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Abstract
Zinc oxide nanoparticles were synthesized from the leaf extract of Brassica oleracea L. Acephala group (collard 
green) followed by their characterization using Scanning Electron Microscope (SEM), and Energy Dispersive X-ray 
(EDX). The antibacterial properties of zinc nanoparticles were tested against Gram-negative bacteria, Pseudomonas 
aeruginosa (ATCC ® 9027™), Escherichia coli (ATCC ® 8739™), Klebsiella pneumoniae (ATCC® BAA-1705™) and 
Gram-positive bacteria, Staphylococcus aureus (ATCC ® 6538™) and Listeria monocytogenes (ATCC ® 13932™), at 
four different concentrations (50.00 µg/ml, 100.00 µg/ml, 500.00 µg/ml and 1 mg/ml) of zinc oxide nanoparticles 
suspension. Results revealed that the synthesized nanoparticles exhibit strong antibacterial effects against 
Pseudomonas aeruginosa, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli 
at 500.00 µg/ml-1 mg/ml concentrations. An increase in efficacy of nanoparticles with the decrease of their size 
was also evident. This is a first ever report on Brassica oleracea, L. based nanoparticles which demonstrates that 
500.00 µg-1 mg/ml conc. of zinc oxide nanoparticles have antibacterial activity against both Gram -ve and Gram 
+ve bacteria and have the potential to be considered as an antibacterial agent in future.

Keywords: Brassica oleracea, zinc oxide nanoparticles, Scanning Electron Microscope (SEM), Energy Dispersive 
X-ray (EDX), antibacterial agents.

Resumo
Nanopartículas de óxido de zinco foram sintetizadas a partir do extrato foliar de Brassica oleracea L., grupo Acephala 
(couve), seguidas de sua caracterização em Microscópio Eletrônico de Varredura (MEV) e Raio X por Energia Dispersiva 
(EDX). As propriedades antibacterianas das nanopartículas de zinco foram testadas em bactérias Gram-negativas, 
Pseudomonas aeruginosa (ATCC® 9027™), Escherichia coli (ATCC® 8739™) e Klebsiella pneumoniae (ATCC® BAA-
1705™), e bactérias Gram-positivas, Staphylococcus aureus (ATCC® 6538™) e Listeria monocytogenes (ATCC® 13932™), 
em quatro concentrações diferentes (50,00 µg / ml; 100,00 µg / ml; 500,00 µg / ml; e 1 mg / ml) de suspensão de 
nanopartículas de óxido de zinco. Os resultados revelaram que as nanopartículas sintetizadas exibem fortes efeitos 
antibacterianos contra P. aeruginosa, L. monocytogenes, K. pneumonia, S. aureus e E. coli em concentrações de 500,00 µg 
/ ml-1 mg / ml. Um aumento na eficácia das nanopartículas com a diminuição de seu tamanho também foi evidente. 
Este é o primeiro relatório sobre nanopartículas à base de B. oleracea L. que demonstra que 500,00 µg-1 mg / ml de 
concentração de nanopartículas de óxido de zinco têm atividade antibacteriana contra bactérias Gram-negativas e 
Gram-positivas e que essas nanopartículas têm potencial para ser consideradas um agente antibacteriano no futuro.

Palavras-chave: Brassica oleracea, nanopartículas de óxido de zinco, Microscópio Eletrônico de Varredura (MEV), 
Raios-X por Energia Dispersiva (EDX), agentes antibacterianos.
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biotechnology to nanotechnology by using plant extracts 
(Akbar et al., 2017; Ahmad and Sharma, 2012). Such 
methods are cost effective as plants are nature’s chemical 
factories and need a little or no maintenance. Therefore, 
the use of biological sources like plants is constantly on 
the rise for the synthesis of metal nanoparticles and can 
be preferred over the physical and chemical methods 
(Rajamanickam et al., 2012).

Hence, in the present study, Brassica oleracea was utilized 
for the synthesis of zinc oxide nanoparticles. The plant is 
traditionally used for treatment of diarrhoea, retention 
of urine and healing of injuries and reported to contain 
vitamins A, B1, C & K and other essential metabolites 
which may act as bioreducing agents (Kahlon et al., 2008; 
Miller-Cebert et al., 2009; Uddin et al., 2004; Balbach, 
1993). This richness of metabolites and easy availability of 
plant makes it a suitable candidate to synthesize the zinc 
oxide nanoparticles, which was investigated in this study. 
Further, the effect of changing precursor concentrations 
(zinc salt and plant extract) and influence of morphology 
and size of synthesized nanoparticles on the antibacterial 
activity was also investigated.

