Avaliação da interferência do ácido ascórbico na detecção da glicosúria

Primeira submissão em 09/03/11 Última submissão em 11/04/11 Aceito para publicação em 12/04/11 Publicado em 20/02/12

Evaluation of ascorbic acid interference in the detection of glycosuria

Jaime Murilo Fernandes Costa¹; Maria Elizabete Mendes²; Nairo Massakazu Sumita³

unitermos

resumo

Ácido ascórbico

Glicosúria

Química seca

Interferência

Introdução: O ácido ascórbico (vitamina C) é comumente ingerido como suplemento vitamínico. É uma vitamina hidrossolúvel, excretada pela urina e pode interferir nos ensaios laboratoriais, como nas reações de oxirredução para detecção da glicosúria. Objetivo: Este trabalho tem como objetivo avaliar a interferência do ácido ascórbico na detecção de glicosúria pelo método de química seca por meio do uso de tiras reagentes. Materiais e métodos: Amostras de urina foram avaliadas no analisador da marca Clinitek Atlas (Siemens Healthcare Diagnostics Inc., EUA). Foram selecionadas quatro amostras de urina com diferentes concentrações de glicose: 100 mg/dl, 250 mg/dl, 500 mg/dl e 1.000 mg/dl. Para cada concentração de glicose foram criadas cinco alíquotas, adicionando-se uma solução de ácido ascórbico 200 mg/dl, suficiente para obter uma concentração final de ácido ascórbico de 20 mg/dl no primeiro tubo, de 50 mg/dl no segundo tubo, de 270 mg/dl no terceiro tubo, de 1.000 mg/dl no quarto tubo e de 2.000 mg/dl no quinto tubo. Após essa adição, as amostras foram novamente avaliadas no analisador Clinitek Atlas. Resultados: Nas amostras com concentração de 20 mg/dl de ácido, não se evidenciou interferência. Nas concentrações iguais e acima de 50 mg/dl, a interferência do ácido ascórbico se fez presente, sendo que o fato foi caracterizado pelos resultados falso negativos para detecção da glicose urinária. Conclusão: Os resultados demonstraram a interferência do ácido ascórbico no método da química seca (tiras reagentes), subestimando o nível de glicose urinária.

abstract |

key words

Introduction: Ascorbic acid (vitamin C) is commonly used as a vitamin supplement. It is a water soluble vitamin, which is excreted through urine and may interfere in laboratory tests as well as redox reactions for urinary glucose detection. Objective: This study aims to assess ascorbic acid interference in glycosuria detection by dry chemistry method (reagent strips). Materials and methods: Urine samples were evaluated by using Clinitek Atlas chemistry analyzer (Siemens Healthcare Diagnostics Inc., USA). Four urine samples with different glucose concentrations were selected: 100 mg/dl, 250 mg/dl, 500 mg/dl and $\geq 1,000 \text{ mg/dl}$. $5 \text{ aliquots were created for each glucose concentration and a solution of ascorbic acid <math>200 \text{ mg/dl}$ was added, sufficient to obtain a final ascorbic acid concentration of 20 mg/dl in the first tube, 50 mg/dl in the second tube, 270 mg/dl in the third tube, 1,000 mg/dl the fourth tube, and 2,000 mg/dl in the fifth tube. After the addition of ascorbic acid, the samples were reassessed by using Clinitek Atlas chemistry analyzer. Results: There was no interference at concentrations of 20 mg/dl. However, there was ascorbic acid interference at concentrations higher than or equal to 50 mg/dl, which was characterized by false-negative results for urinary glucose detection. Conclusion: The results corroborated the interference of ascorbic acid in dry chemistry method (reagent strips) inasmuch as it underestimates urinary glucose levels.

Ascorbic acid

Glycosuria

Dry chemistry

Interference

^{1.} Médico-residente em Patologia Clínica na Divisão de Laboratório Central do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (DLC/HCFMUSP)

^{2.} Doutora em Patologia pela FMUSP; chefe da Seção Técnica de Bioquímica de Sanque da DLC/HCFMUSP.

^{3.} Doutor em Medicina; professor assistente da disciplina de Patologia Clínica da FMUSP; diretor do Serviço de Bioquímica Clínica da DLC/HCFMUSP.

Introdução

O ácido ascórbico (vitamina C) é uma vitamina solúvel em água e tem papel fundamental na síntese de colágeno, que é uma importante proteína na constituição de vários órgãos do corpo humano. Os seres humanos são incapazes de sintetizar essa vitamina, havendo, portanto, a necessidade de obtê-la por meio da dieta. Com frequência, devido às suas propriedades antioxidantes, a vitamina C tem sido consumida de forma abusiva por meio de suplementos vitamínicos. Efeitos deletérios desse consumo excessivo têm sido relatados na literatura^(4, 7).

