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In this review, the use of the most common selection marker genes on plant transformation and the effects of their respec-
tive selective agents are discussed. These genes could be divided in two categories according their mode of action: genes
for positive and negative selection. The retention of the marker gene flow through chloroplast transformation is also
discussed. Further, strategies to recover marker-free transgenic plants, involving multi-auto-transformation (MAT), co-
transformation, site-specific recombination and intragenomic relocation of transgenes through transposable elements are

reviewed.
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Estratégias de sele¢io positiva, negativa e livre de marcadores para obtencio de plantas transgénicas: Nesta revisao,
os genes marcadores de selecdo mais comumente utilizados em transformacgao de plantas serdo discutidos, bem como os
efeitos de seus respectivos agentes seletivos. Estes genes podem ser divididos em categorias de acordo com o modo de
agdo: genes para selecdo positiva e negativa. A contengdo do fluxo génico através da transformacgao de cloroplastos também
¢ discutida. Além disso, as estratégias utilizadas para obten¢@o de plantas sem marcadores sdo abordadas, envolvendo
multi-auto-transformacdo (MAT), co-transformagao, recombinagao sitio-especifica e realocagdo intragenomica de transgenes
por transposons.

Palavras-chave: Genes marcadores, resisténcia a antibidtico, resisténcia a herbicida, planta transgénica, selecdo,
transformagdo de plantas.

INTRODUCTION

The use of a marker gene in a transformation pro-
cess aims to give a selective advantage to the trans-
formed cells, allowing them to grow faster and better,
and to kill the non-transformed cells (Brasileiro and
Dusi, 1999). In general, the selective gene is introduced
into the plant genome along with the genes of interest.
In some cases, the marker gene is the gene of interest
that will express an agronomic characteristic, such as
herbicide resistance.

The selective gene and the genes of interest may be
separated or physically linked in the same DNA vector. The
frequency of co-transformation (i.e. cells with both genes
integrated into the genome) is about 100 % when the genes
are linked and 50 % when they are separated (Aragdo et
al., 1996). The selective agents are generally used in the

initial stages of transformation for an early selection of
transgenic cells (Sawahel, 1994). During the following re-
generation steps, the influence exerted by the death of non-
transformed cells on the transformed cells should be mini-
mal on the selective medium. In most cases, the expression
of selection marker genes is under the control of a consti-
tutive promoter such as the cauliflower mosaic virus
(CaMV) 358, nopaline and octopine synthase, actin or
ubiquitin gene promoters. In some cases, the marker gene
expresses an agronomic characteristic, such as herbicide
resistance.

The aim of this review is to list and discuss the most
common selection marker genes used in plant transforma-
tion and the effects of their respective selective agents. The
strategies currently used to further eliminate the selection

marker gene are also reviewed.
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Markers genes for positive selection

Some marker genes for positive selection enable the
identification and selection of genetically modified cells
without injury or death of the non-transformed cell popu-
lation (negative selection). In this case, the selection marker
genes should give the transformed cell the capacity to me-
tabolize some compounds that are not usually metabolized.
This fact will give the transformed cells an advantage over
the non-transformed ones. The addition of this new com-
pound in the culture medium, as nutrient source during the
regeneration process, allows normal growth and differen-
tiation of transformed cells, while non-transformed cells
will not be able to grow and regenerate de novo plants.

The gus gene: The gene gus codes for the B-glucuronidase
enzyme (GUS; EC 3.2.1.31) and was isolated from Escheri-
chia coli. This gene is widely used as a reporter gene in
transgenic plants. In this system, the selective agent is a
glucuronide derivative of benzyladenine (benzyladenine N-
3-glucuronide), an inactive form of the plant hormone cy-
tokinin. This glucuronide present in the selection medium
can be hydrolyzed by the GUS enzyme produced in the
transformed cells, releasing active cytokinin
(benzyladenine) in the medium. This cytokinin will be a
stimulator for transformed cell regeneration while non-

transformed cell development is arrested.

