Infecção por *Helicobacter pylori* e câncer gástrico: freqüência de cepas patogênicas *cagA* e *vacA* em pacientes com câncer gástrico

Primeira submissão em 29/09/05 Última submissão em 21/12/05 Aceito para publicação em 11/01/06 Publicado em 20/02/06

Helicobacter pylori and gastric cancer: distribution of cagA and vacA genotypes in patients with gastric carcinoma

Cristiane Melissa Thomazini¹; Nídia Alice Pinheiro²; Maria Inês Pardini²; Luís Eduardo Naresse³; Maria Aparecida Marchesan Rodrigues⁴

unitermos

resumo

Helicobacter pylori

Câncer gástrico

cagA

vacA

Introdução: Apesar da alta freqüência de infecção por Helicobacter pylori na população, somente uma minoria de indivíduos desenvolve câncer gástrico. É provável que a colonização da mucosa por cepas patogênicas, levando a maior agressão e inflamação da mucosa seja um dos elos da cadeia de eventos da oncogênese gástrica. Objetivos: Investigar a freqüência de cepas patogênicas caqA e vacA do H. pylori em pacientes com câncer gástrico. Material e métodos: Foram estudados retrospectivamente 42 pacientes com câncer gástrico. A infecção por H. pylori foi avaliada por exame histológico e pelo PCR para identificação dos genótipos cagA e vacA em amostras de material fixado em formalina e incluído em parafina. Resultados: A análise histológica permitiu a visualização direta do H. pylori em 85,7% dos casos, e o método de PCR para o gene urease C demonstrou a presença de DNA da bactéria em 95% dos casos. O gene cagA foi detectado em amostras de 23 pacientes (54,7%) com câncer gástrico. O alelo s1 do gene vacA foi identificado em amostras de 24 pacientes (57,1%) e o alelo m1, em amostras de 26 pacientes (61,9%). Os alelos s1 e m1 foram identificados simultaneamente em 24 pacientes (57,1%). O alelo s2 foi identificado em amostras de quatro pacientes (9,5%), e o alelo m2, em amostras de três pacientes (7,1%). A frequência de infecção pelo Helicobacter pylori foi similar em ambos os tipos histológicos de câncer gástrico (intestinal e difuso). Conclusões: Os resultados confirmam a relevância dos genótipos patogênicos cagA e vacA do H. pylori para lesões orgânicas significativas tais como o câncer gástrico, sugerindo a participação dessa bactéria na cadeia de eventos da oncogênese gástrica.

<u>abstract</u>

key words

Background: The rates of Helicobacter pylori infection are very high worldwide, but only a minority of infected patients develop gastric carcinoma. This might be related, among several factors, to the colonization of the human stomach by pathogenic Helicobacter pylori strains. Objective: To investigate the distribution of cagA and vacA genotypes of Helicobacter pylori in paraffin-embedded gastric samples from patients with gastric cancer. Material and methods: Paraffin-embedded samples from 42 patients with gastric cancer were histologically examined and evaluated by PCR for H. pylori cagA and vacA (s and m regions) genotypes. Results: Histological analysis allowed direct visualization of H. pylori in 85.7% of cases and PCR for urease C gene detected H. pylori in 95% of cases. The presence of cagA gene was detected in 23 (54.7%) patients with gastric cancer. The s1 allele from vacA gene was found in samples from 24 (57.1%) patients and the m1 allele in 26 (61.9 %). The s1m1 genotype was detected in 24 (57.1%) patients with gastric cancer. The s2 allele was found in samples from four patients (9.5%) and the m2 allele in three (7.1%) patients. The distribution of H. pylori genotypes was similar in both intestinal and diffuse types of gastric carcinoma. Conclusion: Our results confirm the relevance of the pathogenic cagA and vacA H. pylori genotypes for significant organic lesions, such as gastric cancer, suggesting a possible role for H. pylori in the pathogenesis of gastric carcinoma.

