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1. Introduction

The term endophyte was first defined by Bary (1866) as 
any organism that grows within plant tissues. Endophytes 
were defined as asymptomatic microorganisms living 
inside plants (Carroll, 1986) and microorganisms that 
inhabit internal plant tissues and organs at part of their life 
without causing apparent harm to the host plant (Petrini, 
1991). Over the decades, the concept of endophytes has 
been revised (Hallmann et al., 1997; Hardoim et al., 2015).

There are numerous reports on the presence of 
endophytic fungi inhabiting a diverse group of plant 
species (Rajamanikyam et al., 2017; Souza and Santos, 2017; 
Toghueo and Boyom, 2019). These microorganisms can be 
isolated from surface-disinfected plant tissues or extracted 
from the inner parts of plants (Hallmann et al., 1997).

Endophytic fungi are a rich source of bioactive 
compounds such as antimicrobial agents, hormones 
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Avicennia nitida (Sebastianes et al., 2013) showed in vitro 
activity against the human pathogens Escherichia coli (ATCC 
25922), S. enteritidis (ATCC 19196), S. aureus (ATCC 6538), 
and Candida albicans (ATCC 10231) (Moreira et al., 2020).

Nonantimicrobial therapeutic agents have also been 
obtained from endophytic fungi. Dhankhar et al. (2013) 
evaluated the activity of extracts obtained from mycelia 
of fungal endophytes associated with Salvadora oleoides 
Decne to investigate new antidiabetic drugs. Aqueous 
extract from unidentified fungi, methanolic extract from 
Aspergillus sp. JPY2 and JPY1 and acetone extract from 
Phoma sp. significantly reduced blood glucose levels. 
Aqueous extracts showed improvement in parameters 
such as body weight and lipid profile of alloxan-induced 
diabetic rats. Lethal effects on the animal were not 
observed up to doses of 1000 mg/kg b.w. Caicedo et al. 
(2019) used a 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free 
radical scavenging assay and verified the high antioxidant 
activity of exopolysaccharides present in crude extracts of 
the endophytic fungus Fusarium oxysporum isolated from 
the tropical medicinal plant Otoba gracilipes. Moreira et al. 
(2020) showed the antiparasitic activity of crude extracts 
obtained from the endophyte Diaphorte sp. 94(4) against 
the promastigote form of Leishmania infantum chagasi 
(MHOM/BR/1972/LD).

Bioactive compounds produced by endophytic 
fungi also have great importance in the improvement 
of crop productivity and quality of foods, contributing 
to sustainable agriculture (Lugtenberg et al., 2016). In 
this way, plant protection and growth can be achieved 
in different ways. For example, Aspergillus niger CSR3 
was able to regulate endogenous rice seedlings by 
producing gibberellins and indoleacetic acid, promoting 
plant growth. The endophyte also solubilized phosphate 
and produced siderophores in culture, evidencing its 
potential as a biofertilizer and suppressor of plant diseases 
(Lubna et al., 2018). Cytochalasins H and J produced by the 
endophytes Diaphorte miriciae UFMGCB 7719 and 6350, 
associated with the tropical medicinal plants Copaifera 
pubiflora and Melocactus ernestii, exhibited activities 
against Phomopsis obscurans and Phomopsis viticola. These 
results demonstrated the potential of Diaphorte species 
for controlling fungal diseases in plants (Carvalho et al., 
2018). Metabolomic analysis of organic extracts obtained 
from the liquid culture of Talaromyces pinophilus strain 
F36CF revealed the presence of the bioactive metabolite 
siderophore ferrirubin and antibiotic 3-O-methylfunicone. 
The first was involved in iron transportation and antibiotic 
activity, and the latter displayed insecticidal activity on 
aphids (Vinale et al., 2017).

