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Vibrations of a Parametrically and 
Self-Excited System with Ideal and 
Non-Ideal Energy Sources 
Interactions between parametric, self-, and externally excited vibrations are analysed in
this paper. The physical model of the vibrating system consists of a non-linear spring with 
periodically changing stiffness of Mathieu type and a non-linear damping described by
Rayleigh’s term. This system is additionally forced by a harmonic force (ideal system), or
by a non-ideal energy source represented by a direct current motor with limited power
supply. The model of DC motor is considered in two variants, as a classical, in
Kononenko´s sense model, and a complete electro-mechanical system. Quantitative and
qualitative differences of the considered models are compared and discussed in the paper.
Keywords: parametric vibrations, self-excitation, non-ideal system, chaos

Introduction
In engineering practice we can distinguish different types of

oscillations generated by different causes. Among them, we can
mention the self-excited systems in which (roughly speaking) a
constant input produces a periodic output. The supply of energy is
controlled by the internal properties of the system. Vibrations can
exist for autonomous systems without excitations depending on time 
and the motion does not depend on initial conditions, but on
parameters of the system. This kind of vibration is represented by
limit cycles on the phase plane. If the limit cycle is stable, then the
self-excitation is called soft.  On the other hand, in opposite
situation, the limit cycle is unstable and self-excitation is called hard 
or catastrophic (because solution can tend to infinity).
Parametrically excited vibrations belong to the second class of
vibrating systems and they are characterised by periodically
changing in time parameters, like stiffness or mass moment of
inertia. Their characteristic feature is that they are described by
homogenous, but nonautonomous, differential equations. For some
parameters regions the trivial solution can be unstable and the
system comes to vibrate with large amplitudes. A third class, which 
we can specify, are vibrating systems excited by an external force.
Their mathematical model is described by nonhomogenous
differential equations. 1

All these vibrating systems were comprehensively analysed in
the current literature separately. Some papers were also devoted to
the interactions between two kinds of vibration, for example: self-
and externally excited vibrations (Awrejcewicz and Mrozowski,
1989), self and parametrically excited vibrations (Tondl and Ecker,
1999), (Warminski, 2001b). The influence of the external force on
parametrically and self-excited system was presented in (Szabelski
and Warminski, 1995 a, b), (Warminski, 2001a). There were
observed interactions between three different vibration types
exciting the system together at the same time.

If the system is forced by a function independent of the system it 
acts on, then the model is called ideal. In such case, the excitation
may be formally expressed on the right side of differential equation
by a function of time. It means that the force is generated by a
source with infinite power (ideal). However, if in a certain model
the ideal source is replaced by a source with limited power (non-
ideal), then the excitation must be put in the form of a function
which depends on the response of the system. Therefore, a non-ideal
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source can not be expressed as a function of time, but rather as an
equation that relates the source to the system of equations that
describes the model (Balthazar et al., 1997), (Pontes et al., 2000).
Hence, non-ideal models always have one additional degree of
freedom as compared to the ideal counterparts. In the classical book 
devoted to non-ideal systems (Kononenko, 1969), the energy source
is modeled by the stationary characteristic of the DC motor. To
obtain dynamical model, which is close to the realistic system, it is
necessary to consider also an additional equation called the
electrical equation of the motor (Belato et al., 2001).

The main purpose of this paper is to analyse the influence of the 
external force, generated by the non-ideal energy source, on a
parametrically and self-excited system. Also, to present results
obtained for two non-ideal models: the first model simplified in
classical Kononenko sense (Warminski, 2001c), (Balthazar et al.,
1997), in which the quasi-static characteristic of the energy source is 
taken into account, and the second model a complete electro-
mechanical one (Warminski and Balthazar, 2001). New dynamic
phenomena and differences between regular and chaotic motion, in
each level of simplifications, will be emphasized in the paper.

Dynamical Model of the System
Let us consider a parametric and self-excited model, which

includes a direct current (DC) motor with limited power supply,
operating on a structure (Fig. 1). The excitation of the system is
limited by the characteristic of the energy source (non-ideal energy
source). Then, the coupling of the vibrating oscillator and the DC
motor takes place. As the vibration of the mechanical system
depends on the motion of the DC motor, also the motion of energy
source depends on vibrations of the system. Hence, it is important to 
analyse what happens to the motor, as the response of the system
changes.

