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A Short Note on a Nonlinear System 
Vibrations under Two Non-Ideal
Excitations
This paper describes a nonlinear phenomenon in the dynamical behavior of a nonlinear
system under two non-ideal excitations: the self-synchronization of unbalanced direct
current motors. The considered model is taken as a Duffing system that is excited by two
unbalanced direct current motors with limited power supplies. The results obtained by
using numerical simulations are discussed in details
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Introduction
We remark that the study of non-ideal vibrating systems, that is,

those where the excitation is influenced by the response of the
system, is still considered to be a major challenge in theoretical and 
practical engineering research.1

When the excitation is not influenced by the response, it is said
to be an ideal excitation or an ideal source of energy. On the other
hand, when the excitation is influenced by the response of the
system, it is said to be non-ideal. Thus, depending on the excitation,
one refers to vibrating systems as ideal or non-ideal.

The behavior of ideal vibrating systems is well known in current 
literature, but there are few published results on non-ideal ones.
Generally, non-ideal vibrating systems are those for which the
power supply is limited. The behavior of the vibrating systems
departs from the ideal case as power supply becomes more limited.
For non-ideal dynamical systems, one must add an equation that
describes how the energy source supplies the energy to the
equations that govern the corresponding ideal dynamical system.
Thus, as a first characteristic, the non-ideal vibrating system has one 
more degree of freedom than its ideal counterpart.

The first kind of non-ideal problem arising in current literature
is the so-called Sommerfeld effect, discovered in 1902 (see
Sommerfeld, 1902), discussed in a book by (Kononenko, 1969), and 
entirely devoted to the subject. Recently, a review of different
theories concerning this subject, was presented in (Balthazar et al,
2001), (Balthazar et al., 2002) and (Palacios, 2002).

Self-synchronization of shafts is a well-known nonlinear
phenomenon, whereby two (or more) unbalanced shafts on a
common movable structure may rotate synchronously due to
interaction via structural vibrations only, even in the absence of any
direct kinematics coupling. The phenomenon has been extensively
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studied by asymptotic methods to predict possible (multiple) steady-
state rotational motions and to evaluate their stability, mostly with
application to the design of vibrators with a reduced number of
driving motors. Certain cases of undesirable shaft self-
synchronization in engineering have also been studied, but only
steady-state motions were analyzed. Results of numerical simulation 
of transient self-synchronization of rotating shafts, one potential
application being gas turbine engines with multiple shafts, was
studied by (Dimentberg, 2001).

In this paper, two unbalanced dc motors are used to demonstrate 
the self-synchronization that may occur when the shafts rotation
speeds become temporarily close to one another depending on the
torque, considered as the control variable, and of a support with
nonlinear stiffness.

This paper is an extension of the following previous works:
(Palacios, 2002) that studied a portal frame with nonlinear
characteristic of elasticity under one non-ideal excitation; (Balthazar 
et al., 2001) and (Warminski and Balthazar, 2001) and (Warminsky 
and Balthazar, 2003) that studied the non-stationary regime of a DC 
motor with limited power supply;  (Kang, 2002) that studied the
non-linear dynamic of non-linear systems subjected to double
excitations; (Dimentberg et al., 2001) that studied the self-
synchronization of rotors and Sommerfeld effect and (Blekhman,
1988) that studied the self-synchronization of two unbalanced
rotating machines mounted on a linearly elastic support.  A first
announcement of this work was done by (Palacios et al, 2003).

Nomenclature
â  = control parameter, dimensionless
b̂  =parameter  related to a type of motor, dimensionless
Fd = Non-linear damping function
Fs = Non-linear stiffening function
J1 = moment of inertia of rotor 1, kgm2

J2= inertia moment of rotor 2, Kgm2

kc = friction coefficient in the bearing 
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kM= motor parameter
M1 =driving torque of the motor 1, Nm
M2 = driving torque of the motor 2, Nm
m0 =total mass of vibrating parts, kg
x = generalized coordinate, dimensionless
Greek Symbols

1ϕ = angular displacement of motor 1, rad.

2ϕ = angular displacement of motor 2, rad.

ω̂ = natural frequency of the system, dimensionless
Subscripts
1 = relative to the horizontal displacement 
2 = relative to the vertical displacement 

Dynamical Model of the Nonlinear System 
Consider a nonlinear mechanical system consisting of two

unbalanced rotors driven by two dc motors with limited power
supplies and mounted on an elastic support with nonlinear stiffening 
and damping. Figure 1 illustrates such a system.

Figure 1. Schematic representation of the cantilever beam supporting two
non-ideal motors.

