3. After 24 h of incubation, the extract did not inhibit 
E. coli colonies at any extract volume tested. There were 
halo regions around S. aureus colonies at all three volumes 
tested. Using a millimeter ruler, the diameter of inhibitory 
zones was measured, excluding the diameter of the wells.

4. Discussion

The hydroethanolic extract of A. peregrina stem bark 
showed a positive result in the Raymond-Marthoud, 
Kedde, and Keller-Kiliani tests for glycosidic compounds, 
although the result was negative in the Baljet test. 
Aglycones or genin compounds are characterized by the 
cyclopentanoperhydrophenanthrene structural core. There 
are two groups of cardiac glycosides: (1) cardenolides, 
23-carbon chain compounds in which the unsaturated 
lactone ring is attached to the pentacyclic C-17 and (2) 
bufadienolides, compounds with 24 hexacyclic carbons 
(Kloss et al., 2016). These cardiotonic compounds directly 

Table 1. Phytochemical prospecting of the main secondary 
metabolite groups of the hydroethanolic extract of A. peregrina 
stem bark.

Secondary metabolite
Hydroethanolic 

extract of  
A. peregrina

Cardiac glycosides

Kedd reagent test ++

Keller–Kiliani reagent test ++

Baljet reagent test -

Raymond–Marthoud reagent test +++

Alkaloids

Libermann–Bouchardat reagent test -

Wagner reagent test -

Mayer’s reagent test -

Organic acids

Pascová reagent test ++

Reducing sugars

Fehling reagent test ++

Non-reducing sugars

Fehling + HCl test -

Coumarins

UV light 254 and 365 nm +

Saponins

Foamy -

Haemolytic +++

Polysaccharides

Reactive lugol -

Phenols

FeCl3 +++

Tannins

FeCl3 Gr

Flavonoids

Pb(C2H3O2)2 ++

Purines -

Catechins +++

Benzoquinone derivatives +++

Depsids and depsidones +++

Steroids and triterpenoids -

Sesquiterpenolactones -

Cross test: (+++) positive high, (++) moderate positive, (+) low positive 
and (-) negative; Gr = Green (catechins).

Table 2. Physicochemical properties, antioxidant activity, and total phenolic content of the hydroethanolic extract of A. peregrina stem bark.

Sample pH Density (g cm3) DPPH (IC50) Total Phenolics (g GAE 100 g-1)

A. peregrina extract 5.21 ± 0.01 0.956 44.13 mg mL-1 6.40 ± 0.08

Means of three experiments followed by (±) standard deviation.
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act on the myocardium to alleviate heart failure and 
intoxication (Vickery and Vickery, 1981), a beneficial 
characteristic for medicinal plants.

In the present study, alkaloids, non-reducing sugars, 
foamed saponins, polysaccharides, purines, steroids, 
triterpenoids, and sesquiterpenelactones were not detected 
in A. peregrina stem bark extract. There are numerous 
factors that influence the production of certain class of 
compounds by plants, including the seasonality, circadian 
rhythm, and full development of the plant. Therefore, 
frequent sample collection in different seasons is necessary 

(Gobbo-Neto and Lopes, 2007). It is noteworthy that the 
alkaloid 5-Hydroxy-N,N-dimethyltryptamine (bufotenine) 
has been identified in the seeds of A. peregrina (Blackledge 
and Phelan, 2006). Foamed saponins were not present 
in the extract, and it is possible that during the sample 
collection period, this class of compounds was produced 
in minimal detectable quantities or was not produced 
(Ndamba et al., 1994).

Here, we observed erythrocyte hemolysis at different 
time points, suggesting that the extract is toxic to the 
hematopoietic system. The interaction of the extract 

Figure 1. Erythrocyte hemolysis in a 5% red blood cell suspension by the hydroethanolic extract of A. peregrina stem bark. (A) 5% 
suspension of red blood cells; (B) hemolysis after 1 min of reaction; (C) advanced hemolysis after 5 min; and (D) completely hemolyzed 
red blood cells within 10 min of reaction. Bars: At (A) 1.000×; (B) 500×; (C) 650×; and (D) 1.800×.

Table 3. Diameter of the inhibitory zone of the hydroethanolic extract of Anadenanthera peregrina stem bark against Staphylococcus 
aureus (ATCC 25923) and Escherichia coli (ATCC 25922).

