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Brassinosteroids are a new class of plant hormones with a polyoxygenated steroid structure showing pronounced plant

growth regulatory activity. This review covers their natural occurrence, biological and chromatographic methods for

their detection, biosynthesis and metabolism, biological activity, structure-activity relationships and prospective agri-

cultural uses.
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Hormônios vegetais brassinosteroídicos – estrutura, bioatividade e aplicações: Os brassinosteróides são uma nova

classe de hormônios vegetais com estrutura esteroídica polioxigenada, dotados de pronunciada atividade reguladora do

crescimento vegetal. Esta revisão cobre sua ocorrência natural, os métodos biológicos e cromatográficos para sua detecção,

sua biossíntese e metabolismo, a atividade biológica, as relações estrutura-atividade e suas perspectivas de uso agrícola.

Palavras-chave: brassinolídeo, brassinosteróides.

M I N I R E V I E W

INTRODUCTION

Since the 1930’s, USDA researchers have found that

pollen extracts promote plant growth (Mandava, 1988) and

a first paper was published in 1941 reporting that applica-

tion of hexanic extracts of maize pollen to the first intern-

ode of young bean seedlings produced marked elongation

of the treated internode (Mitchell and Whitehead, 1941), a

response also obtained using extracts of immature bean

seeds (Mitchell et al., 1951).

In the 1960’s the USDA started a research program

aimed to find new plant hormones, leaded by J. W. Mitchell

(Maugh II, 1981). The hypothesis to be tested was that

pollens would have an elevated concentration of plant hor-

mones and there was a great probability of finding new

physiologically active substances in them.

Employing the bean second internode bioassay, pol-

len extracts of around 60 different plant species were tested

(Mandava and Mitchell, 1971): rape (Brassica napus L.)

and alder tree (Alnus glutinosa L.) pollens produced an

unexpected response, combining elongation (typical of

gibberellins) with swelling and curvature of the treated

internode. These researchers proposed that the rape pol-

len contained a new group of lipidic plant hormones, which

they called brassins (Mitchell et al., 1970). Mandava,

Mitchell and co-workers reported the occurrence of an

active fraction of the brassins containing, mainly, glucosyl

esters of fatty acids (Mandava and Mitchell, 1972;

Mandava et al., 1973). Further work revealed that although

these esters promoted elongation, they were not able to

reproduce all of the observed response (Grove et al., 1978).

Brassins, however, were able to increase plant growth, crop

yield and seed viability (Mitchell and Gregory, 1972; Gre-

gory, 1981; Meudt et al., 1984).

In 1975 a research project to identify and synthesize

the active compounds in brassins, evaluate their effect on

the yield of selected crops (such as wheat, maize, soybean

and potato), and evaluate their growth regulating proper-

ties in green-houses and in the field was begun (Mandava,

1988; Steffens, 1991).
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For isolating  the  brassins active compounds, about

250 kg of bee collected rape pollen were extracted with

isopropanol in batches of 25 kg (Mandava et al., 1978).

The extracts were partitioned between carbon tetrachlo-

ride, methanol and water. The methanolic fractions were

chromatographed in a series of silica columns, a process

that reduced the biologically active material to 100 g. Fi-

nal purification, followed by the bean second internode

assay, was accomplished by column chromatography and

high performance liquid chromatography, affording 10 mg

of a crystalline substance, called brassinolide (1, figure

1). Its structure was elucidated by spectroscopic methods

including X-ray analysis and can be systematically desig-

nated as (22R,23R,24S)-2α,3α,22,23-tetrahydroxy-24-

methyl-B-homo-7-oxa-5α-cholestan-6-one (Grove et al.,

1979; see the Appendix for notation of steroids).

At the time brassinolide (1) was pointed out to be the

first phytosteroid with plant growth-promoting activity,

even in very minute amounts and concentrations, present-

ing a 6-oxo-7-oxalactone function and two groups of cis-

vicinal hydroxyls, one at carbons 2 and 3 and the other at

carbons 22 and 23, resembling in some way the

ecdysteroids.

A few years later Japanese scientists isolated

castasterone (9; Yokota et al., 1982a; figure 1) from chest-

nut gall tissue, the ketone that was then thought to be the

putative precursor of brassinolide. Soon afterwards they

were able to identify, as a mixture of brassinolide-like sub-

stances (Ikekawa et al., 1984), the Dystilium factors A1

and B, isolated from the leaves of D. racemosum (Marumo

et al., 1968),  that were active in the rice lamina inclina-

tion bioassay.

After the first chemical syntheses of brassinolide (Fung

and Siddall, 1980; Ishiguro et al., 1980), a great effort is

being made to synthesize it and similar compounds (the

brassinosteroids), to isolate new brassinosteroids, eluci-

date their biosynthetic routes,  verify their biological ac-

tivities and their agricultural applications.

NATURAL BRASSINOSTEROIDS

Since the isolation of brassinolide (1), a series of

brassinosteroids [such as dolicholide (3),  28-

homodolicholide (4), castasterone (9), dolichosterone (11),

28-homodolichosterone (12) and typhasterol (25); see fig-

ure 1] have been isolated from plant sources and fully char-

acterized by the usual spectroscopic methods. The vast

majority of the more than 50 hitherto known natural

brassinosteroids were detected in different organs of plants

in several families by gas or liquid chromatography com-

bined with mass spectrometry and comparison with au-

thentic samples (Adam and Marquardt, 1986; Singh and

Bhardwaj, 1986; Mandava, 1988; Abreu, 1991; Takatsuto,

1994; Fujioka and Sakurai, 1997a; Adam et al., 1999;

Fujioka, 1999).

Brassinosteroids can be derived from the 5α-

cholestane carbon skeleton bearing the following struc-

tural characteristics:

i) ring A mono- to trioxygenated, always oxygenated

at carbon 3;

ii) ring B presenting a 6-oxo-7-oxalactone or a 6-oxo

function or full saturation;

iii) all-trans junctions of rings A - D;

iv) 22α,23α-dihydroxylated, mostly alkylated at car-

bon 24, sometimes methylated at carbon 25 and sometimes

unsaturated between carbons 24 and 28.

These characteristics lead to considering as natural

brassinosteroids the 3-oxygenated (20β)-5α-cholestane-

22α,23α-diols of plant origin, bearing additional alkyl or

oxy substituents (see general structures 52 and 52a, figure

2). They can also occur conjugated especially with sugars

or fatty acids. Brassinosteroid analogues are compounds

that show any structural similarity with natural

brassinosteroids and/or brassinolide activity (Zullo et al.,

2002).

The occurrence of the natural brassinosteroids is de-

scribed in table 1, according to the plant source. They were

isolated or detected in algae, pteridophytae, gimnosperms

and angiosperms (mono- and dicotyledons), indicating a

probable ubiquitous distribution in the plant kingdom.

Some of the biosynthetic precursors of the

brassinosteroids, such as cathasterone (53; Fujioka et al.,

1995; figure 3), 6-deoxocathasterone (54), 3-epi-6-

deoxocathasterone (55; Fujioka et al., 2000b) and 6-deoxo-

28-norcathasterone (54a, Yokota et al., 2001), as well as

catabolites, such as cryptolide (56; Watanabe et al., 2000),

are in some instances considered as brassinosteroids them-

selves, but they do not fulfill all the structural require-

ments.
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Figure 1. Natural brassinosteroids.

Continue
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Figure 1. Natural brassinosteroids (continued).

Figure 2. General formulae of natural brassinosteroids.
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Some other natural products (57-75; figure 4) related

to brassinosteroids, many of them occurring in the imma-

ture Phaseolus vulgaris L. seeds (Kim, 1991; Kim et al.,

1994) have been reported, but their structures are incom-

pletely elucidated (Fujioka, 1999). They include configu-

rational isomers of known brassinosteroids (57-59, 61-69),

of a brassinosteroid catabolite (60) and brassinosteroids

bearing extra oxygen or carbonyl bearing carbon atom in

ring A (70-75).

Figure 3. Biosynthetic precursors and a catabolite of

brassinosteroids.