3. Endophytic Fungi as Sources of Hydrolytic 
Enzymes

Endophytic fungi produce lytic enzymes such as 
cellulases, pectinases, amylases, phosphatases, lipases 
and proteases (Mishra et al., 2019), which help endophytes 
establish symbiotic associations with host plants 
(Hallmann et al., 1997) and suppress plant pathogen 
activities (Gao et al., 2010). These associations have 

(e.g., auxin, gibberellins), and hydrolytic enzymes (e.g., 
cellulases, proteases, chitinases) important for the survival 
and maintenance of endophytes in plants and for host 
plant health and tolerance to stressful environments 
(Eid et al., 2019). These metabolites have great potential 
for numerous biotechnological applications (Rana et al., 
2019; Rustamova et al., 2020). In this review, we describe 
the benefits of endophytic fungi for their host plants, the 
potential of these microorganisms for the production 
of natural products with a broad spectrum of biological 
activities, and the importance of omic tools for better 
understanding symbiotic interactions to improve plant 
health.

2. Endophytic Fungi as a Source of Natural Bioactive 
Metabolites

Endophytic fungi are considered microbial biofactors 
for the production of new bioactive products with a 
high degree of biological and structural diversity (Gupta 
and Shukla, 2020). After the discovery of paclitaxel (or 
Taxol), a potent anticancer drug produced by Taxomyces 
andreanae associated with Taxus brevifolia (Stierle et al., 
1993), many researchers reported on Taxol-producing 
endophytic fungi from different host plants (Naik, 2019a). 
Although endophytes can synthesize the same or similar 
plant-derived secondary metabolites, how and why these 
secondary metabolites occur is still not clear. Some studies 
suggest that molecular mechanisms could have arisen 
through the coevolution of endophytes with plant hosts 
during the establishment of symbiotic relationships (Tan 
and Zou, 2001; Naik et al., 2019).

The synthesis of bioactive compounds by endophytic 
fungi can be regulated according to environmental changes 
and specific needs during the developmental stages 
of fungal culture (Aly et al., 2010). Changes in culture 
parameters (e.g., medium composition, temperature, pH, 
light) can affect the metabolic profile of endophytic fungi 
(Morales-Sánchez et al., 2020). This strategy, called “One 
Strain Many Compounds” (OSMAC), has been considered 
efficient for the discovery of new natural substances from 
fungal endophytes (Supratman et al., 2021; Chen et al., 
2020). Coculture has also been recognized as an efficient 
strategy to explore the chemical diversity of endophytic 
fungi (Ebrahim et al., 2016; Zhang et al., 2017) because 
it can simulate a competitive natural environment (e.g., 
space, nutrients) of two or even more microorganisms 
and activate the expression of silent gene clusters under 
standard laboratory growth conditions (Deepika et al., 
2016).

In the face of growing microbial resistance worldwide, 
the discovery of novel antimicrobials is of great importance 
(Aslam et al., 2018). The Diaporthe genus has been 
described as an important source of antimicrobials. 
Antibacterial 3-hydroxypropionic acid (3-HPA) produced 
by the endophyte Diaphorte phaseolorum isolated from 
Brazilian mangroves showed in vitro activity against 
both Staphylococcus aureus and Salmonella typhi 
(Sebastianes et al., 2012). In another study, the crude extract 
obtained from Diaphorte sp. 94 (4) strain isolated from 
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encouraged us to investigate and select endophytic fungi to 
explore their potential enzymatic activity for applications 
in agriculture. Recently, Rajini et al. (2020) established 
cellulase production as one of the traits of endophytes 
Trichoderma asperellum, Epicoccum nigrum and Alternaria 
longipes involved in Sorghum bicolor colonization and in 
vitro inhibition growth of Fusarium thapsinum, Epicoccum 
sorghinum, Alternaria alternata and Curvularia lunata by 
hydrolysis of the cell wall. Moreira et al. (2020) studied 
the endophyte Diaphorte sp. FS-94(4) and attributed the 
production of celullase in this strain as one of the traits 
related to in vitro inhibition growth of phytopathogens 
Colletotrichum sp., Fusarium oxysporum, Phythophthora 
sojae and Rhizopus microspores.