No laboratório clínico, a presença de vitamina C, particularmente nas amostras de urina, representa potencial fator interferente nos resultados dos exames laboratoriais⁽³⁾.

A presença de vitamina C na urina pode resultar em uma resposta falsamente baixa ou até mesmo negativa para a pesquisa de glicosúria que utiliza tiras reagentes⁽²⁾. O princípio das tiras reagentes para dosagem da glicosúria envolve a transformação de glicose em ácido glucônico e peróxido de hidrogênio; uma segunda enzima, a peroxidase, promove a reação do peróxido com um cromógeno para a formação de um composto oxidado de cor marrom, sendo a intensidade dessa cor diretamente proporcional à quantidade de glicose na amostra. Nesse contexto, a vitamina C (por suas conhecidas propriedades antioxidantes) pode inibir a oxidação do cromógeno e, consequentemente, resultar em leituras falso negativas.

A interferência do ácido ascórbico tem sido relatada em vários trabalhos. Barbosa e Andrade⁽¹⁾ demonstraram que o consumo da vitamina interfere nas dosagens de glicemia, enquanto Martinello e Silva⁽⁵⁾ mostraram a interferência *in vitro* não só da glicose, mas também de outros analitos.

Objetivo

Este trabalho visa verificar o grau de interferência do ácido ascórbico em diferentes níveis de concentração na urina para detecção e quantificação da glicosúria.

Materiais e métodos

Foram selecionadas quatro amostras de urina cujos níveis de glicose foram previamente avaliados no analisador químico de urina Clinitek Atlas (Siemens Healthcare Diagnostics Inc., EUA) e categorizadas em concentrações

de glicosúria baixa (100 mg/dl), intermediária nível I (250 mg/dl), intermediária nível II (500 mg/dl) e elevada (≥ 1.000 mg/dl).

Para cada uma dessas amostras foram produzidas cinco alíquotas de 3 ml em tubos devidamente identificados, conforme descrito a seguir.

- GB-1, GB-2, GB-3, GB-4 e GB-5: alíquotas da amostra com glicosúria baixa;
- GNI-1, GNI-2, GNI-3, GNI4 e GNI-5: alíquotas da amostra com glicosúria intermediária nível I;
- GNII-1, GNII-2, GNII-3, GNII4 e GNII-5: alíquotas da amostra com glicosúria intermediária nível II;
- GA-1, GA-2, GA-3, GA-4 e GA-5: alíquotas da amostra com glicosúria elevada.
- Na sequência, adicionou-se uma solução comercial de ácido ascórbico, com concentração de 200 mg/dl, em cada grupamento de tubos:
- grupo 1 (GB-1, GNI-1, GNII-1 e GA-1) 5 μl da solução de ácido ascórbico;
- grupo 2 (GB-2, GNI-2, GNII-2 e GA-2) 12,5 μl da solução de ácido ascórbico;
- grupo 3 (GB-3, GNI-3, GNII-3 e GA-3) 67,5 μl da solução de ácido ascórbico;
- grupo 4 (GB-4, GNI-4, GNII-4 e GA-4) 250 μl da solução de ácido ascórbico;
- grupo 5 (GB-5, GNI-5, GNII-5 e GA-5) 500 μl da solução de ácido ascórbico.

Após a adição do ácido ascórbico, cada tubo foi completado com a amostra de urina correspondente até atingir o volume de 5 ml. Ao final, para cada grupamento de tubos, obtiveram-se concentrações crescentes de ácido ascórbico correspondentes a 20 mg/dl (GB-1, GNI-1, GNII-1 e GA-1), 50 mg/dl (GB-2, GNI-2, GNII-2 e GA-2), 270 mg/dl (GB-3, GNI-3, GNII-3 e GA-3), 1.000 mg/dl (GB-4, GNI-4, GNII-4 e GA-4) e 2.000 mg/dl (GB-5, GNI-5, GNII-5 e GA-5).

A definição por cinco diferentes concentrações de ácido ascórbico tinha como finalidade verificar o grau de interferência em níveis abaixo e acima de 50 mg/dl de ácido ascórbico; o nível de 50 mg/dl foi escolhido por ser supostamente o valor mínimo de interferência, conforme descrito por Massey⁽⁶⁾.

Após essa adição, cada alíquota foi imediatamente inserida no analisador químico de urina Clinitek Atlas para avaliação do nível de glicose.

Resultados

Os resultados das dosagens nas diferentes alíquotas, após adição de ácido ascórbico, estão descritos na **Tabela** a seguir.

