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abstract 

Following a worldwide trend, infections caused by MDR OXA-type (Ambler class D) carbapenemase-producing Acinetobacter baumannii 
are currently regarded as a clinical and epidemiological emergency in Brazil. OXA-producing A. baumannii strains have been identified 
in the states of Alagoas, Amazonas, Bahia, Distrito Federal, Espírito Santo, Goiás, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Paraná, 
Pernambuco, Rio de Janeiro, Rio Grande do Norte, Rio Grande do Sul, Santa Catarina and São Paulo. In some settings, the presence of 
OXA-23- and/or OXA-143 -producing A. baumannii (so far restricted to Brazil) has been endemic and A. baumannii strains carrying 
blaOXA-23 genes have been detected in hospital wastewater effluents, hence a potential risk to the community and the environment. Although 
molecular typing by multilocus sequence typing (MLST - Bartual scheme, University of Oxford, http://pubmlst.org/abaumannii/) has 
revealed the international spread of a clonal complex (CC) denominated CC92, in Brazil most OXA-23-producing A. baumannii belong to 
CC113, CC109 or CC104 clonal complexes. Finally, from a clinical point of view, the main problem of A. baumannii infections is the limited 
use of antibacterial agents with in vitro activity, often restricted to  ampicillin/sulbactam, polymyxin B and/or colistin (polymyxin E).. 
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Introduction

Acinetobacter baumannii is a non-fermentative Gram-
negative bacillus widely recognized as an opportunistic 
nosocomial pathogen. It has assumed high clinical importance 
in the last two decades due to its frequent association with 
healthcare infections (healthcare- associated infections -HAI 
), most of which with unfavorable prognosis and expression 
of comprehensive antimicrobial resistance mechanisms to 
antibiotics (ATBs)(11, 25, 101, 116, 118, 121).

In Latin America, A. baumannii has accounted for 6.6% of 
the cases of HAI(36). The main sites reported by multicenter studies 

are lower respiratory tract (17.7%), bloodstream ( 7.2% ) , skin 
and soft tissues - including burns and surgical sites - ( 9.9% ) and 
urinary tract ( 1.6 %)(36, 117). 

The risk factors comprise invasive procedures such as 
mechanical ventilation, central venous catheter or urinary 
catheter as well as the prior use of broad-spectrum ATBs(14, 29, 42, 76, 

85, 101, 117, 118).

In many cases, recurrent outbreaks of nosocomial infection 
are favored by the intrinsic factors of the species such as the 
following: i ) tolerance to desiccation ; ii ) viability and growth in 
a wide temperature and pH range; iii ) the multidrug resistance, 
which contributes to the spread of these isolates among patients 
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at hospital environment(8, 25, 53, 85). Furthermore, the epidemiology 
of the infection by A. baumannii is often complex and the 
coexistence of epidemic and endemic infections in a given unit 
promotes the widespread use of broad-spectrum antibiotics for 
prolonged periods, hence promoting selective pressure on hospital 
microbiota and selecting resistant bacterial strains(10, 29, 82, 86, 90, 98, 118).

One of the most striking features of Acinetobacter species is its 
extraordinary ability to develop multiple resistance mechanisms 
against major classes of commercially available antibiotics. In fact, 
A. baumannii can easily express resistance to the broad spectrum 
beta-lactam (third generation cephalosporins, carboxypenicillins 
and carbapenems) and to aminoglycosides by the production 
of a variety of hydrolytic enzymes, namely beta-lactamases and 
transferases, which inactivate this class of antibacterial agents. 
Additionally, most strains can express high levels of resistance to 
fluoroquinolones(29, 118) ( Figure 1).

In general, the expression of multiple resistance mechanisms 
provides phenotypes categorized as multidrug -resistant (MDR- 
resistance to ≥ 1 antibacterial agent in ≥ 3 categories), extensively drug 
resistant (XDR- resistance to ≥ 1 antibacterial agent in all except to ≤ 
2 categories) and pan -resistant (resistant to all tested antibiotics)(75). 
Among the ATB categories used in this definition, the following ones 
are recommended for A. baumannii: aminoglycosides (gentamicin, 

tobramycin , amikacin and netilmicin), carbapenems (imipenem, 
meropenem and doripenem), fluoroquinolones ( ciprofloxacin and 
levofloxacin), antipseudomonal penicillin / beta-lactamase inhibitor 
(piperacillin/tazobactam and ticarcillin/clavulanate), extended-
spectrum cephalosporins (cefotaxime, ceftriaxone, ceftazidime 
and cefepime), inhibitors of folic acid synthesis (trimethoprim-
sulfamethoxazole), penicillin / beta-lactamase inhibitor (ampicillin/
sulbactam), polymyxins (polymyxin B and colistin) and tetracyclines 
(tetracycline, doxycycline and minocycline)(75).

