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1. Introduction

Pesticides are divided into different categories, 
depending upon their target. Some of these categories 
include herbicides, insecticides, fungicides, rodenticides, 
molluscicides, nematicides, and plant growth regulators 

(Rani and Shanker, 2018). These pesticides are applied at 
conventional farming as pest control to avoiding economic 
losses. Thus, the use of pesticides is important in avoiding 
economic losses and guaranteeing production of food, 
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Resumo
Em todo o mundo, a agricultura convencional faz uso extensivo de pesticidas. Embora os efeitos dos herbicidas 
sejam relativamente bem conhecidos em termos de impactos ambientais em organismos não-alvo, há pouca 
evidência científica sobre os impactos de resíduos de herbicidas em artrópodes aquáticos de áreas de conservação 
tropicais. Este estudo avalia pela primeira vez a toxicidade dos herbicidas ametryn, atrazine e clomazone sobre 
o inseto aquático Limnocoris submontandoni (Hemiptera: Naucoridae). A concentração letal (LC50) de herbicidas 
foi avaliada para esses insetos, bem como o efeito dos herbicidas nos tecidos e testículos dos insetos. A LC50 
estimada foi de 1012,41, 192,42 e 46,09 mg/L para clomazone, atrazine e ametryn, respectivamente. Alterações 
nos espermatócitos e espermátides foram observadas sob o efeito de atrazine, e efeitos na espermatogênese 
foram observados para algumas concentrações de clomazone, com aparente recuperação após um curto período 
de tempo. Nossos resultados fornecem informações úteis sobre os efeitos de resíduos de herbicidas em sistemas 
aquáticos. Essas informações podem ajudar a minimizar o risco de efeitos reprodutivos de longo prazo em espécies 
não-alvo que foram negligenciadas anteriormente em estudos de ecotoxicologia.
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Freitas et al., 2017). We hypothesized that the pollution 
of herbicides led to effects in the morphology of 
the reproductive systems of L. submontandoni. Thus, 
knowledge about the effects of these herbicides on 
the morphology of reproductive systems of aquatic 
arthropods such as L. submontandoni may be useful in 
understanding possible impacts on non-target aquatic 
organisms and promote the development of strategies 
that minimize water contamination in order to conserve 
local biodiversity. In this study, we aimed to evaluate the 
toxicity of commercial herbicides on the reproductive 
system of L. submontandoni using a simulate situation 
of formulated product enter an aquatic system would 
be by direct application to the surface of the water.

2. Materials and Methods

2.1. Insects

Limnocoris submontandoni adults used in the 
experiment were obtained from a conservation unit 
mosaic known as the Biribiri State Park in the state of 
Minas Gerais, Brazil (18° 11′ 09.3″ S 043° 36′ 54.9″ W) 
(Rylands and Brandon, 2005; Medeiros, 2006). Insects 
were collected by hand netting, with 0.5 mm mesh, 
which is typically used to capture specimens associated 
with vegetation and benthic substrate. A total of 
90 individuals and water from the collection site were 
collected and placed inside plastic pots and taken to 
the Laboratory of Integrated Management of Weeds, 
Department of Agronomy at the Universidade Federal 
dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, 
Brazil. The specimens were identified as L. submontandoni 
following identification keys (La Rivers, 1974; Nieser 
and Ruf, 2001). L. submontandoni adults were released 
in each plastic tray (40 × 25 × 7 cm) with two liters 
water from the collection site and acclimated to the 
laboratory for 24 hours with an individual aeration 
system. The additional alimentation was not performed, 
since we aim to represent a similar situation in the 
field. Thus, alimentation by L. submontandoni were 
done from possible foods to bring in the water from 
the collection site.

2.2. Herbicides

The following commercial herbicides were used in the 
experiments: atrazine (Atrazine Nortox 500®, concentrated 
suspension at 500 g active ingredient (a.i.)/L, NORTOX S/A 
Brasil, Arapongas, Paraná, Brazil); clomazone (Gamit 360®, 
encapsulation suspension at 360 g active ingredient (a.i.)/L, 
FMC Quimica do Brasil Ltda, Campinas, São Paulo, Brazil); 
and ametryn (Metrimex 500®, concentrated suspension 
at 500 g active ingredient (a.i.)/L, Oxon Brasil Defensivos 
Agrícolas Ltda Brasil, São Paulo, SP – Brazil). The propose to 
use the commercial product because additive components 
of the formulation can protect the herbicide molecules in 
the soil until it reaches the watercourse (Carboneras et al., 
2020). Some additives can even enhance the effect of the 
herbicide by allowing more excellent absorption by non-
target organisms (Santos et al., 2005).

fiber, and biofuels. The intensive use of pesticides can 
allow toxins to disturb natural flora, fauna and aquatic 
life, but by complying with the recommendations found 
in integrated pest or weed management protocols, the 
risks can be reduced (Ferreira et al., 2019; Renaud et al., 
2018; Shuman-Goodier and Propper, 2016).