The selective agent (benzyladenine N-3-glucu-
ronide) does not have any effect on the non-transformed
cells because the cytokinin is in its inactive form.

There is only one report concerning the successful
use of this system in the effective recovery of transgenic
plants (Joersbo and Okkels, 1996; Okkels et al., 1997).

The manA gene: The man gene codes for the
phosphomannose isomerase enzyme (PMI; EC 5.3.1.8) iso-
lated from Escherichia coli. In the presence of mannose,
the PMI converts mannose-6-phosphate into fructose-6-
phosphate in transformed cells that can be immediately in-
corporated in the plant metabolic pathway. Thus, mannose
can be used as the sole carbohydrate source for the trans-
formed cells. This selection system is immediate and ex-
tremely efficient (Joersbo et al., 1998).

Mannose cannot usually be metabolized by non-
transformed cells and is converted into mannose-6-phos-
phate by endogenous hexokinase. Therefore, when man-
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nose is added to the culture medium, plant growth may be
minimized due to mannose-6-phosphate accumulation. The
mannose-6-phosphate toxicity in plant cells was shown to
be responsible for apoptosis, or programmed cellular death,
through induction of an endonuclease, responsible for DNA
laddering (Stein and Hansen, 1999). Mannose-6-phosphate
accumulation also causes phosphate and ATP starvation that
deplete cell of energy for critical functions such as cell di-
vision and elongation, giving rise to growth inhibition.
Therefore, mannose is a hexose that fills the desirable re-
quirements for a good selection agent: it is (a) soluble in
plant culture media; (b) absorbed by plant cells; (c) cheap;
(d) easily available and (e) safe.

Although most plant species are sensitive to man-
nose, some species, especially dicotyledonous, have shown
a considerable insensitivity to this sugar, including carrot,
tobacco, sweet potato and legumes. Other species are ex-
tremely sensitive and have been successfully transformed
using mannose as selective agent, such as sugar beet, maize,
wheat, oat, barley, tomato, potato, sunflower, oilseed rape
and pea (Joersbo et al., 1998; 1999; 2000; Negrotto et al.,
2000; Wang et al., 2000).

Some plant transformation protocols that use the
positive selection system with PMI were at least 10 times
more efficient than the traditional protocols based on the
use of kanamycin as selection agent (Wright et al., 2001).

The xylA and DOGRI genes: A similar positive selection
system has been developed using the xylose isomerase gene
(xylA)
thermosulfurogenes or from Streptomyces rubiginosus, as

isolated from Thermoanaerobacterium
selection marker gene (Haldrup et al., 1998a; 1998b).
Transgenic plants of potato, tobacco and tomato were suc-
cessfully selected in xylose-containing media.

Recently, the DOGRI gene encoding 2-
deoxyglucose-6-phosphate phosphatase (2-DOG-6-P) was
used to develop a positive selection system for tobacco and
potato plants (Kunze et al., 2001). DOGRI gene, which has
been isolated from yeast, gives resistance to 2-deoxyglucose
(2-DOG) when over-expressed in transgenic plants.

Auxotrophic markers: In plants, auxotrophic mutations that
require nutritional supplements are unusual and only a few
cases can be easily propagated as homozygous. Conse-
quently, the complementation of auxotrophic mutants by
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transformation with a functional gene is rarely reported
(Bowen, 1993). Two examples are well known. First, mu-
tants of Nicotiana plumbaginifolia that are deficient in
threonine dehydratase require isoleucine for development.
These mutants were complemented by transformation with
the ILV1 gene from yeast, which codes for the threonine
dehydratase. Transformants were selected in medium with-
out isoleucine and the threonine dehydratase enzyme ac-
tivity was restored. In another example, mutants of N.
tabacum and N. plumbaginifolia that are deficient in ni-
trate reductase were complemented by transformation with
the nr gene from N. tabacum (Vincentz and Caboche, 1991).
Transformants were selected in the presence of nitrate and
the mutant phenotype was reverted.