Lytic enzymes produced by fungal endophytes are 
frequently more stable than enzymes produced by 
traditional chemical catalysts and often function under 
moderate pH, temperature, and pressure conditions (Tiwari, 
2015). These factors also make these enzymes promising for 
numerous industrial processes, including food processing, 
detergent manufacturing, paper recycling, treatment of 
plant fibers for textile application, and energy and biofuel 
production (Rana et al., 2019; Naik, 2019c). Sunitha et al. 
(2012) evaluated the ability of endophytic fungi from 
the medicinal plant Alpinia calcarata (Haw.) Roscoe to 
produce amylase and standardized the maximum enzyme 
production conditions. The fungus Cylindrocephalum sp. 
(Ac-7) showed the highest amylolytic activity in growth 
media containing maltose at 1.5% and sodium nitrate at 
0.3% as carbon and nitrogen sources, respectively, at 30°C 
and pH 7.0. The optimization of fungal amylase production 
can be useful for starch processing for the food, detergent 
and textile industries (Souza and Magalhães, 2010). 
Zaferanloo et al. (2014) optimized protease production by 
the endophyte Alternaria alternata (El-17) isolated from 
Eremophilia longifolia. Overall, the optimum conditions 
for fermentation were 30°C and pH 7.0, with soybeans as 
the carbon source and tryptophan or yeast extract as the 
nitrogen source. The authors suggested the potential use 
of A. alternata as a source of proteases for application in 
the dairy industry.

No less important is the potential of enzymes secreted 
by fungal endophytes as an alternative in treating 
wastes and degrading pollutants (Mishra and Sarma, 
2017), contributing to more eco-friendly and sustainable 
environments. Extracelullar ligninolytic activities in 
endophytic Ceratobasidum stevensii isolated from Bischofia 
polycarpa were demonstrated by Dai et al. (2010). The data 
showed that manganese peroxidase was the predominant 
ligninolytic enzyme in polycyclic aromatic hydrocarbon 
degradation. Russell et al. (2011) demonstrated the ability 
of two endophytic Pestalotiopsis microrspora isolates 
from woody plants to produce serine hydrolases and 
degrade the polymer polyester polyurethane. In another 
study, Xie and Dai (2015) demonstrated the potential of 
endophytic Phomopsis liquidambari for the degradation 
of methoxyphenolic and ferulic acid pollutants through 
the production of ferulic acid descarboxilase, laccase and 
protocatechuate 3,4-dioxygenase.

4. Endophytic Fungi and Weed Control

Agrochemicals are widely used to eradicate plant 
diseases and control specific plants or animals, which 
consequently promotes an improvement in crop yield, 
quality, and shelf life (Omomowo and Babalola, 2019). 
However, such agents have drawn considerable attention 
concerning issues related to sustainability as well as 
negative repercussions on the environment and human 
health (Cullen et al., 2019), and changes in environmental 
conditions induced by the application of these products 
are reported to affect the microbial community 
(Suryanarayanan, 2019).

Competition for nutrition between the crop and 
weeds might cause severe losses in agricultural systems, 
representing an economic problem (Harding and 
Raizada, 2015). However, modern agriculture is entirely 
dependent on the widespread use of herbicides, which 
leads to the emergence of multiple resistance to these 
agents (Peterson et al., 2018). However, bioherbicides 
are ecofriendly compounds naturally produced by living 
organisms or their natural metabolites that are used to 
control weed populations (Radhakrishnan et al., 2018). 
These phytotoxins are secondary metabolites that play an 
important role in the induction of disease symptoms in 
agrarian and forest plants and weeds (Cimmino et al., 2015).