2. Materials and Methods

Brassica oleracea L. Acephala group (Collard green) 
leaves were used in this study. All chemical reagents such 
as ZnSO4 .7H2O, NaOH, HCl, ethyl acetate and acetone of 
analytical grade were from MERCK. All glass wares (Titration 
flasks, Beakers, Funnels, Petri dishes and Test tubes) were 
of Pyrex grade and were sterilized properly.

2.1. Bacterial cultures

Five ATCC bacterial strains including P. aeruginosa (ATCC 
® 9027™), E. coli (ATCC ® 8739™), L. monocytogenes (ATCC 
® 13932™), S. aureus (ATCC ® 6538™) and K. pneumoniae 
(ATCC® BAA-1705™) were used to test antibacterial activity 
of the synthesized ZnO nanoparticles.

2.2. Preparation of the leaves extract

The fresh leaves were first washed several times with 
tap water in order to remove the dust particles and then 
with the distilled and deionized water, respectively. The 
leaves were then cut into very small pieces and 50.00 g 
of chopped leaves were taken in a clean and sterilized 
conical flask containing 250.00 ml of deionized water and 
mixed properly. The mixture was then boiled at 100 ºC 
for 30-45 min using a hot plate. The extract formed was 
cooled to room temperature and filtered using Whatman 
filter paper. After filtration, centrifugation was done for 
30 min at 4,000 rpm in order to get a concentrated extract. 
The extract was stored in a refrigerator in order to use for 
further experiments.

2.3. Synthesis of zinc oxide nanoparticles from Brassica 
oleracea (collard green) leaf extract

Eco-friendly procedure was employed for the synthesis 
of nanoparticles using Zinc sulphate (ZnSO4 .7H2O) as a 
precursor salt. Three solutions of Zinc sulphate (1 mM, 

1. Introduction

Due to the misuse of antibiotics, the emergence of 
microorganism’s resistance is increasing rapidly against 
majority of drugs (Asai et al., 2005; Olofsson, 2006; 
Rossainz-Castro et al., 2016) which poses serious threat 
to public health. Hence the pharmaceutical companies 
and the researchers have focused on the introduction of 
alternative biocidal agents to fight and prevent microbial 
diseases. The use of nanostructured materials as a successful 
bactericidal agent is one of the available alternatives which 
is attracting the attention of pharmaceutical industry 
(Jan et al., 2013; Teodoro et al., 2018; Thill et al., 2006). 
As a result, in recent years, nanotechnology has emerged 
as an innovative field which manipulates materials on 
atomic scale and introduce new and unique antimicrobials 
to control the growth of harmful microorganisms (Pelgrift 
and Friedman, 2013; Aldosary et al., 2023).

A number of nanotechnology-based materials have 
been studied to control infectious diseases (Blecher et al., 
2011; Tarusha et al., 2018; Budi et al., 2024). Among these, 
zinc oxide nanoparticles have obtained a significant 
importance due to their unique antifungal, antibacterial 
and UV filtering properties (Hong et al., 2008). Zinc oxide 
is a member of metal oxide group having photo catalytic 
and photo oxidizing capability against several chemical 
and biological species (Szabó et al., 2003). When zinc 
oxide nanoparticles are used as a surface coating on 
materials and textiles, they exhibit remarkable antibacterial 
and antifungal properties (Abramov et al., 2009). The 
antimicrobial activity of nanoparticles has been studied 
against pathogenic bacteria of humans, mainly S. aureus 
and E. coli (Akbar et al., 2017; Heinlaan et al., 2008; 
Jones et al., 2008). In addition, due to their antimicrobial 
effectiveness, the zinc oxide nanoparticles are being 
considered as potential agents to control the growth of 
pathogens in food processing atmosphere (Jin et al., 2009; 
Suo et al., 2017). The nanoparticles of zinc oxide possess 
bactericidal effect on both Gram-negative and Gram-
positive bacteria and even show activity against spores 
that are resistant to high pressure and temperature (Rosi 
and Mirkin, 2005). It is evident from the literature that the 
effectiveness of zinc oxide nanoparticles depends on the 
concentration and surface area while there is a little effect 
of the particle shape and crystalline structure (Suntako, 
2015). Furthermore, it has been revealed that smaller the 
size of zinc oxide nanoparticles, better the antibacterial 
activity (Shrivastava et al., 2007; Vayssieres et al., 2001). 
Hence, with increasing the concentration and surface area 
of the nanoparticles, the antibacterial activity is enhanced.