Strain
A. peregrina extract concentration

C + C -
50 µL 100 µL 200 µL

E. coli - - - 29 mm -

S. aureus 10 mm 16 mm 20 mm 35 mm -

Positive control (C+) = meropenem; negative control (C-) = saline solution.
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with the erythrocyte membrane constituent sterols 
leads to the formation of pores in the membrane causing 
hemolysis, resulting in hemoglobin dispersion to the 
external environment (Sousa et al., 2018); furthermore, 
the platelets aggregated in small clusters. Further studies 
should be performed to evaluate the cytotoxic action of 
the stem bark extract of A. peregrina with respect to its 
action on platelets.

Starch and mucilage are the well-known polysaccharides 
with phytotherapeutic action against pneumological 
inflammation (Menezes Filho and Castro, 2018). In the 

present study, polysaccharides were not observed, although 
A. peregrina extract has been reported to exhibit this 
function (Souza et al., 2016).

The absence of purine compounds, steroids, 
triterpenoids, and sesquiterpene lactones in the stem 
bark extract of A. peregrine reinforces seasonal variations 
in the production of secondary metabolites (Gobbo-Neto 
and Lopes, 2007). Other important factors associated 
with the production of secondary metabolites are age, 
development, and different organs of plants, influencing 
the content and relative proportion of components in 

Figure 2. HPLC-PDA chromatographic profiles (λ = 254 nm) of: (A) sample extract; (B) gallic acid standard; (C) catechin standard; and 
(D) epicatechin standard, followed by UV spectra (190-400 nm).
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the extract (Hendricks et al., 1997). Purine compounds 
with at least one structural nitrogen (N) atom have 
potential use in the production of new drugs, owing to 
their antiangiogenic and cytotoxic activities; thus, these 
compounds are important to the pharmaceutical and 
agricultural industries (Palkar et al., 2015). Furthermore, 
purines are associated with the wound-healing property 
of A. peregrina extract, favoring angiogenesis. The potential 
agronomic benefits of the extract are associated with 
steroidal and triterpene compounds, which are involved 
in pollen tube growth, internode elongation, and plant 
growth regulator production (Carvalho et al., 2015).

In the presented study, organic acids were detected in 
the extract; they, especially malate, citrate, and oxalate, play 
a role in the tolerance mechanisms of plants to aluminum 
silicates (Hartwig et al., 2007). Citrate is the most common 
organic acid in plants; it is a tricarboxylated anion that can 
form chelates with Al3 with stable bonds (Jian Zheng et al., 
1998; Piñeros et al., 2002).

In the present study, the extract was positive for reducing 
sugars and coumarins. Glucose and fructose are the reducing 
sugars that are present in diverse plant organs. Glucose acts 
synergistically on the central nervous system supplying 
energy and on the gastrointestinal system. Fructose acts 
as a source of energy to the musculoskeletal system 
(Barreiros et al., 2005; Araújo and Martel 2009). Among 
the coumarins, phytoalexins exhibit phytopathogenic 
activity as a fungicide. Phytoalexins act on cytoplasmic 
granulation systems, disorganize cellular content, 
cause plasma membrane disruption, and inhibit fungal 
enzymes, and thereby reduce and inhibit mycelial growth 
(Schwan-Estrada et al., 2000); these findings validate their 
antimicrobial use (Souza et al., 2016).

In the present study, we detected tannins in the extract. 
Tannins are categorized as flavanones, procyanidins, and 
condensed and hydrolysable tannins. Condensed tannins 
include true non-hydrolysable tannin compounds, and they 
are more resistant to fragmentation and are associated 
with flavonoid pigments, with the flavan-3-ol polymeric 
structure. Tannins are responsible for the reddish coloration 
of the stem bark (SBFGONOSIA, 2009). Tannins are known 
for their medicinal properties, including antioxidant and 
bactericidal activities (Ogawa and Yazaki, 2018; Cruz et al., 
2020).

Hydrolyzable tannins such as gallotannins (meta-
digalloyl groups > penta-O-galloyl-β-D-glucose (PGG) and 
ellagitannins (hexahydroxydiphenoyl (HHDP) > strictinin: 
R1=(β)-OG, R2=R3=H) are chemically composed of several 
molecules of phenolic acids, such gallic and ellagic acids, 
joined with a central glucose structure. The ester bonds 
are easily susceptible to hydrolysis by acids or enzymes, 
and in a solution, hydrolyzable tannins present a bluish 
color with ferric chloride, like gallic acid (Fernandes et al., 
2018; Dai et al., 2020).