However, in many places the overuse of herbicides 
is carried out, due to the lack of knowledge of these 
protocols, which carries a risk of pollution of aquatic 
systems (Dellamatrice and Monteiro, 2014).

The destination and transport of pesticides are 
influenced by several processes. Herbicides enter the 
water via drift, runoff, leaching through the soil, or direct 
application to surface water in some cases, such as for weed 
control (Breckels and Kilgour, 2018; Ippolito and Fait, 2019; 
Yang et al., 2019). Aquatic plant death induced by herbicide 
application can lead to lethal anoxic environments for all 
aquatic communities (Mueller et al., 2006). Also, effects on 
non-target aquatic organisms may be a threat to aquatic 
food webs, such as the genus Limnocoris (Dehnert et al., 
2019; Fiorino et al., 2018; Papoulias et al., 2014).

The Naucoridae has approximately 400 valid species, 
divided into 40 genera and five subfamilies (Cheirochelinae, 
Cryphocricinae, Laccocorinae, Limnocorinae e Naucorinae). 
Limnocoris is one of the most diverse genera of the 
Naucoridae, endemic to the Americas with 71 valid species 
(Nieser and Ruf, 2001). They are often apex predators in the 
benthic microhabitat (Sites and Willig, 1991). Limnocoris 
submontandoni is an example of this species found in the 
Jequitinhonha River basin, Brazil. It is an endemic species 
of the Brazilian Atlantic Forest (La Rivers, 1974; Nieser and 
Ruf, 2001; Pelli et al., 2006; Souza et al., 2006; Ribeiro et al., 
2009; Rodrigues, 2018). This species is registered only for 
the southeast of Brazil, in the states of Minas Gerais, Rio de 
Janeiro, and São Paulo. The lack of studies with this species 
for many ecological issues place to risk its occurrence. 
Thus, our study may be useful to contribute in terms of 
information that awakening curiosity for future research 
with L. submontandoni.

Atrazine (6-chloro-N2-ethyll-N4-isopropyl-1,3,5-
triazine-2,4-diamine), ametryn, (N2-ethyl-N4-isopropyl-
6-methylthio-1,3,5-triazine-2,4-diamine) and clomazone, 
2-(2-chlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one) 
are three herbicides applied to weed control in sugar cane 
culture (Elbashir and Aboul‐Enein, 2015). The application 
is pre and post-emergence of weeds, acting as inhibitors 
of photosystem II and in the synthesis of carotenoids 
(Mohammadi et al., 2009). However, due to physico-
chemical properties, such as relatively high-water solubility, 
low sorption coefficient, or long half-life, they present a 
high risk of leaching in surface and groundwater (Sandoval-
Carrasco et al., 2013; Alencar et al., 2020).

One of the world’s most widely used herbicides is 
glyphosate (Annett et al., 2014; Cattani et al., 2014; 
Wang et al., 2016). There are several studies that 
investigate the impact of glyphosate on non-target 
organisms (Harayashiki et al., 2013; Lopes et al., 2014; 
Sánchez et al., 2017). However, there is a gap of studies 
regarding the impacts of other widely used herbicides, 
such as atrazine and clomazone, on predators’ insects, 
hemipterans, and tropical species (Cao et al., 2018; 
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2.3. Concentration-mortality bioassays

Herbicides (atrazine, clomazone, ametryn) was diluted 
in 1000 mL of distilled water to obtain a stock solution. 
Five different concentrations each of atrazine (30; 250; 
467; 937; 1950 mg/L) and clomazone (162; 666; 1008; 
1350;1750 mg/L), and six concentrations of ametryn (45; 
87.5; 175; 350; 700;1400 mg/L), were then prepared and 
used to assess herbicide toxicity and determine relevant 
toxicological endpoints. Four replicates of five insects 
each were used for each concentration tested following 
a completely random design. Each experimental unit 
was composed of a plastic tray (40 × 25 × 7 cm) with an 
individual aeration system. Each tray was filled with two 
liters of water from the collection site and two milliliters 
of each concentration was applied using a precision 
single channel mechanical micropipette with variable 
volume (brand DIGIPET, made in Curitiba, state of Parana, 
Brazil). Water from collection site was used as a control. 
The number of dead adults was assessed after 24 h, and 
then daily for four days. Insects were considered dead if they 
did not respond to prodding with fine-haired paintbrush.