A variety of methods are available to synthesize the 
nanoparticles for their subsequent use in the antibacterial 
studies (Naseer et al., 2022). These methods include the 
synthesis of nanoparticles by employing the physical, 
chemical and biological treatments. However, due to 
some serious disadvantages associated with physical and 
chemical methods i.e., use of toxic chemicals and high 
costs but low production rate, the scientific society has 
turned to biological systems for synthesis and assembly 
of nanoparticles (Konishi et al., 2006). Plant mediated 
biological method of the nanoparticles connects the plant 
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2 mM and 3 mM conc.) were prepared. First of all, 10 ml 
leaf extract of Brassica oleracea was added into all three 
concentrations. The process was repeated by adding 
20 ml of extract into another set of these concentrations. 
Few drops of sodium hydroxide (NaOH) solution were 
added into each treatment in order to increase the pH 
up to 10. The solution was kept under constant stirring 
at 50oC using magnetic stirrer for one hour. The green 
color of the solutions changed to pale yellow indicating 
the formation of the zinc oxide nanoparticles. After 
completion of reaction, each treatment was kept 
overnight. Centrifugation of the white precipitate was 
done at 4,500 rpm for 15 min. The pellet was taken and 
washed thoroughly with double distilled water in order 
to remove all the ions and by-products. The obtained 
nanoparticles were then dried in a hot air oven at 120 ºC 
for 2 hours. The resulting dried material was crushed 
into powder and stored in airtight Eppendorf tubes for 
further analysis.

2.4. Characterization of zinc oxide nanoparticles

The morphology, particle size and elemental 
composition of the obtained Zinc oxide were determined 
by Scanning Electron Microscopy (SEM) and Energy 
Dispersive X-ray (EDX) using the facility provided 
by CRL, Physics Department of Peshawar University 
according to the standard protocol. The micrographs 
of the samples were obtained in SEM model JSM 5910 
(JEOL Co Japan) and the elemental percentages were 
determined in micro analyzer model INCA 200 (UK) 
coupled with SEM machine.

2.5. Antibacterial activity of zinc oxide nanoparticles

The antibacterial activity of isolated zinc-based 
nanoparticles was tested on Nutrient agar plates using 
well diffusion method against different bacterial strains 
mentioned above. Once the optical density was adjusted 
(1×108 CFU/ml), the pathogenic bacteria were cultured on 
nutrient agar plates using sterile cotton swabs.

Stock suspensions of ZnO with different concentrations 
(50.00 µg/ml, 100.00 µg/ml, 500.00 µg/ml and 1 mg/ml) of 
the nanoparticles were prepared by suspending them into 
distilled water. Wells of 2 mm diameter were created in 
the media with the help of sterilized cork-borer. Different 
concentrations (50.00 µg/ml, 100.00 µg/ml, 500.00 µg/ml 
and 1 mg/ml) of the nanoparticles were loaded on the 
marked wells with the help of micropipette under aseptic 
conditions. Antibiotic Meropenem (Me) was used as a 
positive control for E. coli while Doxycycline (DO) was used 
as control for P. aeruginosa, L. monocytogenes, S. aureus 
and K. pneumoniae. Distilled water was loaded as negative 
control. Bacteria were incubated on their respective media 
plates at 37 ºC for 24 hours. Diameter of zone of inhibition 
was measured in millimeter (mm) after incubation to 
assess the antibacterial activity.

3. Results

3.1. Energy Dispersive X-Ray (EDX)

To confirm the synthesis and purity of zinc oxide 
nanoparticles, EDX was performed. Samples were processed 
for Zinc (Zn) and Oxygen (O) spectrum randomly with EDX. 
Clear peaks of Zn and O were obtained along with very small 
peaks of Calcium (Ca) and Phosphorous (P) as impurities 
which were in acceptable range (Figure 1; Table 1).

Figure 1. EDX spectra of zinc oxide nanoparticles.