DETECTION AND CHROMATOGRAPHIC

ANALYSIS OF BRASSINOSTEROIDS

Due to the very small amount in which brassinosteroids

are found in plants (ca. 10-100 µg.kg-1 in pollen, 1-100

µg.kg-1 in immature seeds and 10-100 ng.kg-1 in shoots

and leaves; Adam and Marquardt, 1986; Mandava, 1988;

Takatsuto, 1994), special methods were developed for their

detection and identification, as their isolation in pure state

would demand a great amount of plant material and be

very tedious and expensive. The extraction of

brassinosteroids from the plant material can be achieved

with partition and chromatographic processes in which

extraction with methanol or methanol/ethyl acetate fol-

lowed by partition between water/chloroform and 80%

methanol/n-hexane is used as a standard procedure. A sen-

sitive bioassay is necessary to monitor the brassinosteroid

containing fractions during the chromatographic steps.

The biological detection of brassinosteroids was ini-

tially performed by the bean second internode bioassay, a

test gradually substituted by the rice lamina inclination

bioassay (Wada et al., 1981, 1984; Takeno and Pharis,

1982; Kim et al., 1990) and the wheat leaf unrolling bio-

assay (Wada et al., 1985; Takatsuto, 1994), while the im-

munological methods are less used (Horgen et al., 1984;

Yokota et al., 1990; Schlagenhaufer et al., 1991; Taylor et

al., 1993).

Due to the need to detect brassinosteroids in plant

sources, a micromethod was very quickly developed for

screening and quantification of these kinds of compounds

(Takatsuto et al., 1982), that consists in reacting the cis-

dihydroxy function with methaneboronic acid, affording

its methane- or bismethaneboronate, e.g. brassinolide

bismethaneboronate (76). Eventually isolated hydroxyl is

trimethylsilylated after boronation to afford, e.g. in case

of 2-deoxybrassinolide (7), the mixed derivative (77; fig-

ure 5). The derivatives are analysed by gas chromatogra-

phy, with retention times sensitive to small variations in

the structure of the brassinosteroids. The boronates are

analysed by mass spectrometry, either by electron impact

or chemical ionization. Selective scan ion monitoring can

also be used, due to the regularity of the fragmentation

pattern of the different types of brassinosteroids (Adam et

al., 1996, 1999). The method is being routinely used in

the detection of brassinosteroids because its detection limit

is less than 10 pg (Ikekawa and Takatsuto, 1984; Ikekawa

et al., 1984; Takatsuto, 1994).

High performance liquid chromatography is the

method of choice for final purification in the isolation of

natural brassinosteroids, but it is unusual for their detec-

tion in plant sources (Konstantinova et al., 2001). Reversed

phase high performance liquid chromatography is less sen-

sitive than gas chromatography for the detection and quan-

tification of brassinosteroids, with a detection limit in the

range of 25-100 pg, but with response linearity in the range

of 25 pg-40 ng, in the best instances, and precision around

3 %. Using the vicinal hydroxyls as derivatization sites

the α-naphthylboronic (78; Gamoh et al., 1988), 9-

phenanthrylboronic (79; Takatsuto et al., 1989, 1990b), 1-

cyanoisoindolyl-2-m-phenylboronic (80; Gamoh and

Takatsuto, 1989), dansylaminophenylboronic (81, Gamoh

et al., 1990a), m-aminophenylboronic (82; Gamoh et al.,

1992) and ferrocenylboronic (83; Gamoh et al., 1990b)

acids reacted with brassinosteroids to obtain, quantita-
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tively, the derivatives 84 (figure 6). The naphthylboronates

84 are ultraviolet detected,  with  absorption maxima at

280 nm and detection limit of 100 pg, the ferrocenyl-

boronates 84 are electrochemically detected with detec-

tion limit of 50 pg, while the boronates derived from 79-

Figure 4. Natural products related to brassinosteroids with incompletely elucidated structure.

81 are indicated for fluorimetric detection with detection

limits of, respectively, 50 pg, 20 pg and 25 pg. These meth-

ods have also been used to identify and quantify

brassinosteroids in plant sources (Takatsuto et al., 1989,

1990a, b; Gamoh and Takatsuto, 1994; Motegi et al., 1994).

Figure 5. Brassinosteroid derivatives for gas chromatography/mass spectrometry.
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The first system used for studying brassinosteroid bio-

synthesis was feeding culture cells of Catharantus roseus

G. Don. (Madagascar periwinkle) with deuterium labeled

precursors of brassinolide (1), where campesterol (87) was

the main component of the sterol fraction, and trace the

deuterium labeling in the brassinosteroid fraction. The dis-

coveries of brassinosteroid biosynthesis deficient mutants

in Arabidopsis thaliana, Pisum sativum and Lycopersicon

esculentum allowed the clarification of some steps in

brassinolide biosynthetic pathways. In this case, partial

recovery of their growth or development is rescued by

exogenous application of brassinolide and its precursors

or putative precursors. The blocked step is recognized as

the one in which administration of a compound does not

change the mutant phenotype. It was soon recognized that

campesterol biosynthesis deficient mutants presented

brassinosteroid deficiency, and in this case analysis of ste-

rol composition aids to locate the specific biosynthetic step

blocked. It should be mentioned that brassinosteroid-in-

sensitive mutants, i.e., mutants that can respond to all other

plant hormones but not to brassinosteroids, were also rec-

ognized in Arabidopsis, pea and tomato (Clouse and Sasse,

1998; Clouse and Feldmann, 1999).

It was verified that brassinolide biosynthesis begins

by the reduction of campesterol (87) to campestanol (88),

which is oxidized to 6α-hydroxycampestanol (89) and this

to 6-oxocampestanol (90; Suzuki et al., 1995a). Parallel

experiments showed that cathasterone (53) is the biosyn-

thetic precursor of typhasterol (25) and teasterone (26;

Fujioka et al . ,  1995),  but the conversion of 6-

oxocampestanol (90) to cathasterone (53) or to teasterone

(26) could not be demonstrated (Fujioka et al., 1995;

Suzuki et al., 1995b; Fujioka and Sakurai, 1997b). It was

observed that teasterone (26) and typhasterol (25) are

interconvertible in periwinkle, tobacco and tomato and that

typhasterol (25) is oxidized to castasterone (9) and then to

brassinolide (1; Suzuki et al., 1994a, 1995a). In periwinkle,

tobacco and rice castasterone (9) is also isomerized to 3-

epicastasterone (18; Suzuki et al., 1995a). As a result, a

probable biosynthetic route to brassinolide (1) is shown in

figure 7. Due to the initial conversion of campestanol (88)

to 6α-hydroxycampestanol (89), this route is called  the

“early C-6 oxidation pathway” (Fujioka and Sakurai,

1997a, b).

Figure 6. Brassinosteroid derivatives for reversed phase

high performance liquid chromatography.

A quite different strategy for the detection of

brassinosteroids employs dansylhydrazine (85; figure 6)

to prepare the fluorescent dansylhydrazones of 6-

oxobrassinosteroids followed by the dansylaminophe-

nylboronation of vicinal hydroxyls. The sensitivity of the

method is only 1.5 ng for the hydrazone of 24-

epicastasterone (86) and it has the advantage that even

precursors lacking the 22α,23α-diol side chain can be de-

tected. The subsequent dansylaminophenylboronation of

the  hydrazone  brings  the  sensitivity  of  the  method  to

100 pg (Winter et al., 1999).

BIOSYNTHESIS AND METABOLISM

OF BRASSINOSTEROIDS

The elucidation of brassinosteroid biosynthesis

(Sakurai, 1999) and metabolism (Adam and Schneider,

1999; Schneider, 2002) is important for determining what

are their biologically active forms and for understanding

how their endogenous levels are regulated to promote ad-

equate plant growth and development.
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Figure 7. Biosynthesis of brassinolide via the early C-6 oxidation pathway.

The 6-deoxobrassinosteroids, presenting weak

brassinolide activity, were initially considered as inacti-

vation products of the 6-oxobrassinosteroids. As they were

detected in an increasing number of plant species and, in

many cases, were observed the presence of the pair 6-

deoxocastasterone (36)/castasterone (9), the hypothesis

arose that the 6-deoxobrassinosteroids could also be bio-

synthetic precursors of 6-oxobrassinosteroids. In cultured

periwinkle, tobacco and rice cells the conversion of 6-

deoxocastasterone (36) to castasterone was observed (9;

Choi et al., 1996). In cultured cells of periwinkle the pres-

ence of 6-deoxotyphasterol (42) and 6-deoxoteasterone

(43) was also observed and, using labeled compounds, the

conversions of 6-deoxoteasterone (43) to 3-dehydro-6-

deoxoteasterone (45) and then to 6-deoxotyphasterol (42),

to 6-deoxocastasterone (36) and to castasterone (9), as

shown in figure 8, could be demonstrated (Choi et al.,

1997). This route is called the “late C-6 oxidation path-

way”. It was verified that both early and late C-6 oxida-

tion pathways operate simultaneously in periwinkle, but

there is no conversion of 6-deoxoteasterone (43), 3-

dehydro-6-deoxoteasterone (45) or 6-deoxotyphasterol

(42) to their 6-oxo counterparts. These studies could not

say how campestanol (88) is converted to 6-

deoxoteasterone (43). Recent studies, however, have re-

vealed that 6-deoxotyphasterol (42) is converted to

typhasterol (25) in Arabidopsis, to a marginal extent

(Noguchi et al., 2000).