Cytochalasins are a large and chemically diverse group 
of fungus-derived natural products (polyketide synthase-
nonribosomal peptide synthetases) that exhibit a broad 
spectrum of biological activities (Cimmino et al., 2015; 
Han et al., 2019). Such compounds are considered potential 
mycotoxins. Nevertheless, a Xylaria strain endophytically 
isolated from Toona sinensis is described as a producer 
of cytochalasin E, which demonstrated high growth 
inhibition on lettuce Lactuca sativa and radish Raphanus 
sativus seedlings (Zhang et al., 2014). Later, Han et al. 
(2019) used OSMAC approach on Xylaria sp. XC-16 for 
the isolation of epoxyrosellichalasin, hydroxyldecandrin 
G, and cytochalasin K, which strongly inhibited Triticum 
aestivum shoot elongation, whereas cytochalasin E is a 
potent inhibitor of root elongation of Raphanus sativus.

Endophytic fungus Phomopsis sp. HCCB03520 
(Diaporthe) is also reported as a phytotoxin producer 
such as cytochalasins (H, N, and epoxycytochalasin H), 
herbaria (I and II), and a nonenolide compound that was 
isolated from solid cultures, which exhibited phytotoxic 
effects on the germination and radicle growth of Medicago 
sativa L., Trifolium hybridum L., and Buchloe dactyloides 
(Yang et al., 2012).

Chloroplasts are organelles originating from 
endosymbiotics in plants that are responsible for the 
production of several metabolites and photosynthesis 
(Zhang et al., 2020). The phytotoxic effect on the 
photosynthesis machinery of spinach chloroplasts has 
been observed by natural and semisynthetic compounds 
produced by the endophytic Xylaria feejeensis isolated 
from the tropical medicinal tree Sapium macrocarpum. A 
semisynthetic derivative of coriloxine showed a significant 
enhancement in the phosphorylating electron transport 
rates and Mg2+-ATPase activity, whereas the semisynthetic 
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quinone inhibited the Hill reaction at electron transport on 
the water-splitting enzyme (Macías-Rubalcava et al., 2017).

5. Fungal Endophytes Might Influence the 
Photosynthetic Apparatus

Photosynthesis is considered the basis of plant growth. 
Such a photochemical process is performed by a variety 
of organisms, ranging from plants to bacteria, which are 
capable of capturing and converting energy from sunlight 
into biochemical energy (Evans, 2013).

Green-colored plant pigment chlorophyll may be found 
in plants, bacteria, and algae and is a porphyrin-based 
molecule that plays a critical role in the photosynthetic 
pathway. Its molecular structure exhibits a tetrapyrrole 
ring that is capable of absorbing blue light and red light 
of solar radiation at 430 nm and 660 nm, respectively, as 
well as UV-B (280–320 nm), but it reflects the green and 
yellow spectrum (Arof and Ping, 2017; Pareek et al., 2018).

Absorption of UV-B by chlorophyll, despite a minor 
component of sunlight, is reported to be harmful to 
biomolecules. Molecular oxygen atoms in the ground 
state (3O2) are converted into singlet oxygen (1O2), which 
is highly reactive and can react with various biological 
molecules, including lipids, proteins, and nucleic acids, 
causing the death of cells (Figure 1) (Quinn et al., 2014; 
Barrera et al., 2020).

Photoprotective effects promoted by fungal endophytes 
were reported by Barrera et al. (2020). The endophytic 
fungi Alternaria sp., Eupenicillium osmophilum, Penicillium 
brevicompactum, P. chrysogenum, and Phaeosphaeria sp. 
were identified as the most abundant in association with 
the Antarctic plant Colobanthus quitensis. In addition, the 
endophytically colonized plants exhibited the accumulation 
of key flavonoids that are known to regulate oxidative stress 
and photoprotective effects, as well as the expression of 

genes associated with UV-B photoreception, lower lipid 
peroxidation, and an improvement in photosynthesis 
efficiency in comparison with noncolonized plants.

However, members of the Epichloë genus possess 
numerous features beneficial to their host plants 
(Song et al., 2016). As mentioned, photosynthesis plays 
an important role in plant growth, and under stress 
conditions, photosynthetic capability might suffer losses 
(Harman et al., 2021). Rozpądek et al. (2015) described the 
improvement of photosynthetic activity of photosystem II, 
carbon assimilation, and biomass increase of Dactylis 
glomerata promoted by the symbiotic fungus E. typhina.