During the rainy season, grasses produce higher quantities 
of tannins, which are considered an antinutritional factor, 
reducing the consumption of grasses by ruminants, causing 
nutritional deficit (Nepomuceno et al., 2013). The ingestion 
of large amounts of tannin compounds can interfere with 
the digestibility, absorption, and bioavailability of nutrients 
(Lamy et al., 2011). However, in granular sorghum under 

short and medium cycle intercropping, condensed tannins 
improved grain yield, ranging from 1.285 to 8.710 kg ha-1, 
dietary protein content, growth rate, fertility, and animal 
welfare (De Souza et al., 2019; Cuitiño and Vera, 2016).

Flavonoids are secondary metabolites known for 
their allelopathic effect in plants with various biological 
properties, especially, anti-inflammatory (Serafini et al., 
2010) and antioxidant activities (Khater et al., 2019). In 
the present study, flavonoids were detected in the extract, 
validating its medicinal use. Some characteristic flavonoid 
phytoalexins identified in sorghum (3-deoxiantocyanidine 
flavonoids) include the following: luteolinidine, 
5-methoxyluteolinidine, apigeninidin, and arabinosil-5-
O-apigeninidin caffeic acid ester (Nicholson et al., 1987). 
In soybean, the phytoalexin glyceollin (pterocarpanoid) 
has been identified (Burden and Bailey, 1975).

In the present study, catechins were detected in the 
extract. Catechins include a diverse group of allelopathic 
compounds involved in plant-plant interaction, and they 
are widely used as an insecticide and a natural herbicide. 
These findings highlight the potential use of the extract 
as a natural defensive agent (Rabaioli and Silva, 2016).

Here, benzoquinone and depside and depsidone 
derivatives were also detected in the extract. The 
p-benzoquinone sorgoleone acts as a natural herbicide, 
via allelopathic effects on sorghum (Carvalho et al., 2015). 
This compound acts as a potent inhibitor of mitochondrial 
respiration and photosynthesis, via its action in the electron 
transport chain of photosystem II, competing for the 
same site of action of synthetic herbicides (atrazine and 
diuron) (Gonzalez et al., 1997). Depsides are polyketides 
and are produced via the biosynthetic reaction of orselinic 
acid synthase, where chain cyclization occurs in the 
formation of this acid. The derivatives of this compound 
have potential anticancer and anti-inflammatory activities 
(Kamiya et al., 2018).

In the present study, the test for phenols was positive 
and the total amount was evaluated in GAE. Phenolic 
compounds are important for the therapeutic properties 
of plants. The relationship between polyphenols and 
human health has been explored with an emphasis 
on cardiovascular diseases and metabolic syndrome, 
highlighting the relevance of these bioactive compounds 
(Durazzo et al., 2019). Phenolic compounds can alleviate 
the deleterious effects of free radicals acquired or internally 
produced in an organism. Several plant phenols effectively 
protect cells under oxidative stress. Studies have explored 
the potential of phenolic compounds and its derivatives 
in the treatment of inflammatory diseases, via autophagy 
mechanisms (Zenkov et al., 2016) and antimicrobial activity 
(Pinheiro et al., 2018).

In the present study, gallic acid, catechin, and epicatechin 
were detected in the extract by HPLC fingerprinting; 
they are common precursors of tannins. Thus, it is 
possible that the extract contained hydrolyzable tannins 
(gallotannins) and condensed tannins (catechin tannins 
and proanthocyanidins). These findings corroborated 
with those of the preliminary phytochemical screening, 
contributing to a better understanding of the chemical 
composition of this species. According to Monteiro et al. 
(2005), Azêvedo et al. (2017), and Dai et al. (2020), the 
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proportion of hydrolyzable and condensed tannins varies 
considerably, irrespective of whether both groups are 
present in the same plant; their content is influenced by 
natural factors (such as rain, soil, soil nutrition, and solar 
radiation), as well as by factors between species of the 
same group, genus, or family.

The qualitative analysis by HPLC of A. colubrina aerial 
parts indicated the presence of quercetin and low levels 
of gallic acid, catechin, and p-coumaric acid (Araújo et al., 
2019). Gallic acid, catechin, and epicatechin have been 
shown to possess a wide variety of pharmacological 
activities, including antimicrobial, anti-inflammatory, 
and antioxidant activities (Abdulah  et  al., 2017; 
Kahkeshani et al., 2019; Pedro et al., 2019;), elucidating 
the therapeutic uses of A. peregrina.