2.4. Histological structure bioassays

A total of five male adults of L. submontandoni were 
subjected to histological analysis. Taking into account 
that sublethal effects are as important as lethal effects for 
the development of L. submontandoni, the concentrations 
used were 45 mg/L for ametryn, 125 mg/L for atrazine, and 
162 mg/L for clomazone. Water from collection site was 
used as a control. After 96 hours, the insects were fixed 
by immersion in 10% formaldehyde solution for 72 hours 
in order to preserve organs and tissues. After fixation, the 
specimens were transferred to a 70% ethyl alcohol solution. 
To ensure fixation of the histological material, longitudinal 
cuts were made on one side of the insect. After fixation, the 
material was dehydrated with a series of 1 h immersions 
in each of four increasing concentrations of ethyl alcohol 
solution (70%, 80%, 90%, and 100%).

After dehydration, the insects were mounted in resin, and 
the samples were cast in molds and placed in a greenhouse. 
After resin polymerization, the samples were placed in 
small blocks of wood to make 3 µm thick cuts in a LEICA 
2055 MULTICUT microtome. The sections were fixed on slides 
and stained with toluidine blue. The material was examined 
and photographed using an OLYMPUS BX 41 photomicroscope.

2.5. Statistical analyses

Lethal concentrations (LC50) of herbicides to 
L. submontandoni were calculated using the Trimmed 
Spearman–Karber method (Hamilton et al., 1977). 
A descriptive analysis was performed for histological 
structure bioassays.

3. Results

3.1. Concentration-mortality

Based on the LC50 measures obtained from these 
concentration–mortality bioassays, ametryn was more 

toxic than atrazine and clomazone at lower concentrations. 
The LC50 estimates of herbicides showed a concentration 
of 46.09 mg/L for ametryn, 192.42 mg/L for atrazine, and 
1012.41 mg/ L for clomazone.

3.2. Histological structure

Germ cells at different stages of development were 
observed in the testicles of most groups analyzed (Figure 1).

Each testis is composed of one or more long, helicoidal 
tubule whose wall is formed by flat-core cells. Within 
these tubules are the germ cells. In order to describe 
the histological changes observed in this study, a brief 
description of the main morphological aspects of the 
testis of L. submontandoni follows, as observed in the 
control group. In the center of the testis are located 
the spermatogonia. These are the smallest cells of the 
spermatogenic lineage and form small groups with spherical 
nuclei and very evident nucleoli (Figure 1A). Spermatocytes 
are easily recognized owing to their large size. They are 
the largest cells of the spermatogenic lineage (Figure 1B). 
Large areas of cytoplasm surrounding the nucleus contain 
structures with very low affinity for 1% Toluidine Blue, 
allowing a clear view of the nucleus. Between the nucleus 
and the cell membrane are areas of intense dye affinity, 
characterizing the formation of the acrossromatic vacuole 
typical of spermatoids. During spermatocyte maturation, 
the poorly stained structures migrate toward the cell poles 
(Figures 1A, B, C).

Ametryn caused degradation on the internal structures 
of L. submontandoni, thus it was not possible to evaluate 
spermatogenic structures. However, we were able to 
observe visible effects on the tissues of insects submitted 
to atrazine and clomazone at concentrations below LC50. 
Results are illustrated in Figures 2 and 3 for atrazine and 
clomazone, respectively.

An examination of histological sections indicated 
that treatment with atrazine caused degeneration to the 
spermatocytes (Figure 2A), and especially to the spermatids 
(Figure 2B).

An examination of the tissues of L. submontandoni 
submitted to clomazone revealed signs of degeneration 
in spermatids (SPTI) (Figure 3A, B). However, the health of 
spermatogonia (Figure 3A, B) and spermatocytes (Figure 3B) 
indicate that spermatogenesis should normalize; and the 
high concentration of sperm cells (Figure 3C) demonstrates 
that exposure to clomazone did not alter sperm production.