Trichoderma spp. are described as endophytes but 
might be found in several environments. These species 
have been reported to have protective effects against 
phytopathogenic fungi (Tseng et al., 2020). Interestingly, 
Trichoderma spp. is capable of enhancing photosynthesis 
by inducing the upregulation of genes and pigments and 
activating biochemical pathways that reduce the harm 
caused by reactive oxygen species (ROS) (Harman et al., 
2021).

6. Omics Approaches to Explore Endophytic Fungi-
Plant Interactions in Agriculture

Endophytic fungi exhibit complex interactions with 
host plants, which involve biotic, abiotic, and genetic 
factors (Hardoim et al., 2015). A better understanding of 
this relationship becomes of great importance to improve 
the ways in which these microorganisms can be applied 
in agriculture to increase plant growth and crop yields, 
control pests, suppress virulence in pathogens, and/or 
help plants survive in environmental stress, including 
extreme temperatures and pH levels, drought, heavy 
metal toxicity, and nutrient limitation (Naik, 2019b ; 
Lugtenberg et al., 2016).

Figure 1. Photodynamic reaction induced by UV-B. Initially, chlorophyll absorbs a photon that excites the chlorophyll to the short-lived 
singlet state and may decay by nonradioactive relaxation with heat emission or fluorescence emission to the long-lived triplet state. 
In this triplet state, chlorophyll can interact with molecular oxygen in two ways, type 1 and type 2, leading to the formation of oxygen 
radicals and singlet oxygen.
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Keeping in mind the benefits of endophytic fungi 
on plant health and for sustainable and eco-friendly 
agricultural productivity (Kaur, 2020), many studies in 
recent decades have focused on exploring the aspects of 
this symbiotic relationship.

Recent advances in technologies and bioinformatic 
tools to generate and process extensive omic data 
are revolutionizing research on endophyte-plant 
relationships. In this context, genomic studies based 
on next-generation sequencing (NGS) platforms 
provide valuable information about the structural and 
functional aspects of genes, taxonomy, and phylogeny of 
endophytes (Bosamia et al., 2020), which can integrate 
other data from omics approaches to unravel the effects 
on plant gene expression during interaction with fungal 
endophytes (Table 1).

Thus, genomics provides an overview of the full genetic 
complement of an organism; transcriptomics, proteomics 
and metabolomics determine the total set of transcribed 
RNAs, proteins and metabolites, respectively, in a cell, tissue 
or organism under a given set of conditions (Kaul et al., 
2016; Bosamia et al., 2020)

The plant defense system comprises many factors, 
and endophytic fungi can have substantial influence on 
the plant metabolic process, inducing systemic resistance 
and leading to tolerance to pathogens (Gao et al., 2010). 
Employing quantitative transcriptomic analysis, Ambrose 
and Belanger (2012) evaluated the differential expression 
of genes associated with Festuca rubra colonization or not 
with the endophyte Epichloë festucae. Data revealed that 
over 200 plant genes involved in various physiological 
processes were differentially expressed between the 
two samples. The transcript abundance and the nature 
of one secreted protein suggested that protein may be 
involved in disease resistance in endophyte-infected F. 
rubra. Correlation of transcriptomic data with genomic 
data was essential to understand that the uniqueness of 
this gene in E. festucae can confer resistance to the host.

Plant growth promotion effects by fungal endophytes 
are also well documented (Bilal et al., 2018; Khalil et al., 
2021). Using comparative transcriptomics and proteomics, 
Yuan et al. (2019) verified the impact of the endophyte 
Gilmaniella sp. AL12 in the regulation of metabolism of 
the medicinal herb Atractylodes lancea. This study showed 

Table 1. Benefits of endophytic fungi to host plants revealed by omics-based approaches.