Helicobacter pylori

Gastric cancer

cagA

vacA

^{1.} Mestranda do Programa de Pós-Graduação em Patologia da Faculdade de Medicina de Botucatu/Universidade Estadual Paulista (Unesp).

^{2.} Pesquisadora científica do Laboratório de Biologia Molecular do Hemocentro, Faculdade de Medicina de Botucatu/Unesp.

^{3.} Professor livre-docente do Departamento de Cirurgia e Ortopedia da Faculdade de Medicina de Botucatu/Unesp.

^{4.} Professora titular do Departamento de Patologia da Faculdade de Medicina de Botucatu/Unesp.

Apoio financeiro: Fundação para o Desenvolvimento da UNESP (Fundunesp).

Introdução

O câncer gástrico permanece entre os problemas mais sérios de saúde em vários países, incluindo o Brasil^(12, 27). O diagnóstico geralmente é feito na fase avançada de progressão da doença, o que dificulta a eficácia dos procedimentos terapêuticos e o prognóstico dos pacientes⁽⁵⁾. Torna-se, portanto, relevante a identificação de fatores que possam ser utilizados como biomarcadores de risco para essa doença.

Os fatores etiológicos envolvidos na gênese do câncer gástrico não são inteiramente conhecidos. Estudos epidemiológicos demonstram a importância de fatores ambientais, notadamente alimentares, na patogenia do câncer gástrico^(7, 11, 24). Um novo fator tem sido investigado na oncogênese gástrica: postula-se que a infecção pelo Helicobacter pylori levando à gastrite crônica, atrofia da mucosa e metaplasia intestinal tenha participação na cadeia de eventos da gênese do câncer gástrico(13, 18, 22). A Organização Mundial de Saúde classificou o H. pylori como agente carcinogênico do grupo I para a ocorrência de neoplasias gástricas(13). O H. pylori está presente em grande parcela da população mundial. No entanto, ínfimo número de pessoas desenvolve câncer gástrico. O risco é de cerca de 1% nos indivíduos infectados⁽¹¹⁾. Assim, as diferentes cepas da bactéria com padrões de virulência distintos devem atuar no hospedeiro, levando a diferentes graus de inflamação da mucosa gástrica. A virulência do H. pylori tem sido relacionada a diferentes fatores, incluindo a produção de urease, a presença de flagelos e a citotoxina vacuolizante(14, 21).

Em estudos recentes observamos que pacientes com infecção por *Helicobacter pylori* apresentaram danos no DNA das células epiteliais da mucosa gástrica, que se correlacionaram com a intensidade da resposta inflamatória na mucosa e com os genótipos patogênicos *cagA* e *vacA* do *H. pylori*^(15, 16). Esses resultados abrem a perspectiva de se investigar a possível correlação entre os diferentes genótipos da bactéria e as características clinicopatológicas do câncer gástrico.

A presente investigação visa avaliar a freqüência de infecção por *Helicobacter pylori* em amostras de mucosa gástrica, de material fixado em formalina e incluído em parafina, procedentes de pacientes com câncer gástrico e caracterizar, pela reação da polimerase em cadeia (PCR) com oligonucleotídeos específicos, os genótipos patogênicos *cagA* e *vacA* da bactéria.

Material e métodos

Casuística

Quarenta e dois casos de câncer gástrico diagnosticados e arquivados no Departamento de Patologia da Faculdade de Medicina de Botucatu, da Universidade Estadual Paulista (Unesp), no período de 1998 a 2004, foram analisados neste estudo. As informações clínicas foram pesquisadas nos prontuários dos pacientes.