Marker genes for negative selection

The first category of negative selection markers is
the genes that express resistance to herbicides. To be used
as suitable selective agents, herbicides should have some
characteristics that allow their in vitro use. For example,
herbicides that act by blocking photosynthesis are not ideal
for use in vitro. However, these herbicides could be used
to select transformed green tissue when applied directly to
the differentiated organs.

Another category of marker genes express resistance
to an antibiotic in the plant. These genes correspond to the
first genes successfully used to select transgenic plants.

The bar and pat genes: The bar and pat genes were iso-
lated from Streptomyces hygroscopicus and S.
viridochromogenes, respectively. These similar genes code
for the phosphinothricin-N-acetyltransferase enzyme (PAT;
EC 2.3.1.-) (Murakami et al., 1986). The PAT enzyme in-
activates herbicides with phosphinothricin (PPT) as active
compound, such as Basta™, Liberty™ and Herbiace™. The
herbicide is detoxified through the acetylation of the PPT
free amino group using acetyl coenzyme A as a cofactor
that prevents PPT binding to the glutamine synthetase en-
zyme (GS).

PPT, which is also well known as ammonium
glufosinate, is similar to the GS substrate glutamate and
acts as a competitive inhibitor of GS. The GS enzyme cata-
lyzes the conversion of glutamate to glutamine, removing
the toxic ammonia from the cell. This enzyme plays an es-
sential role in the nitrogen metabolism and ammonia as-

similation regulation. When GS is inhibited, ammonia ac-
cumulation and an associated disruption of chloroplast
structure that leads to photosynthesis inhibition and to plant
cell death occurs (Lindsey, 1992).

The bar gene is found in strains of S. hygroscopicus
that produce bialaphos, a tri-peptide antibiotic that con-
sists of PPT and two L-alanine residues (Murakami et al.,
1986). The bar gene (PAT) product protects these strains
from the action of its own antibiotic, metabolizing PPT into
an inactive acetylated-derived compound and preventing
autotoxicity (De Block et al., 1987; Mazur and Falco, 1989).

The bar gene is the most widely and successfully
used selection marker gene for all of the major cereal spe-
cies, such as wheat, rice, maize, barley, sorghum, oats and
rye (Vasil, 1994; Vain et al., 1995).

The aroA (or epsps) gene: This gene was isolated from
Salmonella typhimurium treated with a mutagenic agent and
selected for resistance to the herbicide glyphosate.
The mutated aroA gene codes for a modified form of the
5-enolpyruvyl-shikimate-3-phosphate synthase enzyme
(EPSPS; EC 2.5.1.19) that shows reduced affinity to
glyphosate, which is the active compound in the commer-
cial Roundup herbicide (Comai et al., 1983; 1985). A high
level of the aroA gene constitutive expression in transgenic
plants gives resistance to glyphosate. The overproduction
of this enzyme results in high enzymatic activities that en-
able the plant cell to survive even in the presence of the
herbicide (Mazur and Falco, 1989).

The herbicide glyphosate inhibits, by competition,
the enzyme EPSPS, which is involved in the enzymatic
pathway of aromatic amino acids biosynthesis in bacteria
and plants. The inhibition of EPSPS results in shikimate
accumulation, inhibition of synthesis of aromatic amino
acids and secondary metabolites causing cell death.

Other epsps genes which code for an EPSPS event
with reduced affinity to glyphosate have also been isolated
from the line CP4 of Agrobacterium sp. and from Petunia
hybrida. In plants, endogenous EPSPS is mainly localized
in the chloroplast. The bacterial aroA gene lacks a transit
peptide sequence to move the protein to the chloroplast.
Consequently, it originates a cytoplasmic form of the en-
zyme. Transgenic plants expressing the aroA gene in the
cytoplasm showed increased, but incomplete, tolerance to
glyphosate. Higher transformation efficiency has been
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achieved by fusing the aroA gene to a chloroplast transit
peptide to move the pro-protein into this organelle (Oxtoby
and Hughes, 1990).