Although there are important differences in the bio-

synthesis of plant sterols, a commonly accepted route for

the biosynthesis of campesterol (87) and campestanol (88)

is depicted in figure 9 (Asami and Yoshida, 1999). Plant

sterols are biosynthesized from mevalonic acid, which

originates squalene-2,3-oxide (91) that cyclizes to

cycloartenol (92). This compound is homologated to 24-

methylenecycloartenol (93) and demethylated to

cycloeucalenol (94), which is isomerized to obtusifoliol

(95). Subsequent demethylation gives rise to 4α-methyl-

5α-ergosta-8,14,24(28)-trien-3β-ol (96), that is reduced to

4α-methylfecosterol (97). Isomerization of the ∆8(9) double
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Figure 9. Biosynthesis of campestanol (88) from (3S)-squalene-2,3-oxide (91).

Figure 8. Biosynthesis of brassinolide via the late C-6 oxidation pathway.

bond to ∆7(8) originates 24-methylenelophenol (98), that

is demethylated to episterol (99). This compound suffers

dehydrogenation to 5-dehydroepisterol (100) and hydro-

genation to 24-methylenecholesterol (101). Isomerization of

the ∆24(28) double bond to ∆24(25) produces 24-

methyldesmosterol (102), that is reduced to campesterol (87).

Oxidation of this sterol to (24R)-24-methyl-4-cholesten-3-one

(103) is followed by saturation of the olefinic double bond to

(24R)-methyl-5α-cholestan-3-one (104) and reduction of the

carbonylic function for campestanol (88) production.
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The 14α-demethylation of obtusifoliol (95) to 4α-

methyl-5α-ergosta-8,14,24(28)-trien-3β-ol (96) is encoded

by a CYP51 enzyme (steroid 14α-demethylase) and

Arabidopsis antisense AtCYP51 transgenic plants showed

dwarfism during early development, slow growth during

maturation, a high obtusifoliol (95) content but did not

show phytosterol deficiency (Kushiro et al., 2001). In the

Arabidopsis fackel mutant seedlings a high content of 96

and ∆8,14-unsaturated sterols was observed, and the wild

phenotype was not rescued by brassinosteroid application,

indicating the blockage of the conversion of 96 to 4α-

methylfecosterol (97; Jang et al., 2000; Schrick et al.,

2000). Two Arabidopsis mutants, dwf7 and ste1, were rec-

ognized to be unable to perform the conversion of episterol

(99) to 5-dehydroepisterol (100), and a third one, dwf5, is

blocked in the conversion of 5-dehydroepisterol (100) to

24-methylenecholesterol (101). The Arabidopsis dwf1

mutant is defective in the conversion of the last compound

to campesterol (87). The mutants dim and cbb1 are defec-

tive in the conversion of 24-methyldesmosterol (102) to

campesterol (87). The Arabidopsis mutants det2 and dwf6

are defective in the reduction of (24R)-24-methyl-4-

cholesten-3-one (103) to (24R)-methyl-5α-cholestan-3-one

(104). The blocked biosynthetic step in the garden pea lkb

mutant is the conversion of 24-methylenecholesterol (101)

to campesterol (87; Nomura et al., 1999), more probably

the isomerization of 101 to 24-methyldesmosterol (102).

A small number of brassinosteroid biosynthesis mu-

tants were recognized in the steps between campestanol

(88) and brassinolide (1; figure 10). In the Arabidopsis

dwf4 mutant the conversions of campestanol (88) to 6-

deoxocathasterone (54) and of 6-oxocampestanol (90) to

cathasterone (53) are blocked, indicating that both sub-

strates (88 and 90) are recognized by the same 22α-hy-

droxylase (Choe et al., 1998). In the Arabidopsis mutants

cpd (Szekeres et al., 1996), dwf3 and cbb3, the blocked

brassinolide biosynthesis steps are the 23-hydroxylations

of 6-deoxocathasterone (54) to 6-deoxoteasterone (43) and

of cathasterone (53) to teasterone (26). The tomato dpy

mutant, an intermediate dwarf with severely altered mor-

phology, is rescued by spraying with 6-deoxoteasterone

(43) and subsequent precursors of brassinolide (1) in the

late C-6 oxidation pathway, but not by 6-deoxocathasterone

(54), cathasterone (53) or their precursors (Clouse and

Feldmann, 1999). In tomato the late C-6 oxidation path-

way seems to be the major route in brassinolide biosyn-

thesis. Analysis of the brassinosteroid fraction in the ex-

treme dwarf (dx) tomato mutant showed that brassinolide

biosynthesis is blocked in the conversion of 6-

deoxocastasterone (36) to castasterone (9; Bishop et al.,

1999), as evidenced by the low castasterone (9) and high

6-deoxocastasterone (36) contents in the mutant compared

to the wild type.

The conversion of teasterone (26) to typhasterol (25)

and then to castasterone (9) was also observed in cultured

cells of Marchantia polymorpha (Park et al., 1999; Kim et

al., 2001), while in Phaseolus vulgaris the in vitro enzy-

matic conversion of teasterone (26) to typhasterol (25) was

confirmed to be a two-step reaction with the intermediacy

of 3-dehydroteasterone (32; Kim et al., 2000). Although

this is evidence that the pathways depicted in figure 10

are common for brassinolide (1) biosynthesis in plant spe-

cies other than Arabidopsis, pea and tomato (Nomura et

al., 2001), they may not be simply extended to the synthe-

sis of other lactones. In the case of 28-norbrassinosteroids

one would expect that they could be derived from choles-

terol (105), in a series of reactions similar to those occur-

ring from campesterol (87). Metabolic experiments with

deuterium labeled castasterone (9) in Arabidopsis, rice,

tomato and periwinkle detected 28-norcastasterone (13)

as a catabolite of castasterone (9; Fujioka et al., 2000a).

The detection of 28-nortyphasterol (30) in Arabidopsis

(Fujioka et al., 2000a) and of 6-deoxo-28-norcathasterone

(54a), 6-deoxo-28-nortyphasterol (46) and 6-deoxo-28-

norcastasterone (38) in tomato (Yokota et al., 2001) are

indications that both early and late oxidation pathways are

operative for the synthesis of 28-norbrassinosteroids from

a suitable precursor such as cholestanol (88a). Feeding

experiments with labeled campestanol (88), cholestanol

(88a) and cholesterol (105) in Arabidopsis, tobacco and

periwinkle revealed that cholesterol (105) is converted to

4-cholesten-3-one (103a), cholestanol (88a) and 6-oxo-

cholestanol (90a), but the conversion ratios of cholesterol

(105) to cholestanol (88a) are much smaller than those of

campestanol (88) to cholestanol (88a, Nakajima et al.,

2002), so that it is unlikely that 28-norbrassinosteroids are

preferably biosynthesized from cholesterol (105) but more

probably from campesterol (87; see figure 11).
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Figure 10. Biosynthesis of brassinolide (1) from campestanol (88).
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Figure 11. Biosynthesis of 28-norcastasterone (13).
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The brassinosteroid metabolism was mainly studied

in cultured cells of tomato and serradella using the corre-

sponding 5,7,7-tris-tritiated brassinosteroids (Kolbe et al.,

1992) as monitors in the feeding experiments. Cell sus-

pension cultures of tomato convert 3-dehydro-24-

epiteasterone (106),  a putative precursor of 24-

epibrassinolide (6), to 24-epiteasterone (107) and 24-

epityphasterol (108; Kolbe et al., 1998) and also the con-

jugated brassinosteroids 3-O-β-D-glucopyranosyl-24-

epiteasterone (109; Kolbe et al.,  1998), 3-O-β-D-

g lucopyranosy l - (1 →6) -β -D-g lucopyranosy l -24-

epiteasterone (110) and 3-O-β-D-glucopyranosyl-(1→4)-

β-D-galactopyranosyl-24-epiteasterone (111; Kolbe et al.,

1997; figure 12). The enzymatic conversion of 24-

epiteasterone (107) to 3-dehydro-24-epiteasterone (106)

was monitored in cytosolic tomato and Arabidopsis

thaliana fractions using fluorescent tagging and HPLC

analysis. Inhibition experiments with cathasterone (53),

6-deoxocathasterone (54) and 6-deoxoteasterone (43) in-

dicated that the corresponding 3β-dehydrogenase is rather

substrate specific for β-dehydrogenation of 24-

epiteasterone (107; Stündl and Schneider, 2001).