4. Discussion

This study examines effects of herbicide exposure that 
can potentially have long-term impacts on the health 
of the species without direct mortality. Morphological 
changes to the reproductive system are negative effects 
to non-target species that should be taken into account 
when evaluating the effects of herbicides. Ametryn is used 
mainly in sugarcane crops. Residues of this herbicide have 
been detected into water bodies adjacent to the sugarcane 
areas in concentrations of 10–300 mg L-1 and 0-3 mg 
L-1 by Kennedy et al. (2012) and by Lewis et al. (2009) 
respectively. The impact of this herbicide is not new in the 
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Figure 1. Photomicrographs of the control group of Limnocoris submontandoni, (A) helical distribution of the seminiferous tubule with 
germ cells, spermatogonia (SPGO), spermatocytes (SPTO), spermatids (SPTI), sperms (SPTZ), (B) spermatocytes (SPTO) and spermatids 
(SPTI) in different degrees of maturation, (C) spermatocytes (SPTO) with slightly colored areas (*) displaced to one of the cell poles, 
spermatids (SPTI) with different degrees of maturation, acrosome vesicle (arrows), elongation of slightly colored structures (**), 
elongated cells forming the tubular wall (arrowhead), core (n), (D) Spermatids (SPTI) in different degrees of maturation, spermatozoa 
(SPTZ) forming compact bundles and very elongated nucleus, nucleus (n) and acrosome vesicles (arrows) of some spermatoids and (E) 
Compact sperm bundles (SPTZ), sperm nuclei (n), tubular wall cells (arrowhead) and tracheole (tr). Dye: Toluidine Blue.

Figure 2. Limnocoris submontandoni testis with atrazine 125 mg/L, (A) Hyalinization of cytoplasm, nuclear vacuoles (arrows) in 
spermatocyte (SPTO) and spermatid degeneration (SPTI), (B) spermatid degeneration (SPTI) altered morphology and large number of 
cellular remains (*) observed in the outer layers next to the sperms. Dye: Toluidine Blue.
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aquatic system. However, its effect on L. submontandoni 
is shown the first time in our results.

We highlighted that our simulation situation uses 
a dose highest than related by published studies of 
rivers contaminated by herbicides but provide a useful 
information to determine risk for L. submotandoni in case 
of spray drift onto the surface of the water or when users 
clean the sprayers and throws the remains of products in 
water ways. In these cases, there is a highest the likelihood 
of exposure to the formulated product. Besides that, studies 
have shown that the toxicity manifested by herbicides 
to aquatic organisms is largely due to the surfactant in 
the mixture evidencing an importance in ecotoxicology 
studies the use of formulated herbicides (Folmar et al., 
1979; Mann and Bidwell, 1999; Edginton et al., 2004).

The negative effects of ametryn on L. submontandoni may 
relate to its capacity to enter the body of aquatic organisms 
due to its high octanol-water partition coefficient (Kow) 
(Daam et al., 2019; He et al., 2013). A significant correlation 
between Kow and LC50 values have been previously reported 
(He et al., 2013). The degradation of internal structures of 

L. submontandoni even at a low dose of ametryn highlights 
its high capacity to affect non-target organisms. We suggest 
that new studies exploring the sublethal effects of ametryn 
on L. submontandoni are needed.

The herbicide atrazine was toxic to individuals tested, 
with an LC50 of 192.42 mg/L. The lowest concentrations 
tested caused disturbances in the permatogenic tissues, in 
addition to causing degeneration in spermatids. Although 
many sperm cells are still produced, their quality is likely to 
be altered due to the extensive changes observed at earlier 
stages of development. Because of this, the herbicide may 
affect the next generations of L. submontandoni. Atrazine is 
one of the most dangerous herbicides to the environment 
(Székács et al., 2015); it has a high soil persistence of 60 to 
100 days, and a high manufacturer-recommended dosage 
averaging 6.5 L/ha. Atrazine is leachable due to its high 
Kow (275). Thus, strategies for reducing the risks of this 
herbicide to aquatic environments need to be formulated.

Clomazone is widely used to control annual broadleaf 
weeds and grasses. Its residues have been detected in fish 
liver and muscle samples, raising concerns over its potential 

Figure 3. Limnocoris submontandoni testis with clomazone 162 mg / L, (A) Apparent enlargement of the testicular interstice and 
degeneration of some spermatoids (SPTI), with normal concentrations of spermatozoa (SPTZ) in the outer regions, (B) spermatocytes 
(SPTO) with normal appearance and sperm (SPTZ) with slight alteration of spermatids (SPTI), C) profusion of sperm (SPTZ) with a 
high degree of compaction, indicating high rates of spermatogenesis and integrity of tubular cells (arrowhead). Dye: Toluidine Blue.
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adverse effects (Menezes et al., 2011; Lazartigues et al., 
2013). Our results show negative effects of clomazone to L. 
submontandoni, even in low doses. Clomazone may inhibit 
several metabolic pathways, including the citric acid cycle.

In conclusion, our investigation is the first report 
on herbicide toxicity to the reproductive system of L. 
submontandoni. Our results bring attention to the necessity 
of considering the impacts of herbicides on non-target 
organisms that have not been extensively studied, 
particularly in aquatic toxicology research.
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