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1. Introduction

The main protease (Mpro, 3CLpro) is an important 
drug targets of sever acute respiratory syndrome 2 (SARS-

CoV-2) proteome, processing the polyproteins. A number 
of studies has well characterized the Mpro (Anand et al., 
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Resumo
Nigella sativa é conhecida pelo perfil de segurança, contendo uma grande variedade de compostos antivirais úteis. 
A principal protease (Mpro, 3CLpro) da síndrome respiratória aguda grave 2 (SARS-CoV-2) está sendo considerada 
como um dos alvos virais mais atraentes, processando as poliproteínas durante a patogênese e replicação viral. 
Na presente investigação analisamos a potência do componente ativo, timoquinona (TQ) de Nigella sativa contra 
SARS-CoV-2 Mpro. As estruturas de TQ e Mpro foram recuperadas de PubChem (CID10281) e Protein Data Bank 
(PDB ID 6MO3), respectivamente. O Mpro e o TQ foram acoplados e o complexo foi submetido a simulações de 
dinâmica molecular (MD) por um período de 50ns. O efeito de dobramento de proteínas foi analisado usando o raio 
de giração (Rg) enquanto a estabilidade e a flexibilidade foram medidas usando a raiz quadrada média dos desvios 
(RMSD) e a raiz média quadrada da flutuação (RMSF), respectivamente. Os resultados da simulação mostram que 
o TQ está exibindo boa atividade de ligação contra o SARS-CoV-2 Mpro, interagindo em muitos resíduos presentes 
no sítio ativo (His41, Cys145) e também o Glu166, facilitando o formato da bolsa. Além disso, são necessárias 
abordagens experimentais para validar o papel do TQ contra a infecção pelo vírus. O TQ está interferindo nos 
resíduos de manutenção do bolso, bem como no sítio ativo do vírus Mpro, que pode ser usado como um potencial 
inibidor contra o SARS-CoV-2 para um melhor gerenciamento da Covid-19.
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level mechanism underlined. The MD simulations are time 
efficient and may accurately predict how interact (Liu et al., 
2018; Hollingsworth and Dror, 2018). These MD studies are 
useful to capture a variety of biomolecular interactions, 
including ligand binding, protein folding, and changes in 
proteins behavior over time.

Knowing the strength of MD simulations and the 
importance of pharmacological characteristics of N. sativa, 
we performed the current study on thymoquinone (TQ) 
against Mpro to analyze the behavior of target protein at 
molecular level and their molecular effect on the SARS-
CoV-2 target proteins.

2. Methods

2.1. Protein preparation

The worldwide biomolecular structural information 
is being archived at Brookhaven National Laboratories, 
called Protein Data Bank (PDB) (Bernstein et al., 1977; 
Berman et al., 2000). The researchers around the world 
can easily retrieve the crystal structures of biomolecules. 
The crystal structure of COVID-19 Mpro (PDB ID: 6M03) 
was retrieved from PDB. Prior to further analysis, the 
structure was subjected to Preparation, using MOE 
(molecular operating environment) (Vilar et al., 2008). 
The partial charges and missing hydrogen were assigned. 
The thymoquinone (CID:10281) was also prepared. Protein 
and ligand were docked and the complex was subjected 
to dynamics study.

2.2. Molecular Dynamics (MD) simulation

The molecular dynamics (MD) simulations in drug 
discovery capture the behavior of proteins in full molecular 
and atomic detail to an extent of fine temporal resolution 
(Liu et al., 2018; Hollingsworth and Dror, 2018). The Mpro 
and TQ docking complex were subjected to molecular 
dynamics (MD) simulation as described in our previous 
study using Amber package (Berendsen et al., 1995; 
Khan et al., 2020). Briefly, MD simulation was performed 
on docking complex with the ff14SB force field through 
Amber14 package (Salomon‐Ferrer et al., 2013; Sun et al., 
2014b, a). To solvate each system the TIP3P water model 
was applied while system was neutralized with counterions 
(Jorgensen et al., 1983). The system was energy minimized 
and conjugate gradient followed by heating upto 300K 
and 1atm pressure to equilibrate the system. Temperature 
regulations was achieved with the Langevin thermostat 
while Particle Mesh Ewald algorithm was applied for 
long-range electrostatic interactions (Essmann et al., 
1995; Darden et al., 1993). The MD simulation production 
step was carried with pmemd code 30 (Götz et al., 2012).

3. Results and Discussion

The current study shows that TQ may be effective against 
Mpro of SARS-CoV-2. The calculation of drug-likeness 
may help to understand the pharmacokinetic of a novel 
compound as well the pharmaceutical properties before 
its clinical application. The TQ drug likeness properties, 

2005; Liang, 2006; Gan et al., 2006; Xue et al., 2008; 
Pillaiyar et al., 2016) and its potential role. This viral protein 
acts on 11 positions along polyproteins. Human proteases 
do not share the cleavage specificity with NSP5 of SARS-
COV-2 (Lee et al., 2020, p. 2).