Figure 12. Metabolism of 3-dehydro-24-epiteasterone

(106) in cultured cells of L. esculentum.

In tomato, 24-epicastasterone (14) is hydroxylated and

glucosylated at C-25 or C-26, yielding 112 and 113, or is de-

hydrogenated to 3-dehydro-24-epicastasterone (114), that is

reduced to 3,24-diepicastasterone (19). This compound can

be glucopyranosylated at C-2 or C-3 yielding 115 and 116 or

hydroxylated at C-25 resulting in 25-hydroxy-3,24-

diepicastasterone (117; Hai et al., 1996; figure 13).

24-Epibrassinolide (6; figure 14) was transformed to

the glucopyranosides 118 and 119, while 25-hydroxy-24-

epibrassinolide (120), obtained by enzymatic hydrolysis

of 118, was transformed exclusively to the 25-glucoside

118 in cultured cells of tomato (Schneider et al., 1994;

Hai et al., 1995). These hydroxylations are performed by

two distinct enzymes, and 25-hydroxylase proved to be a

cytochrome P450 protein, while the 26-hydroxylase seems

to be a flavin-containing monooxygenase (Winter et al.,

1997).

It was verified that serradella (Ornithopus sativus Brot.)

cell cultures degrade 24-epicastasterone (14) up to 2α,3β,6β-

trihydroxy-5α-pregnane-20-one (121; Kolbe et al., 1994; fig-

ure 15), and fatty esters 122-124 of 3,24-diepicastasterone (19)

were also produced (Kolbe et al., 1995). Trihydroxyketone

121 is formed via transformation of 24-epicastasterone (14)

to 3,24-diepicastasterone (19), which is oxidized to 20R-hy-

droxy-3,24-diepicastasterone (125) and further to the

pregnanedione 126 followed by reduction (figure 15).
Figure 13. Metabolism of 24-epicastasterone (14) in cul-

tured cells of L. esculentum.
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Figure 14. Metabolism of 24-epibrassinolide (6) by cultured cells of L. esculentum.

Figure 15. Metabolism of 24-epicastasterone (14) by cell culture of O. sativus.

In the same system, 24-epibrassinolide (6; figure 16)

was  transformed into 2α,3β-dihydroxy-B-homo-7-oxa-5α-

pregnane-6,20-dione (127; Kolbe et al., 1994), the esters

128-130 (Kolbe et al., 1996) and into 25-hydroxy-3,24-

diepibrassinolide (131) and 20R-hydroxy-3,24-

diepibrassinolide (132), through the initial conversion of

24-epibrassinolide (6) to 3,24-diepibrassinolide (133;

Kolbe et al., 1996).

A purified recombinant Brassica napus steroid

sulfotransferase expressed by Escherichia coli catalyses the

enzymatic sulfonation of brassinosteroids and precursors spe-

cifically at position 22, as exemplified in figure 17 (Rouleau

et al., 1999). It exhibited highest affinity for 24-epicathasterone

(134), followed by 24-epiteasterone (107).

In first experiments on microbial transformations of

brassinosteroid, incubation of 24-epibrassinolide (6) with the

fungus Cunninghamella echinulata yielded 12β-hydroxy-24-

epibrassinolide (137) and the same 12β-hydroxylation was

also observed with 24-epicastasterone (14; Voigt et al., 1993a).

On the other hand, the fungus Cochliobolus lunatus trans-

formed 24-epicastasterone (14) to the corresponding 15β-hy-

droxylated compound 138 (Voigt et al., 1993b; figure 18).

The analogue 2α,3α-dihydroxy-6-oxocholestane

(139), when incubated with the fungus Mycobacterium

vaccae, yielded 2α,3α,6α-trihydroxy-5α-androstane-17-

one (140) and 2α-hydroxy-4-androstene-3,17-dione (141;

Vorbrodt et al., 1991; figure 18).
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Figure 16. Metabolism of 24-epibrassinolide (6) by culture cells of O. sativus.

Figure 17. Sulfonation of brassinosteroids and precursors

by a Brassica napus steroid sulfotransferase.

BIOLOGICAL ACTIVITY ON INSECTS

Brassinosteroids show striking structural similarities

with arthropod hormones of the ecdysteroid type such as

20-hydroxyecdysone (142; Adler and Grebenok, 1995;

Lafont 1997), which led to several studies on the bioactiv-

ity of brassinosteroids and analogues on insects. Inhibit-

ing and antiecdysone effects have been observed in the

course of such investigations (Richter and Koolman, 1991).

Thus, from a series of tested compounds, castasterone

(9) and 22,23-diepi-28-homobrassinolide (143), a synthetic

22β,23β-stereoisomer of 28-homobrassinolide (2), inhib-

ited the evagination of imaginal disks of the Phormia terra-

novae fly (Hetru et al., 1986). The 22,23-diepi-28-

homocastasterone analogue 144 and lactone 143, to a lesser

extent, bound competitively to ecdysteroid receptors from

larvae of the Calliphora vicina blowfly, representing first

antiecdysones (Lehmann et al., 1988). Compounds 143 and

144 were shown to act as weak inhibitors of binding of the

ecdysteroid ponasterone A to the intracellular ecdysteroid

receptor from the epithelial cell line from Chironimus

tentans and gave morphological effects and inhibition of

chitin synthesis similar to the moulting hormones (Spindler

et al., 1992). Compound 144 also exhibited a binding af-

finity to an ecdysteroid receptor in last instar larvae of the

Galleria mellonella wax moth similar to ecdysone (Sobek

et al., 1993) but did not act as ecdysone antagonist in the

salivary gland degeneration in Amblyomma hebraeum

(Charrois et al., 1996).  In  the  Drosophila  melanogasterFigure 18. Brassinosteroid transformations by fungi.
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II cell bioassay natural brassinosteroids showed no ago-

nistic or antagonist activity (Dinan et al., 2001). When a

series of synthetic brassinosteroid/ecdysone hybrid mol-

ecules was checked in the same test system, only com-

pound 145, exhibiting the 14α-hydroxy-7-en-6-one func-

tion characteristic of ecdysteroids like 142, showed a weak

agonistic activity (Voigt et al., 2001). Using cultured imagi-

nal wing discs from last-instar larvae of the Spodoptera

littoralis cotton leafworm, both native brassinosteroids 24-

epibrassinolide (6) and 24-epicastasterone (14) caused 50%

competition for binding with the tritiated ecdysteroid

ponasterone A but no induction of evagination (Smagghe

et al., 2002).

The above-mentioned results indicate a series of bio-

logical effects of brassinosteroids on insects including in

vitro cell culture and in vivo whole larvae. More detailed

biological and biochemical studies using the structural

multitude of brassinosteroids are necessary and could lead

to new strategies to influence ecdysteroid-dependent steps

of insect development and new pathways for insect pest

control.

BIOLOGICAL ACTIVITY AND STRUCTURE-

ACTIVITY RELATIONSHIPS

The biological activity of brassinosteroids was initially

evaluated by the bean second internode assay (Grove et

al., 1979; Thompson et al., 1981, 1982; Mandava, 1988).

In this test auxins and cytokinins are not detected and gib-

berellins elongate the treated and upper internodes.

Brassinosteroids promote cell division and elongation,

swelling, curvature and splitting of the treated internode:

these morphological alterations are concentration depen-

dent.

The bean first internode assay, used for evaluating the

auxin-induced growth, was also employed for testing the

structure-activity relationships of brassinosteroids (Th-

ompson et al., 1982; Meudt and Thompson, 1983;

Mandava, 1988; Fuendjiep et al., 1989).

The rice lamina inclination assay, based on a test origi-

nally developed for auxins (Maeda, 1965), was modified

for brassinosteroid detection (Wada et al., 1981, 1984).