Seleção das amostras e estudo histopatológico

Amostras de tumor e respectivo tecido normal foram obtidas a partir de tecidos fixados em formalina e incluídos em parafina. Cortes histológicos de 5µm corados por hematoxilina-eosina foram submetidos a exame histopatológico para caracterização de tipo histológico, contaminação com tecido normal e estadiamento das neoplasias. Os tumores foram classificados em intestinal ou difuso, de acordo com a classificação de Lauren⁽¹⁷⁾. Tumores com expressão morfológica combinada, intestinal e difusa, foram designados mistos. A gastrite foi classificada de acordo com a classificação de Sydney⁽⁹⁾. A pesquisa de Helicobacter pylori foi feita pelo exame histológico, na mucosa gástrica adjacente à neoplasia, em cortes corados pelo método de Giemsa. A caracterização dos genótipos do Helicobacter pylori foi feita por PCR. O estudo foi analisado e aprovado pelo Comitê de Ética e Pesquisa da Faculdade de Medicina de Botucatu/Unesp.

Detecção dos genótipos do H. pylori por PCR

Amostras do tumor e da mucosa adjacente à neoplasia foram obtidas de cortes histológicos do material fixado em formalina, incluído em parafina. A extração do DNA genômico dos tumores e respectivos tecidos normais de cada paciente foi feita por tratamento com proteinase K e pelo *Kit Wizard* (Promega).

A integridade e a qualidade das amostras extraídas foram verificadas por PCR com oligonucleotídeos iniciadores para o gene constitutivo *GAPDH* (gliceraldeído 3-fosfato). Foram investigadas seqüências específicas para o gene urease C, gene espécie-específico presente em todas as amostras de H. pylori, que codifica a enzima urease, bem como para o gene de virulência cagA do H. pylori. A composição de bases dos oligonucleotídeos iniciadores, o tamanho das seqüências, as referências e a temperatura de anelamento utilizadas são apresentados na **Tabela 1**.

Tabela 1	Oligonucleotídeos iniciadores, tamanho das seqüências amplificadas e temperatura de anelamento/tempo					
Genes	Oligonucleotídeos	Seqüência	Produto (pb)	TA (°C)/ tempo	Referência	
GAPDH	GAPDH F GAPDH R	5'- TGGTATCGTGCAAGGACTCATGAC -3 5'- ATGCCAGTCAGCTTCCCGTTCAGC -3"	197	59º/1´	Desenhados no laboratório	
urease C	HpgmMF HpgmMR	5'- AAGCTTTTAGGGGTGTTAGGGGTTT -3' 5'- AAGCTTACTTTCTAACACTAACGC -3'	294	55º/30"	Lage, 1995	
cagA	D008 R008	5'- ATA-ATG-CTA-AAT-TAG-ACA-ACT-TGA-GCG-A -3' 5'- TTA-GAA-TAA-TCA-ACA-AAC-ATC-ACG-CCA-T -3'	297	54º/ 45"	Covacci & Rappuoli, 1996	

5'- GGT-CAA-AAT-GCG-GTC-ATG-G -3'

5'- CCA-TTG-GTA-CCT-GTA-GAA-AC -3'

5'- ATG CTT TAA TAT CGT TGA GA -3'

5'- GAA CAT GTT TTA GTG AAA GC -3'

5'- CTG-CTT-GAA-TGC-GCC-AAA-C -3'

5'- ATG-GAA-ATA-CAA-CAA-ACA-CAC -3'

A mistura de reação de PCR para detecção do gene *GAPDH* constou de: tampão de reação 10x [200mM Tris-HCl, 500mM KCl (pH 8.4)]; 1,5mM MgCl₂; 0,4mM de cada dNTP(10mM); 1μl de Platinum *Taq* DNA Recombinante (5μl/μl) (Invitrogen Life Technologies); 5pmoles de cada oligonucleotídeo (*sense* e *antisense*); 1μl de DNA molde (concentrado) e água q.s.p. 25μl. Para a detecção dos genes *urease C* e *cagA* foram utilizados: tampão de reação 10x [200mM Tris-HCl, 500mM KCl (pH 8.4)]; 3mM MgCl₂(50mM); 0,2mM de cada dNTP(10mM), 1μl de Platinum *Taq* DNA *Platinum* (5μl/μl) (Invitrogen Life Technologies); 5pmoles de cada oligonucleotídeo (*sense* e *antisense*); 1μl de DNA molde (concentrado) e água q.s.p. 25μl. A eletroforese do DNA amplificado foi realizada em gel de poliacrilamida 6% e corada pelo nitrato de prata.