The widespread use of ATBs has contributed to the emergence 
of multi-resistant bacteria which are associated with nosocomial 
infections and high morbidity and mortality rates(82, 98). This problem 
is exacerbated by the failure to develop new antibiotics(7, 148).

The multiple resistance mechanisms in A. baumannii may have 
an intrinsic and/or acquired origin, including the following: i) loss 
of membrane permeability; ii) ATB efflux; iii ) change in the target 
binding site; iv ) production of enzymes (beta-lactamases, methylases 
and transferases); vi) alternative metabolic routes(39, 86, 101).

Currently, in Brazil, the main problem in the treatment of 
infections caused by MR bacteria, including A. baumannii, is 
the expression of beta-lactamases that hydrolyze carbapenems 
(imipenem , meropenem, ertapenem and doripenem) and third 

Figure –  Antibiogram (Kirby-Bauer ) of MR Acinetobacter baumannii strain

A) OXA -23 – producing Acinetobacter baumannii , sensitive only to TOB, ASB and FOS; B ) OXA -143 – producing Acinetobacter baumannii sensitive only to GEN, AMI and 
TOB.

The tested antibiotics correspond to TIG - 15 µg; MER - 10 µg; IPM - 10 µg; PPT -10 µg; AMI - 30 µg; SUT - 25 µg; ASB - 20 µg; CPM - 30 µg; GEN - 10 µg; FOS - 200 µg; 
TOB - 10 µg; CAZ : 30 µg; CT - 10 µg; CIP - 5 µg, CTX - 30 µg; LVX - 5 µg.

MR: multi-resistant; OXA: oxacillinase; TIG: tigecycline; MER: meropenem; IPM: imipenem; PPT: piperacillin / tazobactam; AMI: amikacin; SUT: sulfamethoxazole;  
ASB: ampicillin/sulbactam; WITH: cefepime; GEN: gentamicin; FOS: fosfomycin; TOB: tobramycin; CAZ: ceftazidime, CT: colistin, CIP: ciprofloxacin; CTX: cefotaxime;  
LVX: levofloxacin.
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Table – Antimicrobial resistance indexes in A. baumannii isolates reported by SENTRY, MYSTIC and SCOPE

% resistance/ year of study /total number of isolates

Antimicrobial

Brazil Latin America Global

SENTRY  
1997-1999(134) 

 n = 252

SENTRY 
2001(135)

  n = 90

SENTRY 
2008-2010(36)

  n = 355

MYSTIC 
2009(59)

  n = 137

SCOPE  
2007-2010(83) 

  n = 282

SENTRY 
1997-2001(149)

 n = 826

SENTRY 
2008-2010(36)

 n = 845

MYSTIC 
1998-2004(150)

 n = 452

MYSTIC 
2002-2004(150)

n n = 2.253

SENTRY 
2008-2010(36)

 n = 4.686

Imipenem 11.9% 2.2% 73.0% 2.9% 55.9% 13.1% 67.8% 28.1% 25.3% 40.3%

ceftazidime 73.4% 71.1% 87.0% 59.1% 70.0% 71.5% 81.7% 72.1% 61.9% 57.6%

Gentamicin 50.4% 61.1% 52.4% 27.7% 51.8% 67.1% 53.3% 52.0% 48.1% NR

Ciprofloxacin 64.7% 66.7% 86.5% 65.7% 73.4% 69.5% 87.2% 64.6% 59.5% 66.9%

Amikacin 68.3% 64.4% 59.1% 57.7% NR 66.0% 62.6% NR NR 51.4%

SENTRY: Antimicrobial Surveillance Program; MYSTIC: Meropenem Yearly Susceptibility Test Information Collection; SCOPE: Surveillance and Control of Pathogens of Epidemiological 
Importance;  
NR: no  resistance 

generation (ceftazidime) and fourth generation (cefepime) 
cephalosporins, which are considered the latest therapeutic 
choices(59, 95, 134).