While this assay has a limit of detection of 50 ppm for

indolacetic acid,  the limit is 0.5 ppb for brassinolide (1)

and 5 ppb for 28-homobrassinolide (2). A modification,

employing rice lamina of the whole seedlings pre-treated

with IAA, diminished the limit of brassinolide (1) detec-

tion to 0.1 ppb (Takeno and Pharis, 1982). This test is con-

sidered as specific for brassinosteroids and is employed to

detect and follow the purification of these natural prod-

ucts (Takatsuto, 1994; Adam et al., 1996).

Figure 19. Structures of compounds 142-145.

In other studies the cockroach Periplaneta americana

has been used as preferred model. In feeding experiments

22,23-diepi-28-homobrassinolide (143) provoked moult-

ing retardation by about 11 days with the highest applied

doses (Richter et al., 1987). Similarly to the effects of the

hormone 20-hydroxyecdysone (142) dose-dependent

neurodepressing effects were observed with compounds

144 and, to a lesser extent, compound 143 on Periplaneta

americana indicating an ecdysteroid agonistic activity

(Richter and Adam, 1991). Also the first evidence for a

metabolic transformation of a brassinosteroid in insects

has been shown recently with this species (Schmidt et al.,

2000). Thus, an organspecific epimerization of the

brassinosteroid to 2,24-diepicastasterone (146; figure 20)

could be detected in female insects when 24-

epicastasterone (14) was fed to the cockroach. The me-

tabolite was observed only in the ovaries but not in the

testes of the insect and was identified by GC-MS com-

parison with a synthesized sample (Voigt et al., 2002).

Figure 20. Brassinosteroid biotransformation by P.

americana.
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The wheat leaf unrolling bioassay, introduced in 1985,

responds to brassinolide (1) and castasterone (9) at a limit

of detection of 0.5 ng.mL-1 (0.5ppb), with complete un-

rolling at brassinolide concentrations equal or higher than

10 ng.mL-1. In this assay gibberellic acid and cytokinins

produce a small effect in the concentration range of 0.1-

10 µg.mL-1 and zeatin causes slight to complete unrolling

at 1ng-1 µg.mL-1, while abscisic acid, indolacetic acid and

indolacetonitrile inhibit unrolling (Wada et al., 1985).

Other assays are less frequently employed to evaluate

brassinosteroids structure-activity relationships, such as the

mung bean epicotyl elongation assay (Gregory and

Mandava, 1982), the radish (Takatsuto et al., 1983b, 1984)

and tomato (Takatsuto et al., 1983b) hypocotyl elongation

assays, and auxin-induced ethylene production by etiolated

mung bean segments (Arteca et al., 1985).

Although the above biological assays are not equiva-

lent, they allowed the establishment of relatively safe struc-

tural activity relationships (Adam and Marquardt, 1986;

Singh and Bhardwaj, 1986; Mandava, 1988; Abreu, 1991),

with the aid of a series of brassinosteroid analogues.

As a general rule, the most bioactive brassinosteroids

are of the 6-oxo-7-oxalactone type, followed by the 6-oxo

brassinosteroids and the 6-deoxo brassinosteroids, that are

almost inactive (Mandava, 1988).

Transforming 6-oxo-7-oxalactone to ether, thialactone,

lactam, 6-oxa-7-oxolactone, 6-aza-7-oxalactone and 6-aza-

7-thiolactone (Okada and Mori, 1983a; Kishi et al., 1986;

Takatsuto et al., 1987) dramatically reduce the brassinolide

activity [e.g.  brassinolide (1,  10,000) ≈  28-

homobrassinolide (2,  ≈ 10,000) > 6-deoxo-28-

homobrassinolide (147, 100) ≈ 7-aza-28-homobrassinolide

(148, 100) > 7-thia-28-homobrassinolide (149, 10), while

6-oxa-7-oxo-28-homobrassinolide (150) presents about 1%

of the bioactivity of 28-homobrassinolide (2; Takatsuto et

al., 1987) and 6-aza-7-oxo-28-homobrassinolide (151;

Anastasia et  al . ,  1984) and 6-aza-7-thia-28-

homobrassinolide (152) are inactive (Okada and Mori,

1983b)]. Moving from the lactone to the 6-ketone it is

observed that the brassinolide activity decreases from

100% to 50% in the pair brassinolide (1)/castasterone (9;

Takatsuto et al., 1983a) in the rice lamina inclination as-

say, while 24-epicastasterone (14) is about 3 times more

active than castasterone (9) in the bean second internode

assay (Thompson et al., 1982). The introduction of a C-7/

C-8 double bond in 24-epicastasterone (14) reduces the

bioactivity of 7-dehydro-24-epicastasterone to one tenth

(153; Takatsuto et al., 1987) while in the pair 22,23,24-

triepicastasterone (155)/7-dehydro-22,23,24-

triepicastasterone (154) the biological activity decreases

about one hundred times. The introduction of a hydroxyl

at 5α decreases the brassinolide activity ca. 1,000 times

when moving from 7-dehydro-24-epicastasterone (153) to

7-dehydro-5α-hydroxy-24-epicastasterone (156) and about

100 times in the pair 7-dehydro-22,23,24-triepicastasterone

(155)/7-dehydro-5α-hydroxy-22,23,24-triepicastasterone

(157; Takatsuto et al., 1987). A less dramatic decrease in

bioactivity on the rice lamina inclination assay has also

been reported when a 5α-hydroxyl function is introduced

on 28-homocastasterone (10; Brosa et al., 1998; Brosa,

1999; Ramírez et al., 2000a). While the introduction of a

5α-fluoro group in 28-homocastasterone (10) decreases its

bioactivity by one order of magnitude, the same introduc-

tion in 28-homoteasterone (28) or in 28-homotyphasterol

(27) slightly increases their bioactivity (Ramírez et al.,

2000b). The absence of an oxygen function at ring B de-

creases the brassinolide activity significantly, as in the case

of 6-deoxocastasterone (36) that shows only 1 % of the

castasterone bioactivity of castasterone (9; Yokota et al.,

1983c; see structures of compounds 147-157 in figure 21).

The effect of ring A substituents on brassinolide ac-

tivity was studied in some detail  in the 28-

homobrassinolide (2) series (Takatsuto et al., 1987): chang-

ing the hydroxyls from 2α,3α to 3α,4α either in 28-

homobrassinolide (2) or in 6-oxa-7-oxo-28-

homobrassinolide (150) reduces the bioactivity of 158 and

159 in one order of magnitude. 2-Deoxy-28-

homobrassinolide (160) is about 100 times less active than

28-homobrassinolide (2), while 28-homotyphasterol (27)

is about ten times less active than 28-homocastasterone

(10). Their 3β-isomers 3-epi-2-deoxy-28-homobrassinolide

(161) and 28-homoteasterone (28) are also ten times less

active than 28-homobrassinolide (2) and 28-

homocastasterone (10), respectively. While 3-dehydro-2-

deoxy-28-homobrassinolide (162) and 2,3-dideoxy-28-

homobrassinolide (163) are about ten times less active than

28-homobrassinolide (2), 3-dehydro-28-homoteasterone

(164) and 2,3-dideoxy-28-homoteasterone (165) are, re-

spectively, ten and one hundredfold less active than 28-

homocastasterone (10). 3-Dehydroteasterone (32),

secasterone (33) and 2,3-diepisecasterone (166) show, re-

spectively, 74%, 59% and 89% of the bioactivity of 24-
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epicastasterone (14) in the rice lamina inclination assay

(Voigt et al., 1995; see structures of compounds 158-166

in figure 22). The replacement of 3-hydroxy function by a

3-fluoro group in either 28-homotyphasterol (27) or 28-

homoteasterone (28) yields compounds active at the rice

lamina inclination assay at dosages equal or higher than

50 ng per plant, but not as active as their parent compounds

(Galagovsky, 2001).

Figure 21. Structures of brassinosteroid analogues 147-157.

Figure 22. Structures of brassinosteroid analogues 158-166.
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Although brassinosteroids with cis A/B ring fusion (5β
configuration) have not yet been isolated from natural

sources, they were initially synthesized to explore their

potential antiecdysteroid activity (Brosa et al., 1994).