Table 1. Elemental composition of ZnO nanoparticles.

Element Weight (%) Atomic (%)

C K 4.50 13.27

O K 20.44 45.27

P K 0.72 0.83

Ca K 0.98 0.87

Zn K 73.35 39.76

Totals 100.00
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3.1.1. Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) was performed 
for the analysis of effect of precursor concentrations 
(zinc salt and plant extract) for all six samples prepared 
from different concentrations. The obtained SEM results 
clearly revealed the influence of precursor salt (ZnSO4) 
concentration on the size and morphology of zinc oxide 
nanoparticles. The size of nanoparticles changed as the 
concentration of ZnSO4 increased. The SEM results for 
each sample are described below:

The first treatment for the synthesis of zinc nanoparticles 
was performed by mixing 90.00 ml of zinc sulphate 
solution (1 mM ZnSO4.7H2O) with 10 ml of Brassica oleracea 
extract. The average size of nanoparticles ranges from 
10-50 nm with 0.50-01.00 µm agglomerates was recorded 
(Figure 2A). With increase in ZnSO4 from 1 mM to 2 mM, 
the size of nanoparticles increased with a range 50-90 nm 
and 0.50-03.00 µm agglomerates (Figure 2B). Similarly, 
with increasing the concentration of ZnSO4 solution up 
to 3 mM, large sized agglomerated nanoparticles were 
noticed having size range of 90-120 nm and 0.5-5 µm 
agglomerates (Figure 2C).

To assess the effect of increasing concentration of plant 
extract, a set of three treatments was also set up. For first 
treatment, 80 ml of ZnSO4 solution (1 mM ZnSO4.7H2O) 
was mixed with 20 ml of Brassica oleracea leaves extract. 
The average size of nanoparticles of range from 50-100 nm 
with 0.5-2 µm agglomerates was observed (Figure 2D). 
Similarly, for other two treatments (80 ml of 2 mM and 
3 mM zinc salt in 20 ml of plant extract separately), an 

average size of nanoparticles ranges from 80-120 nm with 
0.2-9 µm agglomerates and an average size of nanoparticles 
ranges from 100.00-300.00 nm with 0.2-5 µm agglomerates 
were obtained for the samples, respectively (Figure 2E-2F)

3.2. Antibacterial activity of zinc oxide nanoparticles

The antibacterial activity of all six samples of ZnO 
nanoparticles was tested by well diffusion method 
against Pseudomonas aeruginosa, Escherichia coli, Listeria 
monocytogenes, Staphylococcus aureus and Klebsiella 
pneumoniae (Figure 3A-3E). The test was performed in 
triplicates for each concentration. The diameter of zone 
of inhibition for each strain was calculated and recorded 
for each treatment in triplicate (Table 2). The results 
revealed that the presence and penetration of nanoparticles 
restricted the growth of tested bacteria and a clear zone, 
except for negative control, around the wells was evident. 
With an increase in the concentration of the nanoparticles, 
the zone of clearance also increased. Both positive and 
negative controls were also set up which validated the 
assay and the subsequently generated results.

3.3. Analysis of antibacterial activity against Pseudomonas 
aeruginosa

It is evident from results that ZnO nanoparticles 
inhibited the growth of Pseudomonas aeruginosa (Figure 3A) 
even at lowest concentration (50.00 µg/ml). The highest 
bactericidal activity was observed at the concentration of 1 
mg/ml when it reached approximately equal to the positive 
control (Table 2). A slight variation between different 

Figure 2. A. The SEM images of biosynthesized ZnO NPs (10-50 nm), B. SEM images of zinc oxide nanoparticles with little agglomeration 
C. Scanning electron microscopy images of zinc oxide nanoparticles for sample 3. D. SEM micrographs of zinc nanoparticles having size 
50-100 nm. E. Micrographs of zinc oxide nanoparticles for sample 5. F. SEM images of ZnO nanoparticles (ZnO NPs in this case appears 
to be greater as compared to Figure 2E).
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molar concentrations and the amount of extract was also 
observed. For 10 ml extract, the zones of inhibition were 
either increased or remained constant with an increase in 
molarity of solution (1 mM-3 mM). This trend was observed 
for all nanoparticles concentrations (50.00 µg/ml-1 mg/ml). 
However, surprisingly with the increase of plant extracts 
(20.00 ml) for some molar solutions, the inhibitory 
effect was reduced with the increase in molarity. The 
least bactericidal effect was observed with nanoparticles 
obtained using 3 mM solution of Zinc sulphate. Thus, 
our results demonstrated that nanoparticles have strong 
potential to inhibit the growth of P. aeruginosa.