The csr 1 (or ahas) gene: These genes code for mutated
forms of the acetohydroxy acid synthase enzyme (AHAS;
EC 4.1.3.18), also called acetolactate synthase (ALS). Each
mutant crs1 gene contains a single nucleotide change, re-
sulting in a single amino acid substitution in the AHAS
protein. The crs 1 genes were isolated from mutants of
Arabidopsis thaliana resistant to sulfonylurea and
imidazolinone herbicides, such as chlorsulfuron, imazapyr
and imazaquin (Haughn et al., 1988; Mourad et al., 1995).

Transgenic plants containing one of these mutated
crs 1 genes will produce an altered AHAS enzyme, which
it is not recognized by the sulfonylurea and imidazolinone
herbicides. Consequently, the enzymatic pathway will con-
tinue to work, making the transgenic plants resistant to the
herbicide (Haughn et al., 1988; Brasileiro et al., 1992;
Aragio et al., 2000).

The sulfonylurea and imidazolinone herbicides in-
hibit the endogenous AHAS enzyme in the plant tissue.
AHAS is the first common enzyme in the metabolic path-
way leading to the branched-chain amino acids (leucine,
isoleucine and valine). Consequently, the deficiency of
these amino acids, accumulation of the toxic substrate
(o-ketobutyrate) and an eventual disturbance of the pro-
tein synthesis will lead to plant cell death (Chaleff and
Mauvais, 1984; Ray, 1984).

Mutated genes that code for an altered form of the
AHAS enzyme were also isolated from (a) another plants,
such as tobacco and sugar beet; (b) bacteria, such as E. coli
and S. typhimurium and (c) yeast (Saccharomyces
cerevisiae) (Wilmink and Dons, 1993).

The hppd gene: The isoxaflutole (5-cyclopropyl isoxazol-
4-yl-2-mesyl-4-trifluoromethylphenyl ketone) foliar
bleaching herbicide was recently reported as a successful
selective agent for soybean transformation (Murh et al.,
2000). Isoxaflutole, the active ingredient of the herbicide
Balance™, inhibits the action of 4-hydroxyphenyl pyru-
vate dioxygenase (HPPD; EC 1.13.11.27), which is an en-
zyme involved in tyrosine degradation and plastoquinone
biosynthesis (Pallett et al., 1998). A mutated hppd gene iso-
lated from Pseudomonas fluorescens codes for an altered
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form of the enzyme and expresses tolerance to isoxaflutole.
The greatest advantage of this selection system is that the
transformed tissues become green among the white non-
transformed tissues, allowing a simultaneous visual and
chemical selection. Transgenic plants resistant to
isoxaflutole were also obtained for 4. thaliana and tobacco.

The hemL gene: A recent paper by Gough et al. (2001) de-
scribes the development of a new negative selection sys-
tem. The mutant glutamate-1-semialdehyde amino-trans-
ferase enzyme encoded by the hemL gene isolated from the
cyanobacterium Synechococcus PCC6301 strain that gives
resistance to gabaculine was expressed in tobacco. Selec-
tion was shown to produce explants with green and white
phenotypes. The mutated hemL marker gene provides a
novel enzyme-based method for the selection of transgenic
plants without the need for antibiotic-resistance markers.

The npt II (or neo) gene: The npt 11 (or neo) gene was iso-
lated from the E. coli transposon Tn5 and codes for the
neomycin phosphostransferase Il enzyme (NPT II; EC
2.7.1.95), also known as aminoglycoside 3'-
phosphotransferase 11 (APH[3]II) (Bevan et al., 1983;
Fraley et al., 1983; Herrera-Estrella et al., 1983).