Carbapenems have been regarded as drugs of choice for the 
treatment of infection by MR A. baumannii. In this regard , 
the Antimicrobial Surveillance Program (SENTRY), Meropenem 
Yearly Susceptibility Test Information Collection (MYSTIC) 
and Surveillance and Control of Pathogens of Epidemiological 
Importance (SCOPE) have reported that carbapenem resistance 
in A. baumannii has increased considerably in Latin America, 
mainly in Brazil, Argentina and Chile (Table) .

Acinetobacter baumannii and production of 
oxacilinase type carbapenemase: clinical and 
environmental significance

Oxacillinase type carbapenemases (OXA) belonging to Class 
D (Ambler classification) have been reported in Acinetobacter 
species worldwide, particularly in hospital environment. In Brazil, 
OXA-producing strains have been associated with outbreaks of 
nosocomial infection(4, 22, 24, 86). 

Class D differs from other classes of enzymes due to the fact 
that it contains serine in the active site. Initially, the main species 
belonging to the Pseudomonadaceae family, particularly the 
Pseudomonas aeruginosa species, showed resistance to some 
types of non-carbapenem beta-lactams, mediated by the action 
of these enzymes. However, the first OXA-type carbapenemase was 
characterized from a clinical strain of MR A. baumannii isolated 
from a patient in Edinburgh, Scotland, in 1985(126, 138).

In A. baumannii , oxacilinases (class D) are subdivided into 
6 groups: OXA-23 -like (OXA-23, OXA-27 and OXA-49), OXA-24/40-

like (OXA- 24, OXA-25, OXA-26, OXA-40, OXA-72 and OXA-160), 
OXA-58-like (OXA-96 and OXA-97), OXA-51-like(28, 147) and OXA 
-182, which is restricted to South Korea(61). A new variant has been 
recently identified in Brazil (OXA-143), which is restricted to the 
country with rapid spread in major urban centers(6, 51, 52, 88, 97, 156). 

Unfortunately, OXA-23-producing A. baumannii isolates 
have been detected in hospital sewage in large cities such as Porto 
Alegre(27) and in urban rivers from the state of São Paulo(109), 
which entails the possibility of spread of hospital strains to the 
environment, hence a serious public health problem.

Acinetobacter baumannii and production of OXA-
23-type carbapenemase 

 

The first description of OXA-23 – producing A. baumannii 
was reported in Scotland in 1985(138). Since the last decade this 
enzyme has been detected in several countries such as Tunisia(78), 
the United Arab Emirates(99), Bulgaria(143), Afghanistan and Iraq(16), 
Turkey(48),Thailand(104), South Korea(54, 151), Italy(3),France(37), 
China(31, 55), Portugal(77), Poland(106), Greece(69) and Brazil(4, 5, 18, 19, 

24, 84, 85, 97).

In Brazil, the emergence and spread of OXA-23 seemingly 
began in Curitiba, state of Paraná, in 2003. After 2003, this enzyme 
has been found in other states such as São Paulo(4, 5, 97), Rio de 
Janeiro(18, 19), Rio Grande do Sul(84-86), Espírito Santo, Alagoas, 
Amazonas, Bahia, Distrito Federal, Goiás, Minas Gerais, Rio 
Grande do Norte, Santa Catarina, Mato Grosso do Sul(19) and Mato 
Grosso (research in progress) (Figure 2).

In Brazil, the high rate of resistance to imipenem in 
A. baumannii was initially attributed to the production of  
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metallo-beta-lactamase (imipenemase type - IMP -1)(33, 131). 
However, following a global trend , the production of OXA -23 
began to be reported in several medical centers, contributing to 
the endemicity of multiple clones(85, 139), which are commonly 
associated with outbreaks of nosocomial infection(4, 18, 24, 84, 85, 96, 139). 

The hydrolysis of carbapenems by OXA-23 enzyme contributes 
greatly to the emergence of resistant strains(63). The contamination 
is associated with risk factors such as previous antibiotic treatment, 
ICU admission, immunosuppression and severe underlying 
diseases(14, 15, 29, 42, 76, 117, 118).