The substrate-binding sites residues 10-99 (Domains I) 
and 100-182 (Domain II) in picornavirus, are six-stranded 
antiparallel β-barrels while domain III (198-303) forming 
five helices, regulating the dimerization of Mpro (Shi and 
Song, 2006). Residues Cys145 and His41 form the catalytic 
site. The catalytic activity depends on the dimerization 
of the enzyme, as the N-finger interacts with Glu166 to 
facilitate the S1 pocket shape of the substrate-binding 
site (Anand et al., 2002). The residue T285 and I286in 
CoV-2 Mpro is substituted by A285 and L286 respectively 
(Zhang et al., 2020) leading to a threefold upsurge Mpro 
(Lim et al., 2014). Inhibitors may be useful to reduce the 
catalytic degree against these locations.

Phytocompounds have been found, affective against 
many viral targets (Raj and Varadwaj, 2016; Setlur et al., 
2017; Ismail and Jusoh, 2017; Li et al., 2020; Khare et al., 
2020). Among the plants, Nigella sativa (Black cumin) is 
an annual flowering plant under the family Ranunculaceae 
(Amin and Hosseinzadeh, 2016). Its fruit is in inflated 
capsule of seeds, native to North Africa, Southeast Asia, 
Southern Europe, Mediterranean and Middle Eastern 
region (Ahlatci et al., 2014). N. Sativa seed is composed 
of some major components including 35.6-41.5% of fatty 
oil, fat (28.5%), proteins (26.7%), carbohydrates (24.9%) and 
several vitamins (A, B1, B2, B3, C) and minerals (Ca, K, Se, 
Cu, P, Zn, Fe) (Ahlatci et al., 2014; Islam, 2016). The volatile 
oil of N. sativa seeds has saturated fatty acids including 
thymohydroquinnone (THQ), dithymohydroquinone, 
carvacrol, thymoquinone (TQ), nigellone, thymol, α and 
β-pinene, d-citronellol, d-limonene, p-cymene volatile 
oil, t-anethole, longifoline and 4-terpineol (Enomoto et al., 
2001). The medicinal characteristics focusing on various 
pharmacological efficacies of N. sativa seeds like: 
gastroprotective (El-Abhar et al., 2003), anti-oxidant 
(Hosseinzadeh et al., 2013), anti-cancer (Khan et al., 
2011), anti-viral activity against cytomegalovirus have 
been reported in recent years. In some studies, the TQ 
was effective against avian influenza virus (H9N2 AIV) 
and cytomegalovirus infection in murine model l (Salem 
and Hossain, 2000; Umar et al., 2016). Nigella sativa 
extract prior decreases the coronavirus replication and 
significant reduction in coronavirus survival virus load 
inside cells. Recently, a am insilico study also proposed 
that thymoquinone (TQ) may interfere with ACE2 binding 
receptors, preventing virus entry.

In the drug discovery and their mechanism of action 
are important for better understanding the insight of the 
molecules. The molecular biologist desire to know that 
how a protein and small molecules works. An atomic 
level information is typically generating significant 
insight information of biomolecular interactions. 
The intermolecular interactions could be explored 
through the dynamic’s studies. Unfortunately, such kind of 
information is difficult to obtained through experimental 
approaches. An alternative to such approaches is 
computational molecular dynamics simulation (MD) of 
proteins and natural compounds to understand the atomic 
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calculated through Swiss ADME, is also in accordance the 
drug likeness rule (Walters and Murcko, 2002; Daina et al., 
2017). The drug likeness properties and absorption has 
been given in Table 1. The pharmacokinetics of TQ seems 
in accordance with desire drug like compound. Similarly, 
drug likeness properties also favor its clinical application 
(Brüstle et al., 2002; Vistoli et al., 2008; Ursu et al., 2011). 
The TQ docked against SARS-CoV-2 Mpro seems potent, 
altering the stability of protein. The RMSD of TQ and 
Mpro in Figure 1 shows stability. The Mpro is not stable 
in the whole simulation period which might be useful for 
effective inhibition of viral activity.