NPT II transfers the y-phosphate group of ATP to
the 3'-hydroxyl group of the amino-hexose portion of
aminoglycoside antibiotics that are consequently
detoxificated. Due to this ATP-dependent phosphorylation,
binding of the antibiotic to the bacterial ribosome is pre-
vented thus allowing protein synthesis. Aminoglycoside an-
tibiotics that contain the 3'-hydroxyl group, such as the
kanamycins A, B, and C, neomycin, paramomycin and
geneticin (G-418), are substrates for NPT II (Norelli and
Aldwinckle, 1993). Endogenous NPT II activity is very rare
in plant tissues.

The active aminoglycoside antibiotic inhibits pro-
tein synthesis in prokaryote cells by binding to the 30S
subunit of the ribosome and blocking the formation of ini-
tiation complexes and reducing the fidelity of translation.
In plant cells, these antibiotics exert their effect on mito-
chondria and chloroplasts, acting similarly by impairing
protein synthesis. These organelles have ribosome that are
similar to those found in bacteria and are also susceptible
to aminoglycoside antibiotics. Therefore, in the presence
of antibiotics, the plant tissue will show chlorosis caused
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by the lack of chlorophyll synthesis and growth inhibition
(Benveniste and Davies, 1973; Brasileiro, 1998).

Up to date, npt 11 is the selective marker gene most
used in plant transformation and kanamycin is the antibi-
otic most frequently used for the selection of npt II-
transgenic plants.

The hpt (or aph 1V) gene: The hpt gene codes for the en-
zyme hygromycin phosphotransferase (HPT; EC 2.7.1.119),
also known as aminoglycoside 4'-phosphotransferase
(APH[4]). This gene was isolated from E. coli and gives
resistance to the hygromycin B antibiotic (van den Elzen
et al., 1985).

HPT catalyses the phosphorylation of the hydroxyl
group in the hygromycin antibiotic thus inactivating it.
Hygromicin is also an aminoglycoside antibiotic. When
active, hygromycin occupies the ribosomal binding site of
the elongation factor 2 (EF-2) in prokaryote cells. Conse-
quently, the elongation of the polypeptide chain is inhib-
ited and protein synthesis interrupted, causing the same
symptoms described for the other aminoglycoside antibi-
otics (Benveniste and Davies, 1973).

The hpt gene has been extensively utilized, espe-
cially when the use the neo gene is not possible. This is the
case of several monocotyledonous species that show high
levels of natural resistance to kanamycin (Wilmink and
Dons, 1993; Vasil, 1994). Hygromycin B is usually more
toxic than kanamycin and kills sensitive cells more quickly.

Chloroplast transformation

In this system, chloroplasts (or plastids) are trans-
formed with genes for herbicide resistance as in the selec-
tion marker process because most target proteins for herbi-
cides are compartmentalized within this organelle. Chlo-
roplast transformation can be accomplished by both the
biolistic and polyethylene glycol-mediated strategies
(Daniell et al., 1998; Hibberd et al., 1998; Kofer et al., 1998,;
Sidorov et al., 1999). Vectors that specifically address the
integration of the herbicide-resistant marker gene in the
chloroplasmatic genome such as the “tobacco vector “ or
the “universal chloroplast vector” should be preferentially
used (Daniell et al., 2001). These vectors possess flanking
sequences from highly conserved chloroplast genes to al-
low integration by homologous recombination. The advan-
tages that chloroplast expression systems may give over
routinely nuclear expression are (Bogorad, 2000):

- The retention of the transgene flow (especially
marker genes) in microspores is reduced. The chloroplast
genome expresses maternal inheritance in most crop plants;

- The expression level of the transgene is extremely
high compared with the expression of the same gene inte-
grated in the nuclear genome, due to the large copy num-
ber of chloroplast genomes (5,000 to 10,000) per cell;

- The insertion in the genome is driven (site-spe-
cific), which avoids position effects and facilitates com-
parative studies;

- The quasi absence of gene silence in the inserted
transgenes (Daniell et al., 1998).