m1

m2

s1 e s2

VA3F

VA3R VA4F

VA4R

VA1F

VA1R

Para a amplificação do gene *vacA* e de seus alelos *s1/s2* e *m1/m2* foram utilizados 1μl de DNA e oligonucleotídeos específicos para cada região (Tabela 1). Na reação de PCR para os alelos *m1* e *m2* utilizou-se solução contendo: 1.5μl de AmpliTaq Gold (5μl/ml Applied Biosystems); tampão 10x para PCR [100mMTris-HCl pH 8.3, 500mM KCl, 3mM de MgCl₂ 0.01% de gelatina](Applied Biosystems); 0,4mM de oligonucleotídeos iniciadores *sense* e *antisense*; 1μl de DNA molde (concentrado); 0,4mM de dNTPs e água q.s.p. 25ml. Na reação de PCR para a região *s* do gene *vacA* utilizou-se solução contendo: 1μl de Accu Primer (Invitrogen Life Technologies); tampão 10x para PCR [100mM Tris-HCl pH 8.3, 500mM KCl, 0,4mM de dNTPs]; 3mM de MgCl₂; 0,4mM de oligonucleotídeos iniciadores *sense* e *antisense*; 1μl de

DNA molde (concentrado) e água q.s.p. 25ml. As reações foram realizadas em termociclador do tipo MJ Research, (Waretown, MA, USA). A visualização do produto de PCR foi realizada em gel de poliacrilamida 6% não-desnaturante, corado com nitrato de prata⁽²⁶⁾. Como controles positivos e negativos para *vacA* (*s1/s2* e *m1/m2*), *cagA* e *urease C*, foram utilizadas amostras previamente genotipadas como positivas ou negativas e submetidas a seqüenciamento, em seqüenciador automático ABI Prism 377 (Applied Biosystems) e comparadas às seqüências depositadas nos bancos de dados genômicos públicos.

52º/1[°]

51º/1[°]

56°/1'

Atherton JC.,

Desenhados no

laboratório

Atherton JC.,

1999

1999

290

198

259 e

286

Resultados

Os atributos demográficos e anatomopatológicos são apresentados na **Tabela 2**. A idade dos pacientes variou de 27 a 78 anos, sendo a média 62,2 anos. Vinte e quatro pacientes eram do sexo masculino (58%) e 18, do sexo feminino (42%). O exame anatomopatológico demonstrou que o tumor estava localizado no antro gástrico em 26 casos (61,9%). Tumores em localização proximal, situados no corpo ou na cárdia foram observados em 16 casos (38,1%). O tipo histológico mais freqüente foi o adenocarcinoma intestinal, identificado em 34 casos (80,9%). O tipo difuso foi observado em seis casos (14,2%). Neoplasias com fenótipo morfológico misto, constituídas por áreas de padrão intestinal e áreas de padrão difuso foram identificadas em dois casos (4,7%).

A análise histológica da mucosa gástrica adjacente às neoplasias demonstrou em todos os casos a presença de

Tabela 2

infiltrado inflamatório linfoplasmocitário com neutrófilos, cuja intensidade variou de leve a grave, no cório da mucosa. Metaplasia intestinal foi observada em 22 casos (52,3%). A pesquisa de *Helicobacter pylori* pelo método de Giemsa foi positiva em 36 casos (85,7%). A freqüência de infecção por *Helicobacter pylori* foi similar em ambos os tipos histológicos de câncer gástrico (intestinal e difuso).

Distribuição dos genótipos do H. pylori por PCR

A **Tabela 3** demonstra a distribuição dos genes *urease C, cagA* e de genótipos do *vacA* em amostras da mucosa gástrica de 42 pacientes com câncer gástrico.