The RMSD graph during the 50ns simulation period 
shows that the Mpro exhibited an unstable fluctuation. 
The RMSD at the start (1.06Å) is rising to 2.9Å at 18ns 
simulations. A downfall fall in fluctuation was again 
observed to 1.4Å at the end of 50ns MD simulation. 
The RMSD of Mpro seems highly unstable due to TQ 
which may alter the stability of target, assisting in the 
inhibition of viral proteins. Flexibility is also one of the 
important thermodynamic properties, maintaining the 
optimal functions of proteins (Nagasundaram et al., 2015). 
A large change in this property may alter the biomolecules 
optimal function. The TQ may cause an increase in the 
flexibility of Mpro (Figure 2) which might be useful for 
better management of SARS-CoV-2 infections. The Mpro 
exhibited the RMSF among 5Å and 25Å at residues position 
48 and 310 respectively. Residues at location 145 to 160 also 
attained a high RMSF (20.4Å) which contains the active site 
residue Cys145. MD simulations may explore the insight 
mechanisms of changes at the molecular level (Liu and 
Yao, 2010; Liu et al., 2018; He et al., 2018) which might 

be difficult through experimental work. Several studies 
reported that any change in protein function might be 
due the change in RMSF (Berhanu and Masunov, 2011; 
Chong et al., 2011; Bavi et al., 2016).

The degree of folding stability could be measured 
through Rg. Fluctuations in Rg with respect to time shows 
unstable folding while a straight value reveals stability in 
folding (Lobanov et al., 2008; Smilgies and Folta-Stogniew, 
2015; Khan et al., 2019, 2021). A protein with misfolding 
shows variations in Rg over time (Figure 3). The plot 
shows large variations between 22Å and 22.8Å. Majority 
of the variations have been found from 811ps to 2026ps. 

Table 1. Chemical properties of thymoquinone.

Thymoquinone Pharmacokinetics

*permeant to BBB Yes

*Absorption (GI) High

Inhibitor of CYP2C19 No

Inhibitor of CYP1A2 No

Inhibitor of CYP2C9 No

Inhibitor of CYP2D6 No

CYP3A4 inhibitor No

Drug likeness

Lipinski Yes (0 violations)

Veber Yes

Physiochemical Properties

Formula C10H12O2

Molecular weight 164.20 g/mol

Heavy atoms 12

*Rot: bonds 1

*HB acceptors 2

HBdonors 0

*BBB = blood brain barrier; GI = gastrointestinal; Rot = rotatable; HB 
= hydrogen bond.

Figure 1. RMSD of TQ and Mpro during the 50ns MD simulation 
period. Stability seems fluctuating from 1.0612Å at 2ns and 2.94 
Å at 18ns. Target stability seems unstable even at the end of 
simulation period.

Figure 2. Residue’s flexibility of TQ and Mpro complex during 
simulation. Flexibility is very high in last amino acid residues. 
This high flexibility may change the protein function, required 
for virus activity.

Figure 3. Radius of gyration TQ and SARS-CoV-2 Mpro complex. 
A constant Rg value is a measure of correct folding. Fluctuations 
in Rg shows that protein folding is not stable.
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The lowest Rg was detected at 811ps (22Å) while the highest 
at 1216ps (22.8Å). This shows that the TQ may affect the 
folding of Mpro which might be important to inhibit the 
protein activity. The Rg plot of Mpro is not stable during 
the simulation peried which shows the potential activity of 
TQ. Change in protein stability may be due to the alteration 
of thermodynamic property (Chen and Shen, 2009). This 
includes protein RMSD, fluctuations and also the protein 
folding. Destabilization in folding and thermodynamic 
stability may affect biomolecules function.

The TQ is fitting in the pocket, interacting with active 
site (C145, H41) (Figure 4), altering the catalytic activity 
of viral protein. The residues located in the binding pocket 
and its surrounding (T24, L27, H41, F140, C145, H163, M165, 
P168, and His172) are imported for a natural compound 
to interact with. The phytocompound TQ form a hydrogen 
bond with Glu166, facilitating the pocket shape of the 
substrate-binding site (Anand et al., 2002) and many 
hydrophobic interactions with active site (His41, Cys145) 
and its surrounding residues (Figure 5).

Figure 4. Thymoquinone and SARS-CoV-2 main protease interaction. (A) Docked thymoquinone. (B) Thymoquinone in binding Pocket. 
(C) Residues in the surrounding thymoquinone.

Figure 5. Mpro of SARS-CoV-2. (A) Domain organization. Active site residues have been shown. (B) Dimerization of two Mpro monomers 
and location of E166. (C) Impact of E166A mutation on the dynamics of Mpro. The mutant gain flexibility and show destabilizing effect 
(Rodrigues et al., 2018).



Brazilian Journal of Biology, 2024, vol. 84, e250667 5/7

Inhibitory effect of thymoquinone against SARS-CoV-2

4. Conclusion

TQ shows good binding affinity with SARS-CoV-2 NSP5, 
interacting with active site residues and also with Glue166, 
maintaining the pocket shape for viral enzymatic activity. 
This phytomedicine alters the overall thermodynamics 
properties of SARS-CoV-2 Mpro which may useful for better 
management of COVID-19 in future. Further experimental 
validation is required to observe the TQ effect in vivo. 
The TQ may be used as therapeutic compound against 
SARS-CoV-2 after experimental confirmation.
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