Evaluation of the brassinolide activity of these compounds

by the rice lamina inclination assay, employing the Bahia

cultivar and a single brassinosteroid concentration, 1µg

per segment, showed that either 28-homobrassinolide (2)

or 2,3,5-triepi-28-homobrassinolide (167) showed 87% of

the brassinolide (1) bioactivity. When the configuration

of the side chain changes to 22β,23β the bioactivity of

22,23-diepi-28-homobrassinolide (143) becomes two times

higher than for 2,3,5,22,23-pentaepi-28-homobrassinolide

(168; 14 % and 6 % respectively). In the 6-oxo series, 28-

homocastasterone (10) presents 97 % of the brassinolide

activity, while 2,3,5-triepi-28-homocastasterone (169) only

51 % (Brosa et al., 1996). However, evaluation of synthe-

sized 5-epibrassinolide (170a, Seto et al. 1998) and 2,3,5-

triepibrassinolide (170b) showed a nearly complete loss of

bioactivity in the rice lamina inclination assay indicating that

trans-fusion of rings A/B play an essential role (Seto et al.,

1999; see structures of compounds 167-170 in figure 23).

Figure 23. Structures of brassinosteroid analogues 167-170.

Many papers have dealt with the relationship between

the side chain structure and brassinolide activity. When

the 24-substituents of the 22α,23α-brassinosteroids were

examined, the order of brassinolide activity is brassinolide

(1) > 24-epibrassinolide (6) > 28-homobrassinolide (2) >

24-epi-28-homobrassinolide (171) > dolicholide (3) > 28-

homodolicolide (4) > 28-norbrassinolide (5), a decreasing

order that is also observed in the 6-oxo series in the bean

second internode assay (Mandava, 1988) and in the rice

lamina inclination assay (Takatsuto et al., 1983a).

Introduction of a methyl group at C-25 increases the

brassinolide activity ten times, at least in the pairs

brassinolide (1)/25-metilbrassinolide (172) and

dolichosterone (11)/25-methyldolichosterone (16; Mori

and Takeuchi, 1988), while the removal of the methyl

groups at C-25, resulting in 26,27-dinorbrassinolide (173)

or in 26,27-dinorcastasterone (174) does not affect the

brassinolide activity at the rice lamina inclination assay,

compared to their parent compounds (Takatsuto et al., 1984).

In contrast to these findings, 26,28-dinorbrassinolide (175)

and  26,28-dinorcastasterone (176) only show bioactivity

only at 10 mg per plantlet against activity at 0.01 mg per

plantlet for brassinolide (1) and 0,1 mg per plantlet for

castasterone  (9;  Thompson et al., 1982).  As the side chain

is reduced so is also the biological activity: in this way the

bisnorcholanelactone 177 and the androstanelactone 178

show  only  2 %  and  0.001 %  of  the  brassinolide (1)

activity, respectively (Kondo and Mori, 1983; see

structures of compounds 171-178 in figure 24). 21-

Carboxipregnanelactones (Cerny et al., 1987) and 22-

alkoxybisnorcholanelactones (Kerb et al., 1983) also show

brassinolide activity.

When the configuration of the side chain hydroxyls

was analyzed, those presenting 22α,23α stereochemistry

are more active than those presenting 22β,23β configura-

tion, whether for 6-oxobrassinosteroids or for lactones, no

matter what bioassay is  employed (Thompson et al., 1979,

1981, 1982; Takatsuto et al., 1983a, 1987). When the ef-
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fect of the alkyl substituent at C-24 and the stereochemis-

try of the hydroxyls at C-22 and C-23 were analyzed jointly,

the relative order of bioactivity changes according to the

alkyl substituent, the ring B structure and the bioassay em-

ployed: even so the 22α,23α,24α isomers are always the

most actives (Thompson et al., 1981, 1982; Takatsuto et

al., 1983a). The 22α,23β- or the 22β,23α-brassinosteroids

present little bioactivity (Takatsuto et al., 1983a, b;

Fuendjiep et al., 1989). Elimination of one hydroxyl, as in

23-deoxy-28-norbrassinolide (179) decreases the bioactiv-

ity (Kondo and Mori, 1983; Takatsuto et al., 1983b) [as

occurs with cathasterone (53; Fujioka et al., 1995) and the

cholestanelactone 180 (Takematsu, 1982)], that is sup-

pressed with the elimination of both side chain hydroxyls

(Thompson et al., 1982; Kondo and Mori, 1983; Takatsuto

et al., 1983b). Side chain brassinosteroid glycosides are

less bioactive than their aglycones, as happens to the 23-

O-β-D-glucopyranosylbrassinolide (181; Yokota et al.,

Figure 24. Structures of brassinosteroid analogues 171-178.

1991; Suzuki et al., 1993). This kind of conjugation is con-

sidered to be a mechanism for brassinosteroids deactiva-

tion. Luo et al. (1998) prepared a series of methyl ethers

of brassinolide (1) to prevent such conjugation and, em-

ploying the rice lamina inclination assay, verified that,

while brassinolide 23-methyl ether (182) showed weak or

low activity even at high dosage (1,000 ng per plant), the

22-methyl ether 183 showed an activity comparable to 24-

epibrassinolide (6) at dosages up to 100 ng per plant and

the 22,23-dimethyl ether 184 even at dosages up to 1,000

ng per plant (see structures of compounds 179-184 in fig-

ure 25). Another way of deactivation was the recently

shown enzymatic sulfonation of several brassinosteroids,

including 24-epibrassinolide (6), with a steroid sulfotransferase

from Brassica napus. This sulfonation abolished the biologi-

cal activity in the bean second internode bioassay and was

demonstrated to be specific for the hydroxyl at position 22 of

brassinosteroids (Rouleau et al., 1999).

Figure 25. Structures of brassinosteroid analogues 179-184.
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A series of brassinosteroid analogues, such as 17-esters

of androstanelactones (Kohout, 1989), 2α,3α ,17β-

trihydroxy-5α-androstane-6-one (Gaudinova et al., 1995),

hemiesters, orthoesters and ketals of 2α,3α-cholestanediol

(Kerb et al., 1982a), 22-ethers of lactone 177 (Kerb et al.,

1983), esters of 28-homobrassinolide (Kerb et al., 1982b)

and 2-deoxybrassinosteroids (Abe and Yuya, 1993), also

show brassinolide activity. The spirostanes 185-188

(Marquardt et al., 1989; Arteaga et al., 1997), spirosolanes

189 and 190 (Quyen et al., 1994a), epiminocholestanes 191

and 192 (Quyen et al., 1994a) and solanidanes 193 and

194 (Quyen et al., 1994b) analogues also show bioactivity.

A series of the first ten nonsteroidal brassinosteroid

analogues was synthesized recently (Andersen et al., 2001),

and the compounds 195 and 196, when co-applied with

indolacetic acid, promoted rice lamina inclination at

dosages as low as 0.01 ng and 0.001 ng per plant,

respectively. Very recently the heterodimer hybrid 197 of

24-epicastasterone and dexamethasone was synthesized to

study the regulation of protein-protein interactions, to

trigger signal transduction pathways and to detect ligand-

protein receptor interactions (Kolbe et al., 2002). A series

of inclusion complexes of brassinosteroid (Durán Caballero

et al., 1999) or of the spirostanic brassinosteroid analogues

(De Azevedo et al., 2001a) in cyclodextrins were prepared

aiming to improve the brassinolide activity what was

achieved with the 24-epibrassinolide/β-cyclodextrin

inclusion complex 198 (De Azevedo et al., 2001b, 2002;

see structures of compounds 185-198 in figure 26).

Figure 26. Structures of brassinosteroid analogues 185-198.
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It is usually assumed that a brassinosteroid is linked

to its receptor site through three points: the 2α,3α-hy-

droxyls (Wada and Marumo, 1981), the B ring lactone and

the 22α,23α-hydroxyls (Kishi et al., 1986). It was formerly

considered that the receptor affinity to the 2α,3α-hydroxyls

would be greater than to the 22α,23α-hydroxyls, as varia-

tions in side chain structure are less influential in

brassinolide activity than variations in the ring A structure

(Takatsuto et al., 1983b). A study on quantitative struc-

ture-activity relationships indicates, however, that the con-

tributions of the ring A and the side chain hydroxyls con-

figurations are 25 % and 35 % of the total of brassinolide

activity, but also that the activity of a brassinosteroid or

analogue would be greater as greatest would be the simi-

larity between the compound and brassinolide (1) itself

(Brosa et al., 1996). Further improvement of the method-

ology for predicting the activity of a brassinosteroid or

analogue takes into account the putative H-bonding inter-

actions in the brassinosteroid-receptor complex (Brosa,

1999).