The treatment of infection by carbapenem resistant A. 
baumannii is hampered by the lack of therapeutic options. An 
additional feature of OXA-23 positive strains has been the resistance 
expression to other classes of antibiotics such as aminoglycosides 
and fluoroquinolones(153) (Figure 1).

ATB agents exhibiting activity against OXA-23 producing 
A. baumannii are restricted to the use of polymyxin and 
ampicillin/sulbactam(67, 107, 161). Nevertheless, strains resistant to 
both antibiotics have already been identified(129), corroborating the 
emergence of MDR phenotypes and/or XDR(75).

Acinetobacter baumannii and production of  
OXA-58 carbapenemase 

The production of OXA-58 carbapenemase has been reported 
sporadically in comparison with OXA-23 and OXA-24. Moreover, its 
hydrolytic spectrum is wider(23, 49, 50).

The first case of OXA-58- producing A. baumannii occurred 
in France in 2003, where it spread rapidly(50, 80, 122). Subsequently, 

OXA -58 positive strains were described in Australia(116), United 
Kingdom(23), Argentina(91), Greece(69, 113, 124), China(73, 160), Italy(3, 12, 20), 
Turkey(48, 64), Brazil(5, 28, 86).

OXA-58 enzyme confers resistance to carbapenems, 
cephalosporins and monobactams of third and fourth 
generations. OXA-58 producing isolates have shown a MR profile 
for aminoglycosides, fluoroquinolones and sulfonamides as well 
as intermediate resistance to tigecycline. Moreover, they are only 
sensitive to rifampicin, tetracycline, colistin, polymyxin B and , in 
some cases, ampicillin/sulbactam(12, 20, 49, 122).

The first cases of infection by OXA-58- producing A. 
baumannii have been recently identified in the states of São 
Paulo and Rio de Janeiro, Brazil(5, 28, 87).

Acinetobacter baumannii and production of  
OXA-72 carbapenemase 

OXA-72 enzyme belongs to OXA-24/40-like family together 
with OXA-24, OXA-25, OXA-26 and OXA-40(73, 116).

The first report of OXA-72 occurred in Thailand in 2004 
(GenBank Accession no. AY739646 ). In 2004, it was subsequently 
identified in Taiwan(72, 73) and other Asian countries such as 
China(153) and Korea South(65). In Europe, OXA-72 isolates have 
been found in France(8), Spain(17) and Croatia(30). In Brazil, this type 
of isolate has been recently reported in sporadic cases in the states 
of São Paulo and Rio de Janeiro(5, 86, 155) and more recently in Recife 
(personal communication , Professor Marcia Maria Camargo 
de Morais, Instituto de Ciências Biológicas, Universidade de 
Pernambuco) .

This OXA confers resistance to third and fourth generation 
cephalosporins as well as carbapenems. Nonetheless, OXA-
72 isolates have shown a MR profile to fluoroquinolones and 
aminoglycosides. In most cases, they are only sensitive to 
polymyxin B and colistin(17, 73, 155).

Acinetobacter baumannii and production of OXA-
143 and 231: new genetic event emerging in Brazil

A new OXA denominated OXA-143 was announced by Higgins 
et al. in 2009. The bla

OXA-143 
gene was identified in a clinical isolate 

of MR A. baumannii recovered in Brazil and collected in an 
unspecified hospital during a multicenter study(51). The bla

OXA-143 

gene relates to other OXA enzymes from the group OXA-24/40-like 
and OXA-182, accounting for over 80% similarity(61, 117, 123).

This new genetic event so far has referred exclusively to 
A. baumannii in Brazil. As there are no studies assessing the 

Figure 2 – Current overview of the spread of OXA -type carbapenemase producing  
A. baumannii isolates in Brazilian states (4-6, 18, 19, 24, 28, 40, 41, 52, 84-87, 96, 97, 139, 155, 156)

States filled in gray indicate the occurrence of OXA- producing strains.

OXA: oxacillinase.