Resultados de glicosúrias em amostras com 100, 250, 500 e ≥ 1.000 mg/dl de Tabela glicose, após adição de concentrações crescentes de ácido ascórbico

glicose, apos adição de concentrações crescentes de acido ascorbico			
	Concentração de ácido ascórbico (mg/dl)	Glicosúria antes da adição do ácido ascórbico (mg/dl)	Glicosúria após a adição do ácido ascórbico (mg/dl)
Grupo 1			
GB-1	20	100	100
GNI-1	20	250	250
GNII-1	20	500	500
GA-1	20	≥ 1.000	≥ 1.000
Grupo 2			
GB-2	50	100	Negativo
GNI-2	50	250	100
GNII-2	50	500	250
GA-2	50	≥ 1.000	250
Grupo 3			
GB-3	270	100	Negativo
GNI-3	270	250	Negativo
GNII-3	270	500	Negativo
GA-3	270	≥ 1.000	Negativo
Grupo 4			
GB-4	1.000	100	Negativo
GNI-4	1.000	250	Negativo
GNII-4	1.000	500	Negativo
GA-4	1.000	≥ 1.000	Negativo
Grupo 5			
GB-5	2.000	100	Negativo
GNI-5	2.000	250	Negativo
GNII-5	2.000	500	Negativo
GA-5	2.000	≥ 1.000	Negativo

Discussão

As amostras às quais se acrescentou ácido ascórbico na concentração de 20 mg/dl não evidenciaram qualquer grau de interferência nos resultados da glicose. Quando a adição foi feita na concentração de 50 mg/dl, os resultados observados já sugeriam algum grau de interferência na medida da glicosúria. Nessa situação, foi observado um resultado falso negativo na amostra GB-2.

A adição de ácido ascórbico na urina, em uma concentração final igual ou superior a 270 mg/dl, já produziu resultados falso negativos em todos os níveis de glicosúria. Massey refere que níveis acima de 50 mg/dl de ácido

ascórbico já produziriam interferência na análise da glicose, dados concordantes com nossos achados⁽⁶⁾.

Em relação à frequência da positividade de ácido ascórbico em amostras de urina, o estudo de Brigden *et al.* com 4.379 amostras evidenciou que cerca de 23% delas eram positivas para ácido ascórbico, encontrando um valor de concentração média de 37 mg/dl na casuística avaliada⁽³⁾. O mesmo estudo mostrou que a ingestão oral de uma dose contendo 250 mg de vitamina C gera uma concentração média urinária de 31 mg/dl de ácido ascórbico; já uma dose oral de 500 mg eleva a concentração média para 62 mg/dl⁽³⁾.

Martinello e Silva⁽⁵⁾ sugerem que o consumo deveria ser suspenso entre 48 e 72 horas antes de os testes serem feitos.

A suspensão prévia nesse intervalo de tempo seria suficiente para a excreção da vitamina C pela urina, evitando, assim, a eventual interferência na dosagem da glicose pelo método da química seca.

Conclusão

A presença de ácido ascórbico na urina representa um

potencial interferente na avaliação da glicosúria. Nosso estudo demonstrou que níveis iguais ou superiores a 50 mg/dl de ácido ascórbico já podem produzir resultados falso negativos.

Um questionamento acerca do uso dessa substância se faz necessário para que resultados discordantes possam ser adequadamente avaliados pelo laboratório clínico.

Referências

- 1. BARBOSA A. C.; ANDRADE T. C. Interferência do ácido ascórbico na dosagem glicêmica. *Universitas: Ciências da Saúde*, Brasília, v. 6, n. 2, p. 121-30, jul./dez. 2008.
- 2. BERG, B. Ascorbate interference in the estimation of urinary glucose. *J Clin Chem Clin Biochem*, v. 24, p. 89-96, 1986.
- 3. BRIGDEN, M. L. *et al.* High incidence of significant urinary ascorbic acid concentrations in a west coast population Implications for routine urinalysis. *Clin Chem*, v. 38, n. 3, p. 426-31, 1992.
- HEANEY, M. L. et al. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res, v. 68, n. 19, 2008.
- 5. MARTINELLO, F.; SILVA, E. L. Interferência do ácido ascórbico nas determinações de parâmetros bioquímicos séricos: estudos *in vivo* e *in vitro*. *J Bras Patol Med Lab*, v. 39, n. 4, p. 323-34, 2003.
- MASSEY, L. D. Seven rules for error-free urinalysis. Disponível em: http://laboratorian.advanceweb.com/ Article/Seven-Rules-For-Error-Free-Urinalysis.aspx>. Acesso em: 8 mar. 2011.
- MOORE, T.; WANG, Y. Hypervitaminosis A. *Biochem J*, v. 39, p. 222-8, 1945.