A look at the reactions involved in the metabolism of

a brassinosteroid (see the general formula in figure 27 sum-

marizing the reactions observed in 24-epibrassinosteroids)

suggests that, as different enzymes catalyze different trans-

formations, and as these enzymes can be located at differ-

ent organelles inside the cell, there is not a single receptor

site for a brassinosteroid but there are different receptor

sites in different enzymes in which different brassinosteroid

molecules are able to exhibit  one of the many

brassinosteroid physiological activities. Each receptor site

must need different structural requirements for exhibiting

the maximal activity, and this may be the reason why there

are different structure-activity relationships according to

the bioassay employed.

The almost rigid structure of the steroidal nucleus of

the brassinosteroids is confirmed by molecular orbital cal-

culations, nuclear magnetic resonance experiments and X-

ray diffraction studies, revealing that, in the 5α-series, the

A and C rings assume a chair conformation, observed also

in the ring B of 6-oxobrassinosteroids, while in the 6-oxo-

7-oxalactones the 7-membered B ring tends to lie in the

same plane as rings C and D. In the 5β-series brassinos-

teroids, the ring A also adopts a chair conformation, but it

sets almost perpendicularly to the plane formed by the rings

B, C and D (see partial structures 199-202 in figure 28).

In regard to the more flexible side-chain conforma-

tion, a series of 10 brassinosteroids were investigated by

means of detailed NMR investigations, molecular model-

ing studies, and compared with data from X-ray analysis.

For the most bioactive compound brassinolide (1) the

majority of conformations in solution showed a side-chain

bent towards the β-face of the steroid skeleton, whereas

for the less active members like 24-epibrassinolide con-

formations with straight side-chains or side-chains bent

towards α-face are preferred (see partial structures 203 and

204 in figure 28; Stoldt et al., 1997; Drohsin et al., 2001).

While these models are valuable approaches for the de-

sign of new brassinosteroid analogues, it must be remem-

bered that they may not furnish the actual active confor-

mation of a brassinosteroid inside the receptor site of an

enzyme.

Figure 27. Summary of metabolic reactions observed in

24-epibrassinosteroids.

Figure 28. Hypothetical active conformations of the ste-

roidal nuclei and side chains of brassinosteroids.
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In summary, the following structural features are im-

portant for exhibiting a high brassinolide activity: i) a 6-

oxo-7-oxalactone function; ii) 2α,3α hydroxyls; iii)

22α,23α hydroxyls; iv) 24-alkyl substitution; v) A/B-trans

ring conjunction.

PROSPECTIVE AGRICULTURAL USES

Since the beginning of the research on the isolation of

brassinosteroids from plant sources, brassins proved to be

able to promote plant growth (Mitchell and Gregory, 1972),

as well as its acceleration (Gregory, 1981; Braun and Wild,

1984; Meudt et al., 1984).

With the isolation of brassinolide (1) and the synthe-

sis of similar compounds, brassinosteroids were shown to

be useful to increase crop yield: by using brassinolide (1)

bean crop yield increased, shown by the increase of 41 %

to 51 % in the weight of seeds per plant and the leaf weight

of two different lettuce varieties increased by about 25 %

(Meudt et al., 1983).

Treatment of rice plantlets with a 5 ppm solution of

brassinolide (1) caused an increase of 22 % in fresh weight

and 31.5 % in dry weight of seeds per plant in the Taebaik

cultivar (Lim, 1987). It was also reported to increase plant

growth speed, root size, and root and stem dry weight (Kim

and Sa, 1989), to reduce the toxicity of 2,4-D and butachlor

to the plantlets (Choi et al., 1990) and to increase the per-

centage of ripe grains when cultivated at low temperature

(Irai et al., 1991).

In barley (cv. Nosovsky 9), brassinolide (1), 28-

homobrassinolide (2) and 24-epibrassinolide (6) increased

the activity of endospermic α-amylase, the weight of seeds

per ear, the weight of 1,000 seeds and the crop yield, be-

sides increasing the stem diameter, causing an increased

resistance to lodging (Prusakova et al., 1995).

In corn (cv. Kwangok) the ear fresh weight increased by

about 7 %  and  seed dry weight increased by 11 % to 14 % by

using brassinosteroids, while in the cv. Danok 1 the effect of

these treatments was depressive (Lim and Han, 1988).

The application of 24-epibrassinolide (6) or 22,23,24-

triepibrassinolide (205; figure 25) on wheat increased

panicle weight by 25-33 % and seed weight by 4-37 %

and decreased the sterile portion of the ear by 25-62 %

(Takematsu et al., 1988).

Experiments performed at the Instituto Agronomico

(M. A. T. Zullo, unpublished results obtained between 1986

and 1988 with samples given by Professor Nobuo Ikekawa)

with 24-epibrassinolide (6), 24-epicastasterone (14),

22,23,24-triepibrassinolide (205) and 22,23,24-

triepicastasterone (155) allowed the observation of in-

creases in crop yields in wheat (up to 18 % in seed weight

per ear), soybean (up to 22 % in seed weight per plant)

and bean (up to 83 % in seed weight per plant in the Ca-

rioca-80 cultivar).

Figure 29. Structures of brassinosteroid analogues 205-213.

Application of 24-epibrassinolide (6) at 1 ppb in-

creased the root growth of chick-pea,  cv. Pusa  256,  by

25 % (Singh et al., 1993). The application of the same com-

pound to three different chick-pea cultivars, at the flower-

ing stage, caused increases in seed yield,  crop index,  100

seeds dry weight and in protein and soluble sugars of the

seeds (Ramos, 1995; Ramos et al., 1995, 1997). In this

case the crop yield (in kg.ha-1) increased by 86 %, 76 %

and 61 % for the cultivars IAC India-4, IAC Mexico and

IAC Marrocos, respectively.

The application of 24-epibrassinolide (6) or 24-

epicastasterone (14) on coffee caused no significant effect

on seed setting, seed size or yield (Mazzafera and Zullo,

1990). Coffea stenophylla calli grew up to 237 % between

60 and 130 days of culturing in the presence of 24-

epibrassinolide (6), compared with growth of up to 49 %

in the absence of this compound (Ramos et al., 1987).
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It was noted that brassinolide (1) promoted potato tu-

ber development, inhibited its germination during storage

and increased resistance to infections by Phytophthora

infestans and Fusarium sulfureum (Kazakova et al., 1991).

28-Homobrassinolide (2) and its 22,23-diepimer 143

caused an increase of 5-24 % in  the size and of 23-59 %

in  the fresh weight of azuki bean plants, as well as in-

creases of 3-30 % in  the size and of 8-28 % in the fresh

weight of rape plants. The application of 22,23,24-triepi-

28-homobrassinolide (206) increased tomato fruit setting

by 43-111 %, while with 28-homobrassinolide (2) this in-

crease was 118-129 % (Mori et al., 1986).

The application of brassinolide (1) on orange trees

during flowering increased fruit setting, while when ap-

plied during fruit growth it decreased the physiological

drop of fruits, causing an increased number of fruits per

plant, accompanied by an increase in  the average fruit

weight and in  the brix/acidity ratio. The increase in  fruit

setting due to decreasing physiological fruit dropping was

also observed in  lemon, peach, pear, persimmon and apple.

In Citrus unshiu increased juice production and a higher

brix/acidity ratio was observed (Kuraishi et al., 1991). In

Citrus madurensis Lour. brassinolide (1) retarded fruit

abscission was observed (Iwaori et al., 1990).

The application of the ethers 207 and 208 (figure 29),

active in  the bean second internode assay, increased leaf

width in sugar beet and the lateral diameter of the root

(Kerb et al., 1986).

Some brassinosteroid analogues, synthesized for long

lasting activity in the field, at first showed some useful-

ness in agricultural practice. So the phenylbrassinosteroids

209-211 (figure 29), applied to corn plants, increased their

sizes by 14-15 % and their weight by 23-36 % (Hayashi et

al., 1989). The lactone 212 (figure 29), an intermediate in

the synthesis of 28-homobrassinolide (2), increased rad-

ish fresh weight by 13-22 %, wheat seed weight by 11-22

%, grapevine cluster weight by 9-18 %, onion fresh bulb

weight by 11-18 % and rice plant weight by 21-22 %

(Kamuro et al., 1990). The mixture of epoxides 213 (fig-

ure 29) increased the size of soybean and corn plants and

the dry weight of corn seeds (Takatsuto et al., 1990c).