Oxacillinase (OXA)-producing Acinetobacter baumannii in Brazil: clinical and environmental impact and therapeutic options
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impact of this new genetic resistance determinant, our group has 
conducted a multicenter study in public hospitals from the state 
of São Paulo and Minas Gerais, describing a high prevalence of 
OXA -143 producing A. baumannii isolates, which could reflect 
a new phenomenon with endemic features (6, 87, 88). These data 
were corroborated in another study by Mostachio et al.(97). During 
the year 2011, a case of OXA-143 producing A. baumannii 
appeared in the state of Rio de Janeiro and a new allelic variant 
of the bla

OXA-143
 gene was found in the state of Paraná(40, 41, 156). In 

the 51st Interscience Conference on Antimicrobial Agents and 
Chemotherapy ( ICAAC ), held in Chicago, USA , in September 
2011, Cayo et al. claimed that the presence of OXA-143 producing 
A. baumannii in Brazil dates from 1995(21). Recently, OXA-143 
producing A. baumannii strains have been isolated in Juiz de 
Fora, Minas Gerais(108).

Identification of bla
OXA

 genotypes and molecular 
epidemiology

Unlike other carbapenemases identified in Gram-negative 
bacteria, which can be screened by phenotypic methods using 
enzyme inhibitors such as ethylenediaminetetraacetic acid ( 
EDTA), phenyl boronic acid and thiol derivatives , the detection 
of OXA-type carbapenemase in A. baumannii samples is made 
by molecular biology. Initially, Woodford et al. developed a 
polymerase chain reaction (PCR ) multiplex for the identification 
of genes encoding the major OXAs (bla

OXA-51
-, bla

OXA-23
-, bla

OXA-40
- 

ebla
OXA-58

-like)(158). Subsequently, Higgins et al. published a 
paper in which the inclusion of primers for the identification 
of new variant bla

OXA-143
 was standardized in the multiplex PCR 

reaction(52). More recently, Mostachio et al. published a multiplex 
PCR method for the screening of genotypes associated with 
the production of OXA type carbapenemase and metallo-beta-
lactamases in A. baumannii(96).

To facilitate the epidemiological study of OXA-producing A. 
baumannii, there is a consensus for the identification of endemic 
clones spread internationally, which is given by the MLST typing. 
There are two MLST schemes available for A. baumannii, which 
contain information about primers, PCR conditions, sequencing 
and a sequence database (SD) for comparative analysis and 
identification of SDs and CCs. One of the schemes was described 
by Bartual(9), whose software was developed by Keith Jolley and 
is hosted at the University of Oxford, UK (http://pubmlst.org/
abaumannii/) . This scheme includes alleles gltA, gyrB, gdhB, 
recA, cpn60, gpi e rpoD(56). A second scheme has a database hosted 
at the Pasteur Institute (www.pasteur.fr / mlst) and includes alleles 
cpn60, fusA, gltA, pyrG, recA, rplB e rpoB(45).

Using the software eburst (http://eburst.mlst.net/), the 
current database comprises 38 different STs of A. baumannii 
isolates in Brazil, which reflects the genetic diversity of strains 
with bla

OXA
 genes(45).

The worldwide spread of bla
OXA

-
23

 gene has been linked with 
specific clones, mainly clonal complex CC92, currently the largest 
clonal complex at the University of Oxford multilocus sequence 
typing scheme (MLST-UO) (http://pubmlst.org/abaumannii/), 
which to date comprises 207 strains and 46 different STs.  
OXA-23 producing strains belonging to CC92 have been identified 
in different countries, including Australia, USA, China, Italy, 
France, Tahiti, Vietnam, South Korea, Thailand and South 
Africa(1, 3, 31, 66, 100, 103, 133). Additionally, bla

OXA-58
 A. baumannii  

strains belonging to CC92 -58 have been found in Italy(3).

Interestingly, in Latin America, MLST allelic profiles for 
OXA-producing A. baumannii has been linked to CC92(45, 86, 

142). Conversely, most OXA-23 producing strains belong to CC113 
from MLST-UO(45, 86, 127, 142). Less frequently, in Brazil, strains of  
OXA-23 positive A. baumannii have been identified as belonging 
to another international clonal complex denominated CC109(85). 
Finally , another CC identified in Argentina and Brazil is CC104 
(MLST-UO)(86, 127), which has been sparse in European countries 
such as Norway, Portugal, Czech Republic, Netherlands, Turkey, 
Spain and Greece(58, 86, 127).