O gene *urease C*, espécie-específico para o *H. pylori*, foi identificado em amostras obtidas de 40 pacientes (95%) com câncer gástrico. O gene cagA foi detectado em amostras de 23 pacientes (54,7%) com câncer gástrico. O alelo s1 do gene vacA foi identificado em amostras de 24 pacientes (57,1%), e o alelo s2 foi identificado em amostras obtidas de seis pacientes (14,2%) com câncer gástrico. Três amostras apresentaram simultaneamente os alelos s1/s2. O alelo s1/s2. O alelo s1/s2 oi encontrado em três amostras (7,1%). Duas amostras apresentaram os dois alelos s1/s2. A combinação alélica s1/s2 e s1/s2 foi identificada em 24 pacientes (57,1%) com câncer gástrico.

Discussão

No presente estudo descrevemos a análise de cepas do *H. pylori* por PCR na mucosa gástrica de 42 pacientes com câncer gástrico. A investigação foi retrospectiva, em amostras de tecido fixado em formalina e incluído em parafina. Tal abordagem foi oportuna, porque permitiu detectar a presença de DNA do *H. pylori* e estimar a possível relação de cepas patogênicas dessa bactéria com parâmetros clinicopatológicos do câncer gástrico.

A detecção do *H. pylori* foi avaliada por dois métodos: pela análise histológica, que permitiu a visualização direta da bactéria em 85,7% dos casos e pelo PCR, para o gene *urease C*, que demonstrou a presença de DNA da bactéria em 95% dos casos. O método de visualização direta ao microscópio é eficiente e de baixo custo, entretanto requer habilidade diagnóstica do analista para identificar a bactéria⁽¹⁰⁾. Já o método de PCR, apesar do custo, apresenta maior sensibilidade, como pode ser documentado por nossos resultados, visto que foi capaz de identificar o genótipo do *H. pylori* em cinco amostras que haviam sido negativas ao exame histológico.

Atributos demográficos e	
patológicos dos 42 casos de cânc	er
gástrico	

Variável	Categoria	N° casos (%)
Gênero	Masculino	24 (57,1)
	Feminino	18 (42,8)
Local	Antro	26 (61,9)
	Corpo	16 (38,1)
Tipo histológico	Intestinal	34 (80,9)
	Difuso	6 (14,2)
	Misto	2 (4,7)
Nível de invasão	Mucosa/submucosa	13 (31)
	Serosa/muscular	29 (69)
Metástases/	Ausentes	15 (35,7)
linfonodos	Presentes	27 (64,3)

Distribuição dos genes *urease*C, cag A e de alelos do vacA em
amostras da mucosa gástrica de 42
pacientes com câncer gástrico

Tabela 3

patientes tom tancer gastrico				
Genótipo	Pacientes (%)			
urease C	40 (95)			
cagA	23 (54,7)			
vacA s1	24 (57,1)			
vacA s2	4 (9,5)			
vacA m1	26 (61,9)			
vacA m2	3 (7,1)			
vacA s1 m1	24 (57,1)			

O gene *cagA*, que é marcador da ilha de patogenicidade *cagPAI*, codificadora de componentes do sistema de secreção da bactéria^(4, 19) foi identificado em 54,7% dos casos de câncer gástrico analisados no presente estudo. Esses dados estão de acordo com investigações prévias, que demonstraram que pacientes infectados por cepas de *H. pylori* que expressam o gene *cagA* têm maior probabilidade de desenvolver câncer gástrico do que aqueles infectados por cepas que não expressam *cagA*^(3, 20). No Brasil, estudo de casos controle desenvolvido em Belo Horizonte, Minas Gerais, demonstrou que o *status cagA* tem alto impacto no risco para desenvolvimento de câncer gástrico distal⁽²³⁾.