Although other compounds evaluated were not found 
in the extract in the present study, it does not necessarily 
indicate that they are not produced by this species, as 
several factors may be involved in the biosynthesis of 
secondary metabolites, including environmental and 
genetic factors (Gobbo-Neto and Lopes, 2007; Pavarini et al., 
2012). Further studies may highlight the potential of 
A. peregrina stem bark as an alternative source of these 
compounds, which may also be used as chemical markers 
of the species for quality control.

In the present study, the DPPH assay revealed the 
antioxidant activity of the hydroethanolic extract of 
A. peregrina stem bark. Although the IC50 value of BHT 
was lower than that of the extract, the results showed 
that the plant possesses antioxidant activity. The chemical 
compounds produced by plants can be altered by 
several abiotic factors, which interfere in the expression 
of allelopathic compounds (Pilatti  et  al., 2019). It is 
suggested that the antioxidant activity may be related to 
the presence of phenolic compounds, especially tannins 
that have antioxidant activity, and they were identified in 
the present study. Moreover, the dark color of the extract 
might be due to the presence of high levels of chlorophyll 
A and B pigments, and these pigments possibly masked 
the colorimetric reaction to reduce the purple coloration 
of the radical.

Mota et al. (2017) evaluated the hydroethanolic 50% (v/v) 
extract of A. peregrina bark. They reported a high content 
of total phenolic compounds (583 mg of GAE g-1 extract) 
and antioxidant activity of moderate intensity with an 
average IC50 value of 13 µg mL-1 compared with 2 mg mL-1 
for Trolox. Furthermore, the Trolox equivalent antioxidant 
capacity was 237.6 mg Trolox g-1. The phenol content in 
the bark extracts is highly variable between species, and 
the phenol content reported by Santos et al. (2012) in the 
bark extracts of Eucalyptus grandis (386 mg of GAE g-1), 
E. urograndis (347 mg of GAE g-1), and E. maidenii (204 mg 
of GAE g-1) was lower than that reported on the bark of 
A. peregrina by Mota et al. (2017). Moreover, the methanolic 
extract obtained from eucalyptus barks is reported to 
exhibit antioxidant activity, validated by the presence of 
phenolic compounds and flavonoids (Mishra et al., 2010; 
Srivastava and Vankar, 2012). Just like as eucalyptus barks, 
A. peregrina barks are a source of polar extracts due to the 
presence of tannins and other phenolic compounds and 

can be used in the pharmaceutical sectors due to their 
antioxidant potential (Sartori et al., 2013).

Other studies on Anadenanthera species revealed 
their antimicrobial activity against S. aureus and E. coli 
(Araújo et al., 2015), potentiated action of neomycin and 
amikacin (Barreto  et  al., 2016), of cephalexin related 
to the amount of bark tannins (Araújo et al., 2018) and 
synergistic when combined with fluconazole (Nunes et al., 
2015). In addition, Anadenanthera species have been 
reported to possess antifungal potential (Lima et al., 2014), 
inhibit biofilms (Trentin et al., 2013), and assist in pain 
management (Santos et al., 2013; Damascena et al., 2014). 
Angico hydroalcoholic extract (Anadenanthera colubrina 
var. cebil) has been reported to accelerate wound healing 
in rats. Furthermore, reducing sugars (++), flavonoids 
(quercetins) (+), condensed proanthocyanidins (+++), 
leucoanthocyanidins (++), saponins (saponosides) (+), 
and triterpenes and steroids (+) were found in the extract 
(Pessoa et al., 2012, 2015).

In conclusion, the phytochemical analysis of the 
hydroethanolic stem bark extract of A. peregrina showed 
the presence of a wide variety of chemical compounds with 
importance in the pharmaceutical, food, and agricultural 
fields. The HPLC fingerprinting analysis revealed the 
presence of gallic acid, catechin, and epicatechin in the 
extract. The extract showed hemolytic action, necessitating 
further toxicological assessment. Furthermore, the extract 
showed antibacterial and antioxidant activities. The results 
contribute to a better understanding of the chemical 
composition of A. peregrina stem bark extract and further 
strengthen its application in traditional medicine practices.
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