3.4. Analysis of antibacterial activity against Escherichia 
coli

The antibacterial efficacy of ZnO nanoparticles against 
Escherichia coli (Figure 3B) was checked using same 
technique and method as described in the previous 
section. The efficacy of nanoparticles was checked for 
all concentrations and zone of inhibition were recorded 
(Table 2). As the data indicates, ZnO nanoparticles did 
not show any inhibitory effect against Escherichia coli at 
lower concentrations (50.00 µg/ml and 100.00 µg/ml). The 
result remained same for all molar concentration when 
applied at higher dilutions (50.00 µg/ml and 100.00 µg/
ml). An intermediate antibacterial activity was observed 
at 500.00 µg/ml conc. of ZnO nanoparticles which reached 
equivalent to positive control when a concentrated solution 
(1 mg/ml) of nanoparticles was applied. Surprisingly, the 
efficacy was reduced by increasing molar concentration 
of solution used for nanoparticles preparation (Table 2 
top to bottom of column).

3.5. Analysis of antibacterial activity against Listeria 
monocytogenes

Listeria monocytogenes was also tested for the analysis 
of its growth inhibition by ZnO nanoparticles (Figure 3C). 
The antibacterial effect of ZnO nanoparticles having 1mg/ml 
concentration showed maximum zone of inhibition and 
was close to the inhibitory effect shown by positive 
control (Table 2). A mild to low efficacy was observed by 
decreasing the concentration of nanoparticles (50.00 µg/ml, 
100.00 µg/ml and 500.00 µg/ml). However, in contrast to 
previous both results, the efficacy of nanoparticles increased 
with increasing the concentration of molarity of solutions.

3.6. Analysis of antibacterial activity against 
Staphylococcus aureus

Staphylococcus aureus is another medically important 
pathogen used in this study to test its ability of growth in 
the presence of ZnO nanoparticles (Figure 3D). The growth 
inhibition started at 100.00 µg/ml dilution of nanoparticles 
and increased with an increase in concentration (Table 2). 
The efficacy was just above 50% of positive control at 
500.00 µg/ml concentration. However, it reached at 
highest level (equal to positive control) when 1 mg/ml 
concentration of nanoparticles was used.

3.7. Analysis of antibacterial activity against Klebsiella 
pneumonia

Finally, the antibacterial effect on ZnO nanoparticles 
was also observed against Klebsiella pneumonia (Figure 3E). 
At lower concentration of nanoparticles (50.00 µg/ml), 
a very low activity against tested bacteria was observed 
(Table 2). However, the activity disappeared by doubling 

Figure 3. A. Zone of inhibition of Pseudomonas aeruginosa formed after treating with ZnO nanoparticles obtained from mixing 10 ml 
of plant extract with 1 mM ZnSO4 solution. B. Zone of inhibition of Escherichia coli by using 2 mM solution of ZnO for 10 ml extract. C. 
Zone of inhibition of Listeria monocytogenes by using 1mM solution of ZnO for 20 ml extract. D. Zone of inhibition of Staphylococcus 
aureus by using 2 mM solution of ZnO for 10 ml plant extract. E. Zone of inhibition of Klebsiella pneumoniae by using 3 mM solution 
of ZnO for 10 ml extract 3.
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the plant extract for same molar solutions. The activity 
remained constant at 100.00 µg/ml for both 10.00 ml 
and 20.00 ml plant extracts used. The bactericidal 
effects were increased by increasing the concentration 
of nanoparticles and reached approximately equal to or 
even more than the activity of positive control at 1 mg/ml 
concentration. However, the bactericidal activity did not 
seem to be changed with a change in molar concentration 

of solution used for particle synthesis and the amount 
of plant extract.

4. Discussion

The emergence of bacterial resistance against the current 
battery of the antibiotics has raised serious concerns among 

Table 2. Diameter (in mm) of zone of inhibition of selected bacteria after treatment at different concentrations of ZnO nanoparticles 
and molar solutions of Zinc sulphate.