Os alelos s1 e m1 do gene vacA, que codifica a producão da citotoxina vacuolizante^(25, 28), foram detectados em 57,1% e 61,9% dos casos, respectivamente, na presente investigação. A citotoxina *vacA* é considerada importante fator de virulência, visto que contribui para a produção, pela urease, de alcalóides que podem induzir danos no DNA das células epiteliais^(14, 25, 28). Em estudo recente observamos que a colonização da mucosa gástrica por cepas *cagA/vacA s1 m1* do *H. pylori* associou-se a resposta inflamatória mais intensa e maiores níveis de danos no DNA das células epiteliais⁽¹⁶⁾. Esses dados referendam a correlação dos genótipos patogênicos *cagA e vacA* do *H. pylori* com a agressão crônica à mucosa expressa em nível morfológico por infiltrado inflamatório rico em enzimas e radicais livres capazes de lesar as células epiteliais. A reparação inadequada de lesões no DNA das células pode levar a mutações e instabilidade genômica, constituindo a etapa de iniciação do processo de carcinogênese.

Com relação à combinação dos diferentes alelos do *Helicobacter pylori*, verificamos que cepas cagA + s1m1 foram encontradas em maior número de casos de câncer gástrico. Na literatura observamos que cepas cagA + s1/m1 são mais virulentas⁽²⁾. Bactérias com o genótipo m1 estão relacionadas com maior liberação de citotoxinas⁽¹⁾. Dessa forma, a presença de cepas cagA + s1/m1 pode estar relacionada a maior agressão e inflamação na mucosa, contribuindo para a gênese do câncer gástrico.

Não encontramos diferenças quanto à distribuição dos genótipos *cagA* e *vacA* do *H. pylori* em relação ao sexo e à idade dos pacientes, bem como quanto aos tipos histológicos intestinal ou difuso do câncer gástrico. Apesar de a presente casuística ser pequena, nossos resultados estão de acordo com os relatados pelos estudos de Queiroz, que também não observaram correlação dos genótipos da bactéria com atributos demográficos e com parâmetros histopatológicos do câncer gástrico⁽²³⁾.

Em síntese, a presença de infecção por *Helicobacter pylori*, avaliada em nosso estudo pela análise histológica, permitiu a visualização direta da bactéria em 85,7% dos casos, e pelo PCR, para o gene *urease* C, demonstrou a presença de DNA da bactéria em 95% dos casos, sendo a combinação alélica mais freqüente *cagA* + *vacA s1/m1*. Esses resultados destacam a alta prevalência de infecção por *Helicobacter pylori* no estômago de pacientes com câncer gástrico atendidos na região de Botucatu, São Paulo, e confirmam a relevância do genótipo *cagA m1/s1* na patogênese do câncer gástrico.

Agradecimentos

À Fundação para o Desenvolvimento da UNESP (Fundunesp), processo 940/04, pelo auxílio à pesquisa.

Referências

- I.ASHOUR,A.A. et al. Distribution of vacA genotypes in Helicobacter pylori strains isolated from Brazilian adult patients with gastritis, duodenal ulcer or gastric carcinoma. FEMS Imunol Med Microbiol, v. 33, p.173-78, 2002.
- 2. ATHERTON, J.C. The clinical relevance of strain types of *Helicobacter pylori. Gut*, v. 40, p. 701-03, 1997.
- BLASER, M.J. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res, v. 55, p. 2111-15, 1995.
- 4. CENSINI, S. et al. Cag, a pathogenicity island of *Helicobacter pylori*, encodes type I-specific and disease-associated virulence factors. *Proc Nat Acad Sci*, v. 93, p. 14648-53, 1996.
- 5. CHEN-WUN, W.; CHIN-WEN, C.; WEN-CHANG, L. Gastric cancer: prognostic and diagnostic advance. *Exp Rev Mol Med*, v. 21, p. 110-5, 2002.
- 6. CLAYTON, C.L. et al. Sensitive detection of *Helicobacter pylori* by using polymerase chain reaction. *J Clin Microbiol*, v. 30, p. 192-200, 1992.
- 7. CORREA P. Human gastric carcinogenesis: a multistep and multifactorial process First American Cancer Society Award Lecture on cancer epidemiology and prevention. *Cancer Res*, v. 52, p. 6735-40,1992.