In addition, other sub-cellular organelles such as mi-
tochondria might also provide more favorable environments
than the nuclear-cytoplasmic compartment for certain bio-
chemical reactions or for high, predictable, uniform and
stable transgene expression, not subject to gene silencing
(Bogorad, 2000).

Antibiotic-resistant marker genes could be also used
in this system, facilitating the extension of plastid trans-
formation to non-green plastids such as in embryogenic
cells of cereal crops (Kavanagh et al., 1999; Khan and
Maliga, 1999).

Strategies to recover marker-free transgenic plants

Antibiotic resistance genes (ARGs) have been in-
troduced into transgenic plant genomes. The ARGs are used
under control of prokaryotic promoters to select bacteria
in vector production for direct plant transformation. In some
cases, these prokaryotic ARGs are introduced in the vector
along with the gene of interest. In addition, ARGs under
the control of eukaryotic promoters are widely used as se-
lection marker genes. Due to biosafety concerns, there have
been complex evaluations to study the potential impacts of
ARGs present in transgenic plants on human health and
the environment. Although there is no evidence of delete-
rious effects in the use of transgenic plants carrying ARGs,
its removal is already stated as “good laboratory practice”
by several regulatory committees (U. S. Food And Drug
Administration, 1998). Thus it is recommended that those
who are developing genetically modified foods for the
market should be encouraged to phase out ARGs use
(Puchta, 2000; Ow, 2001). This recommendation could also
be applied to the other selection marker genes, since they
are not necessary once the transgenic plant is obtained.
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Consequently, several strategies to remove the selection
marker genes have been developed.

Co-transformation: In this system, the transformation is
achieved using two separate plasmid vectors: one contain-
ing the gene of interest and other the selective marker gene.
In this way, the selective marker gene can be further elimi-
nated by progeny segregation. Thus, the co-transformation
system allows the use of a selective agent during plant re-
generation and subsequent recovery of marker-free prog-
eny, which contains only the gene of interest. There are at
least two basic requirements to make this system functional:
(1) the efficiency of co-transformation should be suffi-
ciently high, and (2) the vectors should be integrated in
different loci sufficiently “unlinked” to allow effective re-
covery of recombination events and/or gene segregation.

De Block and Debrouwer (1991) reported that the
co-transformation efficiency in oilseed rape with two
Agrobacterium strains ranged from 60 to 80 %. However,
78 % of these events were in the same locus (linked sites).
Other reports stated that, under certain conditions (depend-
ing on the transformation vector, transformation method-
ology, strains of Agrobacterium, plant species etc.), differ-
ent vectors integrate into unlinked sites at high frequency
(Goldsbrough et al., 1993; Yoder and Goldsbrough, 1994;
Daley et al., 1998; Tang et al., 1999; Lu et al., 2001;
Matthews et al., 2001). Using the biolistic process, the co-
transformation of dry bean was 50 % for unlinked genes
(Aragao et al., 1996).

MAT (multi-auto-transformation) system: The ipt gene that
codes for the enzyme isopentenyl phosphotransferase (EC
2.5.1.27) was isolated from the Ti plasmid of 4.
tumefaciens. The MAT system is primarily based on the
visual selection of transgenic plants containing the ipf gene
(Ebinuma et al., 1997; Endo et al., 2001; Ebinuma and
Komamine, 2001). In the presence of this gene, the trans-
formed plant loses the apical dominance and ability to root.
The acquired abnormal phenotype was called extreme
shooty phenotype (ESP) and is easy to detect visually. In a
second step, the unsuitable ipt gene is removed from the
transgenic plant through the transposition of the 4Ac trans-
posable element from maize, which is transferred along with
the selection marker gene. In this way, marker-free
transgenic plants could be generated with the normal pheno-
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type restored and containing only the gene of interest. In
the MAT vectors, the ipt gene under control of the CaMV
35S promoter is inserted into the transposable Ac element.