Figure 1. Mechanical model of the vibrating system (a), and the electrical
schematic representation of DC motor (b).
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Let us assume that the mathematical model consists of a DC
motor which is supported by a non-linear spring with periodically
changing stiffness of Mathieu type, and that damping of the system
is described by non-linear Rayleigh’s function. These two terms
guarantee coexistence of two types of vibrations in the dynamical
system: parametric and self-excitation. The direct current motor,
with rotating mass, is an external energy source forcing this system.

The electrical scheme of the DC motor representation is
presented in Fig. 1 (b). The equations governing the motion of the
DC motor are typically written in the form (Pelczynski and Krynke,
1984):

( ) ( ) ( )
2

2 m z
d
J M t M t H t
dt

f = − − (1)

( ) ( )
( )

( )t t
dI t

U t R I t L E t
dt

= + + (2)

where: time functions U (t) and I (t) are the voltage and the current
in the armature, Rt and Lt is resistance and inductance of the
armature, E(t) is the internally generated voltage, Mz(t) is an
external torque applied to the motor drive shaft, H(t) is a frictional
torque and Mm(t) denotes the torque generated by the motor. The
torque Mm(t) and internal generated voltage E(t) can be expressed as

( )( )m MM t c I t= Φ (3)

( ) ( )EE t c tw= Φ (4)

where: cM, cE are mechanical and electrical constants and Φ is the
magnetic flux. Let us assume that external exciting current Im and
voltage Um are constant and then the magnetic flux Φ is also
constant in the considered model. Taking into account Eqs. (1)-(4)
and mechanical model published in (Warminski et al., 2001), we can 
write the differential equations of the complete electro-mechanical
system presented in Fig. 1 as follows: 

( )
( )

( )t E

t t t

dI t R c U t
I t

dt L L L
fΦ ′= − − + (5)

( ) ( ) 0 0cos cosMJ c I t H m rx m grf f f f ′′ ′ ′′= Φ − + −   (6)

( ) ( )( )3 2
0 1 0, cos2 sin cosomx f x x k k x k x m r m rf f f f f′′ ′ ′ ′′+ + − + = −

(7)

where a prime denotes a derivative with respect to dimensional time.

The function ( ) ( )21 1̂,f x x c c x x′ ′ ′= − +  is called Rayleigh’s

function and it describes a non-linear damping of the system.

Introducing dimensionless time 0tt w= , where 0 k mw =  is the 

natural frequency of the system and 1 0m m m= + , we can write

the system of differential equations (5)-(7) in a dimensionless form
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a static displacement of the system, Ir is a rated current in the
armature and dots indicate  differentiations with respect to
dimensionless time. 

In the current literature, very often the model of DC motor is
simplified (Kononenko, 1969), (Balthazar et al., 1997), by taking

into account that 0I = , and the moment generated by the motor
can be expressed by 

2 2 3

1 1
m

p p pM U
p p

w= − . (11)

Then, a straight line approximates the characteristic of the DC motor 
model.

The mathematical model of the vibrating system described by
Eqs. (8)-(10) can be considered in three variants:
¾ Ideal system, if there is no coupling between motion of the

rotor and vibrating system 

( ) ( )( )2 2 2
11 cos2 1 sinX X X X X qa b m wt g w wt+ − + + − + =

(12)

where f wt= .
On the right side of equation (12), a function of time is present.

¾ non-ideal system in Kononenko’s sense

( ) 2 cosq Xf t f= Γ − (13)

( ) ( )( ) ( )2 2 2
11 cos2 1 sin cosX X X X X qa b m f g f f f f+ − + + − + = −

(14)

where ( ) ( ) ( )mM Hf f fΓ = −  is the difference between the torque

generated by the motor and the resistance torque. Function

( ) 1 2u uf fΓ = −  is approximated by a straight line, where 1u  is a

control parameter and it can be changed according to the voltage,

2u  is a constant parameter, characteristic for the model of the

motor.
¾ Full non-ideal electro-mechanical system described by Eqs.

(8)-(10).

All above three models describe the same problem in different
simplification levels. However, they may lead to qualitative and
quantitative differences in their behaviours. The comparison of the
results obtained for ideal and non-ideal problems and for different of 
DC motor models are presented in the next section.