- 8. D'AQUINO, A. et al. Prevalência de infecção por Helicobacter pylori em pacientes com câncer gástrico. J Bras Patol, v. 39, p. 130, 2003.
- 9. DIXON, M.F. et al. Classification and grading of gastritis: the updated Sydney System International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol, v. 20, p. 1161-81, 1994.
- 10. FALLONE, C.A.; MITCHELL, A.; PATERSON, W.G. Determination of the test performance of less costly methods of *Helicobacter pylori* detection. *Clin Invest Med*, v. 18, p. 177-85, 1995.
- 11. FORMAN, D.The etiology of gastric cancer. *IARC Sci Publ*, v. 105, p. 22-32, 1991.
- 12. FUCHS, C.S.; MAYER, R.J. Gastric carcinoma. *N Engl J Med*, v. 333, p. 32-41, 1995.
- 13. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum, v. 61, p. 1-241, 1994.
- 14. LADEIRA, M.S.P. et al. Biopatologia do Helicobacter pylori. J Bras Patol, v. 39, p. 275-82, 2003.
- 15. LADEIRA, M.S.P. et al. DNA damage in patients infected by Helicobacter pylori. Cancer Epidemiol Biomarkers Prev, v. 13, p. 631-37, 2004a.
- 16. LADEIRA, M.S.P. et al. Relationships between cagA, vacA, and

- ice genotypes of *Helicobacter pylori* and DNA damage in the gastric mucosa. *Environ Mol Mutagen*, v. 44, p. 91-98, 2004b.
- 17. LAUREN, P.The two histological main types of gastric carcinoma. Diffuse and so-called intestinal type carcinoma: an attempt at histoclinical classification. *Acta Pathol Microbiol Scand*, v. 64, p. 31-49, 1965.
- 18. O'CONNOR, F.; BUCKELEY, M.; O'MORAIN, C. Helicobacter pylori: the cancer link. J R Soc Med, v. 86, p. 674-8, 1996.
- ODENBREIT, S. et al. Translocation of Helicobacter pylori cagA into gastric epithelial cells by type IV secretion. Science, v. 287, p. 1497-500, 2000.
- 20. PARSONNET, J. et al. Risk for gastric cancer in people with cagA positive and cagA negative Helicobacter pylori infection. Gut, v. 40, p. 297-301, 1997.
- 21. PEEK Jr, R.M.; BLASER, MJ. Pathophysiology of *Helicobacter pylori*-induced gastritis and peptic ulcer disease. *Am J Med*, v. 102, p. 200-5, 1997.
- 22. PEEK Jr, R.M.; BLASER, M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. *Nat Rev Cancer*, v. 2, p. 28-37, 2002.

- 23. QUEIROZ, D.M.M. et al. CagA-positive Helicobacter pylori and risk for developing gastric carcinoma in Brazil. Int J Cancer, v. 78, p. 135-39, 1998.
- 24. RODER, D.M.The epidemiology of gastric cancer. *Gastric Cancer*, v. 5, p. 5-11, 2002.
- 25. SALAMA, N. R. et al. Vacuolating cytotoxin of *Helicobacter* pylori plays a role during colonization in a mouse model of infection. *Infect Immun*, v. 69, p. 730-6, 2001.
- 26. SANGUINETTI, C.J.; DIAS NETO, E.; SIMPSON, A.J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. *Biotechniques*, v. 17, n. 5, p. 914-21,1994.
- 27. SÃO PAULO (Estado). Secretaria da Saúde. Fundação Oncocentro de São Paulo. Mortalidade por câncer no Estado de São Paulo: tendência temporal e características regionais, 1987 a 2003. *Cadernos FOSP*, v. 4, 2005.
- 28. SZABO, I et al. Formation of anion-selective channels in the cell plasma membrane by the toxin vacA of *Helicobacter pylori* is required for its biological activity. *EMBO J*, v. 18, p. 5517-27, 1999.

Maria Aparecida Marchesan Rodrigues Departamento de Patologia Faculdade de Medicina de Botucatu/Unesp Distr. Rubião Júnior s/n CEP 18618-000 – Botucatu-SP e-mail: mariar@fmb.unesp.br