Therapeutic options for the treatment of 
infections caused by Acinetobacter baumannii 
ampicillin – sulbactam

This compound is a combination of a beta-lactam and a 
beta-lactamase inhibitor (Figure 3). Betalactamase inhibitors 
are beta-lactam analogues with limited antibacterial activity and 
act competitively inhibiting the activity of the beta-lactamase 
enzyme(68). Generally, these inhibitors are used in association with 
beta-lactams, promoting the restoration of their activity(44). The 
ampicillin sulbactam is associated with ampicillin in a fixed ratio 
1:2, optimizing its activity spectrum.

Currently, some studies have demonstrated synergistic activity 
of ampicillin - sulbactam with tigecycline(119), amikacin(81, 89, 137), 
tobramycin(146) and imipenem(114, 140) for treating MDR A. 
baumannii.

Imipenem

Imipenem is an ATB that belongs to the class of beta-lactams, 
more specifically the carbapenem subclass (Figure 3). This 
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drug inhibits cell wall synthesis by binding beta-lactam with 
penicillin-binding proteins( PBPs ), which catalyze the synthesis 
of peptidoglycan present in the bacterial cell wall by means of a 
transglycosylation and transpeptidation reaction(74, 136).

Carbapenems, conversely, are more efficient and stable to 
degradation by a broad spectrum of beta-lactamases, exhibiting 
high antimicrobial activity against almost all Gram-negative 
bacteria, including MR fermenters(44).

Studies on the synergistic effect against MR A. baumannii 
have been conducted with the use of imipenem in combination 
with lipopeptides, glycylcyclines , aminoglycosides, aztreonam, 
rifampicin, and even beta-lactams such as ampicillin - 
sulbactam(62, 81, 89, 114, 119, 125, 132, 140, 141, 152, 154).

Polymyxin B

Polymyxin B (PB) is an ATB ​​belonging to the class of 
lipopeptides (Figure 3), which act primarily on the cell wall 

of Gram-negative bacteria, leading to a rapid change in the 
permeability of the cytoplasmic membrane, which may ultimate 
cause cell death(32). This drug has demonstrated significant in 
vitro antimicrobial activity against Gram-negative bacteria such 
as Escherichia coli, Klebsiella pneumoniae, Enterobacter 
spp., Acinetobacter spp. and Pseudomonas aeruginosa(34, 

35, 92). Currently, it is an important ATB ​​ option against MR 
microorganisms(34, 35, 159), including OXA producing A. baumannii.

In recent years, a few studies have confirmed that polymyxin 
B has a synergistic potential when used in combination with 
carbapenems(89, 112, 152, 154) and vancomycin(89) as well as partially 
synergistic potential with rifampicin(89, 154).

 
Vancomycin

Vancomycin belongs to the glycopeptide class (Figure 3), 
whose action mechanism is the inhibition of peptidoglycan 
synthesis in the bacteria cell wall in the late phase, preventing 
the incorporation of peptidoglycans into the growing cell wall 
by binding the end portion of D-Alanyl-D-Alanine with the 
pentapeptide side chain(57, 130).

This drug is widely applied in the treatment of infections 
caused by methicillin resistant Staphylococcus aureus (MRSA) 
and serious infections by Gram-positive microorganisms in 
patients who are hypersensitive to penicillin(44, 57, 93, 120).

Gordon and Wareham tested a combination of antimicrobials 
that are not conventionally applied in the treatment of infections 
by Acinetobacter baumannii, a glycopeptide (vancomycin), 
which is used for the treatment of Gram-positive, and one 
lipopeptide (colistin), used to treat Gram – negative infections. 
Therefore, this combination showed synergism when tested in 
MR A. baumannii strains(42, 89), which is clinically remarkable 
insofar as many nosocomial patients suffer from polymicrobial 
infections by Gram-positive bacteria such as Enterococcus spp. 
and coagulase-negative staphylococcus (157 ) as well as Gram-
negative bacteria such as A. baumannii, Klebsiella pneumoniae 
and Escherichia coli(47, 101).