Host Plant Endophyte Benefits Omics Approaches Reference

Zea mays Exophiala 
pisciphila

Heavy metal tolerance by the 
remodeled host cell walls

Transcriptomic Shen et al. 
(2020)

Eucalyptus 
globulus

Chaetomium 
cupreum

Heavy metal tolerance; plant 
growth promotion by a complex 
regulation of auxin biosynthesis 

and metabolism

Transcriptomic Ortiz et al. 
(2019)

Brassica napus Piriformospora 
indica

Stress/defense responses; energy 
production; nutrient acquisition; 

biosynthesis of essential 
metabolites; root’s architectural 
modification; cell remodeling; 

cellular homeostasis

Proteomic Shrivastava et al. 
(2018)

Lolium 
arundinaceum

Epichloë 
coenophiala

Disease resistance; abiotic stress 
responses

Transcriptomic Dinkins et al. 
(2017)

Hordeum vulgare Piriformospora 
indica

Salt stress tolerance Metabolomic 
Transcriptomic Ionomic

Ghaffari et al. 
(2016)

Lolium perene L. cv 
Samson

Epichloë festucae Changes in host development, 
particularly trichome formation 

and cell wall biogenesis; 
resistance to drought and 

infection by fungal pathogens

TranscriptomicMetabolomic Dupont et al. 
(2015)

Theobroma cacao Colletotrichum 
tropicale

Changes in host physiology, 
metabolism and anatomy; 

resistance to pathogens and 
herbivores

Transcriptomic Mejía et al. 
(2014)

Hordeum vulgare Piriformospora 
indica

Drought stress tolerance through 
photosynthesis stimulation, 

energy releasing and enhanced 
antioxidative defense system

Proteomic Ghabooli et al. 
(2013)

Zea mays Fusarium 
verticillioides

Reduction of harmful effects of 
phytopathogen

TranscriptomicMetabolomic Jonkers et al. 
(2012)

Hordeum vulgare Piriformospora 
indica

Induction of systemic disease 
resistance

Transcriptomic 
Metabolomic

Molitor et al. 
(2011)
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that endophytes weakened the plant immune response, 
suggesting that this regulation may contribute to beneficial 
plant-endophyte interactions. In addition, the presence 
of Gilmaniella sp. AL12 upregulated plant genes involved 
in the production of proteins related to carbon fixation 
and carbohydrate and energy metabolism, leading to an 
increase in biomass and sesquiterpenoid content in the 
shoots of A. lancea.

Abiotic stresses can restrict plant growth and 
development and impact crop productivity (Kumar, 2014). 
Saline stress is considered one of the main factors that 
leads to morphological and physiological changes in plants 
(Fougère et al., 1991). Alikhani et al. (2013) used a proteomic 
approach to evaluate the influence of the endophyte 
Piriformospora indica on the tolerance of Hordeum vulgare 
L. to salt stress. Mass spectrometric analysis led to the 
identification of 51 proteins related to different functions, 
including photosynthesis, cell antioxidant defense and 
energy production. These results indicated that endophytic 
fungi induced a systemic response to salt stress by altering 
the physiological and proteome responses of the plant 
host, opening perspectives to improve plant adaptability 
to environmental stresses.

In this way, omics-based technologies have been 
fundamental to provide clearer insights into metabolism, 
physiology, gene expression, and other aspects of 
endophytic-plant interactions (Chetia et al., 2019), 
contributing to a better understanding of the beneficial 
effects of endophytic fungi in improving plant health.

7. Conclusion

This review has indicated that endophytic fungi can 
produce bioactive compounds that originate from their 
host plants, encouraging us to investigate and select these 
microorganisms for biotechnological exploration. Fungal 
endophytes appear to have the potential to produce a 
range of metabolites with significant biological activity 
for applications in pharmaceuticals, medicine, industry, 
crop protection and improvement, and environmental 
recovery. Omic technologies have been incorporated into 
studies of plant-endophytic fungi interactions, providing 
us with directions to solve problems of plant disease and 
improve the productivity and quality of crops, bringing 
important environmental and economic implications for 
agriculture.
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