The IPT enzyme catalyzes the condensation of
isopentenyl pyrophosphate with AMP to produce
isopentenyl AMP, which is a precursor of several cytoki-
nins. Cytokinins stimulate organogenesis in several in vitro
cultivated plants and are widely used to regenerate plants
after the transformation event.

In the transposition process, only a few excised trans-
posable Ac elements (containing the marker gene) disap-
pear from transgenic cells because the Ac¢ elements do not
reinsert or because they reinsert into a sister chromatid that
is further lost by somatic segregation. Therefore, the fre-
quency of the Ac element elimination to recover marker-
free transgenic plants is low, ranging from 0.1 to 0.5 %.

The site-specific R/RS recombination system from
Zygosaccharomyces rouxii can also be used to eliminate
the marker gene (Sugita et al., 1999; 2000). In this system,
the removal of the ipt gene followed by the recovery of
marker-free transgenic plants is reported to improve by
70 % over the transposable element Ac system.

When the expression of the ipz gene is controlled by
a dexamethasone-inducible system, the co-introduction of
multiple genes, in addition to ipt, is more efficient and the
recovery of marker-free transgenic plants is high (Kunkel
etal., 1999).

The MAT system is particularly valuable for plants
with long generation cycles such as fruit and forest trees,
providing a promising way to shorten breeding time.

Intragenomic relocation of transgenes via transposable
elements: In this system, as well as in the MAT system, the
selection marker gene should be flanked by the inverted
and repeated sequences of the Ds element of the Ac/Ds
maize transposable system. Once the transgenic plant has
been obtained, the Ds element and the marker gene will be
transferred to a new locus of the plant genome or elimi-
nated when in the presence of the transposase. The gene of
interest will be left in the first insertion locus (Goldsbrough
etal., 1993). Transposase can be introduced in this plant as
an additional element in the transformation vector by a sec-
ond transformation or by sexual crossing. The advantage
of this system is that the selection marker gene will be lost
in some somatic tissues due to failure of the Ds element
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reintegration. This makes the strategy suitable for removal
of marker genes in vegetatively propagated plants (Yoder
and Goldsbrough, 1994; Pavingerova et al., 2001). In a simi-
lar way, systems to remove selection marker gene by
intrachromosomal recombination between the bacterioph-
age | attachment (a#tP) regions (Zubko et al., 2000) and by
RescueMu transposon have been recently proposed
(Raizada et al., 2001).

Site-specific recombination system: This is a two-compo-
nent system that requires an enzyme that acts in trans to
catalyze the recombination between two short specific DNA
sequences, which flank the selective marker gene to be
eliminated. This system has already been demonstrated to
be efficient for yeast. However, in plants, the site-specific
recombination rate is very low and the current knowledge
of homologous recombination is still limited (Mengiste and
Paszkowski, 1999; Vergunst and Hooykaas, 1999). The
most common system used to mediate site-specific recom-
bination in plants is the bacteriophage P1 Cre/lox (Yoder
and Goldsbrough, 1994; Vergunst and Hooykaas, 1998;
Vergunst et al., 1998; Gleave et al., 1999; Corneille et al.,
2001). In this recombination system, the plant should be
previously transformed with a selection marker gene cloned
between two sequences of the /ox gene, each with 34 bp
repeats in direct orientation. In a second stage, the Cre gene
should be introduced in this plant by a second transforma-
tion, either by sexual crossing or by transient expression.
Once the Cre gene is expressed, the Cre enzyme catalyses
the recombination between the /ox repeat sequences, thus
eliminating the marker gene in the secondary transformants.
This recombination strategy can also be used to target the
insertion of new genes in an already transformed plant con-
taining the /ox sites, or another known sequence, inserted
at a “suitable” chromosomal position (Gallego et al., 1999).
Site-specific recombination can also be used to compare
transgenic plant lines without the effect of the integration
site position.
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