 
Tigecycline

Tigecycline is a broad-spectrum antimicrobial drug from 
the Glycylcycline class, semisynthetic derivative of minocycline 
(Figure 3), representing the first ATB from this class available for 
clinical use(105, 111). It inhibits the bacterial protein synthesis by 
binding to the 30s subunit of the ribosome(26). Due to its broad 
spectrum, it has good performance for both Gram - positive and 
gram- negative (S. aureus, Enterococcus spp., S. pneumoniae, 

Figure 3 – Chemical structures of the major antimicrobial compounds  applied  in the 
clinical treatment of Acinetobacter baumannii

Oxacillinase (OXA)-producing Acinetobacter baumannii in Brazil: clinical and environmental impact and therapeutic options
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Haemophilus influenzae, Moraxella catarrhalis, Neisseria 
gonorrhoeae, Peptostreptococcus and Clostridium spp.), 
including enterobacteria and Bacteroides spp.(105, 111). Some 
studies have assessed the use of tigecycline in vitro against MR A. 
baumannii, thus revealing a bacteriostatic activity(79, 110).

Other studies have described a synergistic effect on the clinical 
use against A. baumannii, which is due to the combination of 
tigecycline with other ATBs such as carbapenems, aminoglycosides, 
minocycline, lipopeptides, quinolones and beta-lactamase 
inhibitors(71, 94, 119, 125, 140, 141, 145).

Rifampicin

Rifampicin is an ATB belonging to the ansamycin class that 
was introduced in clinical practice in the 1970s(2) (Figure 3). 
The action mechanism of this drug consists in the inhibition of 
ribonucleic acid (RNA) synthesis by attacking the β subunit of 
RNA polymerase. This drug has a broad spectrum and is applied in 
the treatment for tuberculosis, which is caused by M. tuberculosis 
microorganism(2, 74, 128).

Some studies indicate a synergistic effect against A. 
baumannii by associating colistin and rifampicin(132) as well as 
a partially synergistic effect by combining PB(89, 154), tigecycline(26, 

119, 123) or colistin(70). 

Minocycline

Minocycline belongs to the tetracycline class (Figure 3), broad-
spectrum bacteriostatic ATBS, including anaerobic, Gram- positive 
and Gram -negative bacteria as well as other microorganisms such 
as Rickettsia, Chlamydia, Plasmodium spp. and Mycoplasma 
pneumoniae(39, 102). 

The action mechanism of this drug is associated with the 
inhibition of protein synthesis by binding to the 30S subunit of 
the bacterial ribosome preventing aminoacyl -tRNA binding(13, 39). 

The drug minocycline has not been closely related to the study 
of the synergistic effect on the treatment of A. baumannii. Tan 
et al. demonstrated that the association of deminocycline and 
colistin offers synergistic potential(144) as well as minocycline/
meropenem(70) and minocycline/ cefoperazone -sulbactam(115).

Assessment of synergistic effect in Brazil

Few studies have evaluated the synergistic potential of 
antibiotic combinations against endemic A. baumannii 
strains in Brazil. A study carried out by Kiffer et al. and another 
investigation by Guelfi et al. indicated that approximately 50% 
of the isolates tested in vitro responded partially to the synergistic 
effect obtained by the combined use of meropenem/polymyxin B 
and meropenem/sulbactam. It is particularly worth noting that 
these investigations did not identify carbapenemase producing 
strains(47, 61).

A study developed by Medeiros et al . successfully assessed the 
synergistic effect of in vitro associations of polymyxin B/imipenem, 
amikacin/ampicillin-sulbactam, polymyxin B/vancomycin, 
polymyxin B/rifampicine against OXA-23, OXA-58, OXA-72 , OXA-
143 producing strains. Furthermore, the combination polymyxin 
B/imipenem confirmed both in vitro and in vivo results(89).

 

Conclusion

The spread of MR OXA producing Acinetobacter baumannii 
in Brazil is a serious public health problem. The emergence of 
these strains is associated with high rates of resistance to ATBs 
commonly used in clinical practice, which increasingly hinders 
the choice of drugs with in vitro activity employed in the treatment 
of HAIs. The identification of OXA phenotype and genotype is of 
utmost importance for a suitable patient management, preventing 
the introduction and spread of outbreaks and establishing a 
differential therapeutic approach that preferably includes the 
combined use of antibacterial agents.

 

Acknowledgments

This study was funded by the Research Foundation of the State 
of São Paulo ( [Fundação de Amparo à Pesquisa do Estado de 
São Paulo- FAPESP] 2011-04025-2) and the National Research 
Council (Conselho Nacional de Pesquisa-CNPq ). We also thank 
CEFAR Diagnóstica for providing antimicrobial discs. 

resumo 
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