Analysis of the Vibrating System in Different
Simplification Levels

The numerical simulation of the vibrating system was carried
out for parameters of the DC motor taken from (Pe³czynski and
Krynke, 1984) and mechanical parameters, which correspond to the
paper (Warminski et al., 2001). Numerical dimensionless data for
the model presented in Fig. 1 are following:
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(15)

In the ideal model described by (12), the external force is
expressed on the right side of the differential equation by a pure
function of time. Analysis for this ideal problem was carried out in
details in (Szabelski and Warminski, 1995a, b).
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Figure 2. Amplitude curves around the main parametric resonance for the
ideal system, (a) without an external force αα = 0.01, ββ = 0.05, γγ = 0.1,
µµ = 0.2, q1 = 0, and (b) for the system forced by ideal harmonic function
αα = 0.1, ββ = 0.05, γγ = 0.1, µµ = 0.2, q1 = 0.2.

If the external force is not present ( 1 0q = ) then the resonance

curve has the shape presented in Fig.2 (a). Interaction between
parametric and self-excited system leads to the synchronisation
phenomenon near the main parametric resonance. In this region,
parametric vibrations dominate. They pull in the frequency of self-
excited vibrations and the system vibrates with a single frequency
and with a constant amplitude (solid line in Fig.2 (a)). Outside the
synchronisation regions, influence of the self-excitation is bigger
and two frequencies in the response of the system occurs. System
vibrates quasi-periodically and its motion is visible as a quasi-
periodic limit cycle on the phase plane (see details Szabelski and
Warminski, (1995 a,b) ). Vertical lines in Fig.2 (a), which denote
maximal and minimal values of the modulated amplitude, mark this
motion.

The external force causes very important qualitative changes.
Behaviour of the ideal system for 1 0.2q = is presented in Fig.2 (b).

Additional solutions, having a shape of an internal loop, appear in
the synchronisation region. However only the upper part of this loop 
is stable.

Figure 3. Amplitude curves versus parameter q1.

The shape of the resonance curve depends on the value of the
amplitude of the external excitation. The internal loop is visible only 
for small level of the external excitation. For large value of the 1q
parameter, the loop disappears (Fig.3). 
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Figure 4. Amplitude of vibrating oscillator and angular velocity of the
motor versus control parameter u1.
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If we assume that the system is forced by a DC motor with
limited power, then it is necessary to consider its dynamics in the
model and to solve the system of differential equations (13)-(14).
The torque generated by DC motor is limited and, according to
classical Kononenko theory, is assumed as a straight line. Transition 
through the resonance region is possible if the parameter 1u ,

connected with voltage supplied to the motor, is increased. The
vibration amplitude of the oscillator and the angular velocity of the
rotor are presented in Fig.4. 
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Figure 5. Amplitude versus angular velocity of the motor.

Outside the synchronisation region the oscillator vibrates quasi-
periodically and the motor angular velocity changes have quasi-
periodic character as well (vertical lines in Fig.4). Inside the
synchronisation area the motion of the system is periodic (solid line
in Fig.4). During transition through this resonance, local decreasing
of the amplitude and angular velocity takes place. This phenomenon 
affects the resonance curve, amplitude versus excitation frequency
(Fig.5). On the resonance curve, an internal loop is visible, however 
its lies on the left branch of the curve and is completely stable.
Analytical solutions and stability analysis have been carried out in
(Warminski et al., 2001).

Time histories of the vibration of the oscillator and the variation 
of the angular velocity of DC motor are presented in Fig.6. In Fig.6 
(b), the system vibrates with the constant amplitude while, in Fig.6
(a), (c), (d) the motion is quasi-periodic.

The most adequate model to the realistic problem is described
by electro-mechanical equations (8)-(10). To simulate the
mathematical model of this system, MATLAB, SimulinkTM and
Dynamics package (Nusse and York, 1998) were applied.
Differential equations were solved by fifth order Runge-Kutta
method with automatic step length and integration error control.
Behaviour of the system was observed during slow voltage
increasing, and then vibration amplitude of the oscillator and
angular velocity of the motor were plotted. 
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Figure 6. Times histories for non-ideal system and chosen control
parameters 1u ;  (a) u1=1.30,  (b) u1=2.20,  (c) u1=2.40,  (d) u1=2.80.
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Figure.7. Displacement of the oscillator and angular velocity of the shaft
versus control  parameter U and versus dimensionless time near the main 
parametric resonance,  simplified (a) and complete (b) model of DC motor.