Pseudomonas aeruginosa

S. No. Molar Solutions
Positive 
control

50 µg/ml 100 µg/ml 500 µg/ml 1mg/ml

1 1mM (10ml extract) 20mm 3mm 8mm 13mm 18mm

2 2mM (10ml extract) 20mm 4mm 9mm 13mm 17mm

3 3mM (10ml extract) 20mm 4mm 9mm 15mm 18mm

4 1mM (20ml extract) 20mm 4mm 12mm 15mm 18mm

5 2mM (20ml extract) 20mm 3mm 11mm 15mm 18mm

6 3mM (20ml extract) 20mm 2mm 5mm 9mm 13mm

Escherichia coli

1 1mM (10ml extract) 12mm 0mm 4mm 7mm 10mm

2 2mM (10ml extract) 12mm 0mm 0mm 6mm 9mm

3 3mM (10ml extract) 12mm 0mm 0mm 2mm 5mm

4 1mM (20ml extract) 12mm 0mm 0mm 6mm 10mm

5 2mM (20ml extract) 12mm 0mm 0mm 4mm 8mm

6 3mM (20ml extract) 12mm 0mm 0mm 4mm 7mm

Listeria monocytogenes

1 1mM (10ml extract) 15mm 0mm 3mm 7mm 11mm

2 2mM (10ml extract) 15mm 0mm 4mm 7mm 12mm

3 3mM (10ml extract) 15mm 4mm 9mm 15mm 18mm

4 1mM (20ml extract) 15mm 2mm 4mm 8mm 13mm

5 2mM (20ml extract) 15mm 2mm 2mm 6mm 8mm

6 3mM (20ml extract) 15mm 0mm 4mm 7mm 10mm

Staphylococcus aureus

1 1mM (10ml extract) 11mm 0mm 3mm 7mm 9mm

2 2mM (10ml extract) 11mm 0mm 6mm 8mm 11mm

3 3mM (10ml extract) 11mm 0mm 0mm 4mm 11mm

4 1mM (20ml extract) 11mm 0mm 2mm 6mm 9mm

5 2mM (20ml extract) 11mm 0mm 0mm 6mm 10mm

6 3mM (20ml extract) 11mm 0mm 0mm 5mm 9mm

Klebsiella pneumoniae

1 1mM (10ml extract) 13mm 2mm 4mm 6mm 13mm

2 2mM (10ml extract) 13mm 2mm 4mm 9mm 14mm

3 3mM (10ml extract) 13mm 2mm 4mm 10mm 14mm

4 1mM (20ml extract) 13mm 0mm 3mm 8mm 14mm

5 2mM (20ml extract) 3mm 0mm 5mm 7mm 11mm

6 3mM (20ml extract) 13mm 0mm 3mm 7mm 13mm
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health professionals. The pathogens have developed a 
variety of mechanisms to degrade, modify or inactivate 
the routinely prescribed antibacterial drugs. This has 
resulted in the sporadic reports of presence of super-bugs. 
In current decade, scientists have focused on exploration 
of alternative remedies to address this issue. Use of crude 
extracts/phytochemicals from plants of medical importance 
such as Brassica oleracea (Paul et al., 2012; Vale et al., 
2015), Hibiscus sabdariffa, Beta vulgaris (Abdel-Shafi et al., 
2019) and many others have been extensively studied in 
past. However, due to some limitations, the scientists 
have recently focused on the synthesis of nanoparticles 
using the extracts of medicinally important plants. Hence, 
synthesis of metal nanoparticles using green methods 
having antibacterial potential has become an alternative 
remedy for pathogens control. Various studies have reported 
that metal nanoparticles strongly inhibit the growth of 
pathogens due to disruption of plasma membrane which 
eventually leads to death of bacterial cells (Aldayel et al., 
2022; Shah et al., 2021).

Among metal nanoparticles of same nature, Zinc 
oxide nanoparticals are one of the most effective and safe 
antimicrobial agents which are being used as medicine as 
well as preservative in packaging since long (Baum et al., 
2000). Other metal nanoparticles such as gold have also 
been reported (Piruthiviraj et al., 2016); however due to 
limited antibacterial activity or effective only against a 
particular group of pathogens i.e., enteric bacteria, gold 
nanoparticles are more preferred for diagnostic and 
anticancer procedures (Shamaila et al., 2016). Zinc oxide 
nanoparticles, on other hand, are preferred for antibacterial 
studies due to their safety and better efficacy.