The differential equations of motion may be written as follows
(see, for instance, Nóbrega, 1994; Dimentberg et al., 2001;
Warminski and Balthazar, 2001; Balthazar et al., 2001; Kang et al.,
2002; Blekhman, 1988 and Palacios, 2002): 
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where

0m = is the total mass of vibrating parts,

1 2,J J = moment of inertia of motors 1 and 2,

)(xFd = Non-linear damping function (for Van der Pol model, it is 

xx )1( 2 −γ ),

)(xFs = Non-linear stiffening function (for Duffing model, it is 

3
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1ϕ , 2ϕ  = Rotation angles of the rotors measured from the lowest 

vertical position,
x  = Vertical displacement of the supporting body from the 

equilibrium position,

ck  = Friction coefficient of bearings, 

Mk  = Motor parameter,

1M  , 2M  = The torques of the motors, 

1 2,q q ,  ( 1 4)j jα = …  = Parameters depending on the eccentricities 

of rotors and physical parameters of the system.
The motor torque can be expressed (Balthazar et al., 2001), for 

non-stationary regime, by the following expressions:
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and, if stationary regime is considered, the above  expressions 
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where 1U , 2U  are voltages applied across the armature of the 

motors.
Next, we will consider the non-ideal Duffing model in 

dimensionless form:
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where
tτ ω=  Defined as dimensionless time, 

1̂a , 2â  = Dimensionless torques applied by the dc motors, used as 

control parameters,

b̂ = identical dc motors model,

µ̂ =dimensionless damping coefficient,

ω̂ = dimensionless natural frequency of the Duffing oscillator,

p̂ = dimensionless cubic stiffness coefficient.

In the next section we will study the self-synchronization of the 
non-ideal system represented by differential equations (4) using the 
characteristic curve of the motors in the straight-line approximation 
(3).

Numerical Simulation Results
To simulate the mathematical model of the system (4), 

MATLAB-SIMILUNK Software, was used. Differential equations
were solved by integration method of Runge-Kutta. Numerical, 
dimensionless data for the non-ideal non-linear system are shown in 
Table 1.

Table 1. Systems parameters.

Dynamical System Numerical value of the 
dimensionless parameters
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equation (3) and (4)
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Results of computations are presented Fig. 2-4. Behavior of the
system was observed during the selection of the torques as 1 2ˆ ˆa a≈ ,

1 2ˆ ˆa a≠ .

We analyze the self-synchronization of the two unbalanced
rotors in post-resonance and resonance regions related to the
difference between rotors velocities. Figures 2(a) and 4 (a) have an
expanded portion bellow.

First Set of Numerical Simulation Results:

Figure 2 illustrates the development of self-synchronization in 
the non-ideal and non-linear mechanical system when the 

dimensionless torques are 1̂a =5.0, 2â =5.04.  We observe that the 

rotors turn in the same direction and arrive to some average 
rotational velocity in steady state motion, see Fig. 2(a), where the 
rotational velocities are in anti-phase (the rotors synchronize anti-
phase), see the zoom of Fig. 2(a) bellow. The velocities of the rotors 
are out of the resonance region. Note also that the rotor velocity 
(difference) approaches zero in the stationary regime, see Fig 2(c). 
At the same time, the vertical displacement of the supporting body 
decreases; see Fig. 2(b).

Figure 2. Self-synchronization of the unbalanced rotors with torques

1â =5.0,
2â =5.04.

Figure 2. (Continued).

Second Set of Numerical Simulation Results:

Figure 3 illustrates the absence of self-synchronization when the 

torques are different, 1̂a =5.0 and 2â =1.5.  It is seen that the

rotational velocities of the rotors have different values. 
The rotational velocity of the second rotor is captured at the

resonance region of the system and the rotational velocity of the first 
rotor is above of the resonance region (see Fig. 3(a)). Note that the
vertical displacement of the supporting body does not decrease (see
Fig. 3(c)), and note also that the rotor velocity difference (see. Fig.
3(b)) does not tend to zero; i.e. the self-synchronization is absent.

Figure 3. Absence of self-synchronization of the unbalanced rotors with
torques 1â =5.0 and 

2â =1.5.
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Figure 3. (Continued).

Third Set of Numerical Simulation Results:

Figure 4 shows the synchronization for a certain time interval,
where we may observe the reduction of the damping of the support.
We also observe that the response follows the some synchronization 
of the rotation of the rotors. In this case the constant torques

considered were 1â =1.5 and 2â =3.0.

Figure. 4. Simulations results when we reduce the damping of the
supporting µ̂ =0.001 with 1â =1.5 and 2â =3.0.

Figure 4. (Continued).

On other hand, we observe chaotic behavior in the interaction
between the Duffing oscillator and the two unbalanced rotors when
damping of the support is reduced (see Figs 4(b) and (c)).

Conclusions
A practical problem of synchronization of a non-ideal and

nonlinear vibrating system was posed and investigated by means of
numerical simulations. It has also been shown, that by making
constant the variation of torques, we may control the self-
synchronization and synchronization (in the system).

This work has as its motivation the investigation of a class of
vibrating machines: crushers, mills, screens, feeder, etc. We
developed mathematical models and implemented numerical
analysis that may also be used for control purposes.
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