It has been shown in studies with arborescent plant spe-

cies that pretreatment with 22,23-diepi-28-homobrassinolide

(143) induced increase in rooting and rooting quality in cut-

tings taken from mature Norway spruce donor plants and im-

proved their viability (Rönsch et al., 1993).

Micropropagation processes of tropical plants, such

as cassava (Manihot esculenta Crantz), yam (Dioscorea

alata L.) and pineapple (Ananas comosus L. Merril), can

be improved by the use of 28-homocastasterone (10) or

3β-acetyl-28-homoteasterone, as suggested in a prelimi-

nary study (Bieberach et al., 2000). Treatment of shoot

apices of the marubakaido apple rootstock [Mallus

prunifolia  (Willd.)  Borkh] with 5α-fluoro-28-

homocastasterone increased the apple rootstock multipli-

cation rate up to 112 % (Schaefer et al., 2002).

Growth stimulating effects were also found in studies

on higher fungi when the cultivation of Psilocybe cubensis

as well as of Gymnopilus purpuratus in the presence of

10-2 ppm brassinosteroid 143 resulted in a two to three-

fold growth acceleration with an increasing number of

fruiting bodies from 1-2 to 4-7 in the first flush (Gartz et

al., 1990; Adam et al., 1991).

Many other examples of brassinosteroid use for in-

creasing crop yield can be found in the literature (Kamuro

and Takatsuto, 1999; Khripach et al., 1999; Núñez Vázquez

and Robaina Rodríguez, 2000).

The brassinosteroids can be mixed with solid excipi-

ents (such as talc, mica, diatomaceous earth, clay), pastes

(such as lanolin) or liquids (usually water or hydroalcoholic

mixtures) for use as powders, pellets, tablets, pastes, sus-

pensions, solutions, in the presence or not of emulsifiers

that help homogenize the preparation. The application can

be made by spraying, spreading, coating or dipping the

plants or their organs or the soil.  The amount of

brassinosteroid to be applied varies with the brassinosteroid

structure, the formulation employed, the kind of plant to

be treated and the effect desired. Usually the concentra-

tion of the brassinosteroid in the preparation ranges from

0.01 to 100 ppm, and it can be applied with other agro-

chemicals, such as other plant hormones or growth regu-

lators, fertilizers, herbicides, insecticides and other adju-

vants (Mori, 1984).

Although many brassinosteroids,  such as 24-

epibrassinolide (6), are commercially available and em-

ployed in some countries, more accurate studies on dos-

age, method and time of application, fit brassinosteroid

suitability for the plant or cultivar, and association with

other phytohormones are needed, since many of the re-

sults were obtained by experiments performed in green-

houses or small fields. The preliminary results regarding

the increases of crop yield and antistress effects on sev-
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eral plants at very low doses, and the fact of being easily

metabolized, as seen for tomato and serradella (Adam and

Schneider,  1999; Schneider,  2002),  recommend

brassinosteroids as ecologically safe plant growth promot-

ers (Kamuro and Takatsuko, 1999; Khripach et al., 2000)

with promising properties for practical use in agriculture

and horticulture.

CONCLUSION

Even after more than 20 years of the isolation of

brassinolide (1) and other natural brassinosteroids, there

is a continued effort to isolate or detect these natural prod-

ucts from or in many plant species, to improve the bio-

logical or physical chemical methods for their detection,

to elucidate their biosynthesis and metabolism and to pros-

pect their bioactivity and agricultural uses.

The exploitation of brassinosteroids physiological ac-

tivity (Sasse, 1999), the comprehension of the molecular

mechanisms of their activity (Clouse, 1997; Altmann 1999)

and the synthesis of natural and artificial brassinosteroids

(Back et al., 1997; Khripach et al., 1999) are other areas

of intense activity that soon will allow the general em-

ployment of these substances in agricultural practice, due

to their peculiar characteristics in promoting plant growth,

increasing crop yield and resistance to biotic and abiotic

stress, and on being ecologically safe plant growth pro-

moters.

APPENDIX

Steroids are compounds containing the gonane skel-

eton, usually methylated at carbons 10 (C-19) and 13 (C-

18), and a side chain extending from carbon 17 (i). For

substituents above the steroidal nucleus, i.e., those point-

ing in the same direction as carbons 18 and 19 the β desig-

nation is given, and for those below the steroidal nucleus

the α notation is assigned (ii). There are two different con-

ventions for the designation of the configuration of the

substitutents in the side chain. The first is the Fieser-

Plattner convention, according to which the side chain is

placed so the longest chain extends upward from the ring

D and under the plane of the drawing (Fieser and Fieser,

1948; Plattner, 1951a, 1951b). The side chain substituents

project above this plane: those appearing at the right side

of the chain are designed as α, and those appearing at the

left as β (iii and iv, for the cholestane side chain). The

second convention uses the sequence rules of Cahn, Ingold

and Prelog (Cahn et al., 1966), according to which, briefly,

when substituents of a saturated carbon atom, arranged in

decreasing order of atomic number, are viewed so that the

substituent of least precedence is on the remote side of the

carbon, are arranged clockwise, this carbon is designated

as R, and if they are arranged counterclockwise, this car-

bon atom is designated as S. The application of these rules

to the side chain of brassinolide (1) and  22,23-

diepibrassinolide are presented in formulae v and vi, re-

spectively. The second convention is adopted for the offi-

cial nomenclature of steroids (Joint Commission on Bio-

chemical Nomenclature, 1989). The symbol ξ is used for

designating a stereocenter of unknown configuration.

Figure 30. Notations for the steroid system.
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NOTE ADDED IN PROOF

A recent publication describes the identification of the

seven new brassinosteroid precursors 214-220 of the 22α-

hydroxy type (figure 31) in cultured cells of C. roseus and

in A. thaliana seedlings of wild phenotype and det2-1

mutant [Fujioka S, Takatsuto S, Yoshida S (2002) An early

C-22 oxidation branch in the brassinosteroid biosynthetic

pathway. Plant Physiology 130:930-939].

Arabidopsis seedlings of the det2-1 mutant resulted in 16 %

conversion to 22α-hydroxy-4-campesten-3-one (215) and 0.3

% conversion to 6-deoxocathasterone (54), accompanied by

the accumulation of 22α-hydroxy-4-campesten-3-one (215).

Feeding C. roseus cultured cells or 7-day old Arabidopsis seed-

lings of the wild phenotype with hexadeuterated 6-

deoxocathasterone (54) resulted in the detection of 3-epi-6-

deoxocathasterone (55) and 22α-hydroxy-5α-campestan-3-

one (216). Either labeled 6-deoxotyphasterol (42) or 6-

deoxoteasterone (43) were detected in these experiments.

It was also found that administration of 22α-

hydroxycampesterol (214), 22α-hydroxy-4-campesten-3-one

(215), 22α-hydroxycholesterol (217) or 22α-hydroxy-4-

cholesten-3-one (218) failed to rescue the wild phenotype when

applied to dark or light grown Arabidopsis det2-1 mutants.

On the other hand, 22α-hydroxy-5α-campestan-3-one (216),

6-deoxocathasterone (54), 22α-hydroxy-5α-cholestan-3-one

(219) and 6-deoxo-28-norcathasterone (54a) rescued the wild

phenotype when applied to dark or light grown Arabidopsis

det2-1 mutants, the last two less effectively.

These findings led the authors to propose the operation of

an early C-22 oxidation subpathway in the biosynthesis of

brassinosteroids (figure 32), which could probably be linked

to the late C-6 oxidation pathway via the 23α-hydroxylation

of either 3-epi-6-deoxocathasterone (55) or 6-

deoxocathasterone (54) to, respectively, 6-deoxotyphasterol

(42) or 6-deoxoteasterone (43). These results suggest that

brassinosteroids are biosynthesized through a metabolic grid

instead of two distinct or linked main pathways.

Feeding C. roseus cultured cells or 7-day old Arabidopsis

seedlings of the wild phenotype with hexadeuterated 22α-

hydroxycampesterol (214) resulted in the detection of labeled

22α-hydroxy-4-campesten-3-one (215), 22α-hydroxy-5α-

campestan-3-one (216), 6-deoxocathasterone (54) and 3-epi-

6-deoxocathasterone (55), while administration of 214 to

Figure 31. New brassinosteroid precursors detected in C.

roseus and A. thaliana.

Figure 32. Early C-22 oxidation subpathway in brassinosteroid biosynthesis.
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