The synthesis and antibacterial activity of Brassica 
oleracea L. (Acephala Group) based Zinc oxide nanoparticles 
is not well-documented so far in literature; though few 
previous studies have determined the ZnO nanoparticle’s 
photocatalytic activity (Osuntokun et al., 2019) as well 
as antimicrobial potential (Pillai et al., 2020). However, 
these studies did not explore the impact of different 
molar concentrations on the synthesis and efficacy of 
nanoparticles. Therefore, our study further expanded the 
previous understanding and focussed on biosynthesis 
of zinc oxide nanoparticles synthesized from different 
molar solutions concentrations of Zinc sulphate using 
leaf extract of Brassica oleracea L. (Acephala Group) and 
determining its biological activity against more bacterial 
types than those investigated previously (Pillai et al., 
2020). The characterization study revealed that most 
of the obtained Zinc nanoparticles were of spherical 
nature along with agglomerates, which may be due 
to the presence of biomaterials. Also, an increase in 
concentration of precursors resulted in an increase of the 
size of nanoparticles.

The antibacterial effects of the synthesized ZnO 
nanoparticles were investigated later. Four nano-ZnO 
suspensions with different concentrations were tested, in 
the range of 50.00 µg/ml, 100.00 µg/ml, 500.00 µg/ml and 
1 mg/ml. Diameters of inhibitory zone around the well were 
high when higher concentrations of zinc oxide nanoparticles 
were used. These results are in good agreement with the 
previously published studies which evaluated the efficacy 

of ZnO nanoparticles synthesized from different sources 
(Kaviyarasu et al., 2017; Wahab et al., 2010). In addition 
to this, the smaller sized Zinc nanoparticles (10-50 nm) 
showed the best antibacterial activity due to the larger 
surface area available for interaction with bacteria as 
compared to that of large agglomerates (100-300 nm). 
Few comprehensive studies [19, 29, 30] have also revealed 
the similar results (Akbar et al., 2017; Zhang et al., 2007; 
Rekha et al., 2010).

Almost all tested microorganisms were completely 
inhibited at the concentration of 1mg/ml and 500.00 µg/ml 
of nano-ZnO in the present study. The nano-ZnO solution 
at the concentration of 500.00 µg/ml showed inhibition 
zones against all test organisms but no noticeable 
antibacterial activity was found at concentrations lower 
than 500.00 µg/ml. On the other hand, for each type of 
bacteria tested, the size of zone of inhibition was different 
with the same concentrations of ZnO nanoparticles. 
Therefore, the antibacterial effect of zinc nanoparticles was 
found dose dependent and was more effective against Gram 
negative bacteria (Klebsiella pneumonia and Pseudomonas 
aeruginosa) than Gram positive (Staphylococcus aureus 
and Listeria monocytogenes) at the both concentrations 
(500.00 µg/ml-1 mg/ml). A similar study has also revealed 
that bactericidal efficiency is affected by the type of 
microorganism due to the different nature of their cell 
structure (Singh et al., 2008).

Good effect had also been showed by Listeria 
monocytogenes. It is also evident from literature that Zinc 
oxide nanoparticles have a good preventive effect upon 
the life of Listeria monocytogenes (Rezaei-Zarchi et al., 
2010). Nanoparticles possess large surface area and also 
have more contact with bacteria. The lowest concentration 
of ZnO nanoparticles that inhibited the bacterial growth 
was against Escherichia coli and Staphylococcus aureus 
with 50 µg/ml and 100 µl/ml. This is also in the published 
reports that ZnO nanoparticles also inhibited the growth 
of E. coli and S. aureus with minimum concentrations 
(Daghdari et al., 2017; Reddy et al., 2007).

5. Conclusion

Zinc oxide nanoparticles synthesized from Brassica 
oleracea L. Acephala Group (collard leaves extract) have 
significant antibacterial efficacy. This antibacterial activity 
of zinc nanoparticles against Gram negative and Gram 
positive bacteria is anticipated to provide strong resistance 
against different bacterial infections. Therefore, we expect 
that the work presented in this paper will provide a strong 
base of nanotechnology in developing new strategies 
against pathogens and will help to reduce health problems 
faced by Pakistan and other countries.
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