The dimensionless voltage applied across the armature
( ) ( )0, 5U t ∈  is the control parameter. In Fig. 7 we can compare

results obtained for two different models of a non-ideal problem.
The model simplified in Kononenko sense is limited by influence of
the DC motor characteristic described by the Eq. (11). The
stationary characteristic of the motor, for assumed data (15), is
expressed by the function ( ) 1.83 5.57f fΓ = − . Transition through

resonance for this model is presented in Fig. 7(a). The results for the 
complete electro-mechanical model described by the full system of
differential equations (8)-(10) are presented in Fig.7 (b). Transition
through the main parametric resonance takes place for voltage near

( )3, 4U ∈  and for time ( )600, 800t ∈ . Comparing Fig. 7 (a) and (b),

we can find that the motions of the oscillator X have similar
character. Near 3.5U = , in both figures, local decreasing of
vibration amplitude of the oscillator is visible. Transformations of
Figs.7 (a) and (b) to the dependence ( )a Ω i.e. the amplitude versus 

angular velocity curve, lead to the loop presented in Fig.5. The
important difference occurs in DC motor dynamics. The changes of
angular velocity ω are much more complex for the complete electro-
mechanical model (Fig.7(b) ) than for the simplified non-ideal
model (Fig.7(a) ).

(a)

(b)

Figure 8. Lyapunov exponents diagram versus control parameter U,
simplified (a) and complete (b) DC motor model, regular motion (µµ=0.2).

(a)

(b)

Figure 9. Lyapunov exponents diagram versus control parameter U,
simplified (a) and complete (b) DC motor model, chaotic regions (µµ=1.0).

ω X

ω X
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If we compare Lyapunov exponents diagrams obtained for the
same parameters (Fig. 8), we see that for the considered interval of
the control parameter, the motion of the system is regular; Lyapunov 
exponents are negative or equal to zero. Nevertheless, we can notice
that around the intervals near 1.0U =  and (3, 4)U ∈ , behaviour

of the system in the diagram Fig. 8 (b) is more complex. It confirms 
results presented in Fig. 7(b). 

For the ideal system (Eq. (12)) and for a wide range of
parameters used, it was not possible to find chaotic motion of the
model. The ideal system vibrates regularly, periodically or quasi-
periodically (Szabelski and Warminski, 1995 a,b). For non-ideal
model, based on the paper (Warminski, 2001b), we can expect that
the increase of the parametric excitation can lead to chaotic motion.
Therefore, let us assume for both considered non-ideal models, that
the parametric excitation is µ=1.0.  Lyapunov exponents diagram
for that case is plotted in Fig. 9.

We see that in a few intervals of the control parameter U,
maximal Lyapunov exponent has a positive sign. However, the
tendency in transition to chaotic motion is different. Chaotic motion 
for the full electro-mechanical model (Fig. 9(b)) appears in a wider
region, in opposition to the simplified model (Kononenko approach) 
for which chaotic motion appears only for a few small regions. 

(a)

(b)

Figure 10. Poincaré diagrams for equivalent DC motor models, regular
attractor for simplified model (a) and strange chaotic attractor for
complete model (b), µµ=1.0, U=2.0.

Poincaré diagrams for equivalent parameters and different non-
ideal models are presented in Fig. 10. The motion of the simplified

model is regular and it is represented by a closed orbit in Fig.10(a),
with Lyapunov exponents 1 20, 0, 007l l= = − ,

3 40.106, 5.739l l= − = − , whilst the motion of the complete model

for the same parameters, is chaotic. In Fig. 10(b) the chaotic
attractor with one Lyapunov’s exponent positive is presented
( 1 2 30.077, 0, 0.159l l l= = = − , 4 0.348l =− , 5 0.516l =− ).

This result shows that the difference in dynamic behaviour for
different models is significant, particularly for regions where chaotic 
motion is possible.

Remarks and Conclusions
Analysis carried out in this paper emphasizes differences in

modeling of ideal and non-ideal systems for a chosen class of self-,
parametric and externally excited vibrations. Behaviours of the ideal 
and non-ideal system are different. The external force generated by
the ideal motor introduces additional solutions in the
synchronisation region. These solutions are observed as an internal
loop inside the resonance curve with only the upper part stable.
However if the parametric and self-excited system is forced by a
non-ideal energy source, the loop moves to the left branch of the
curve and becomes stable. 

The obtained results let us also conclude that two different
approaches to the modeling of non-ideal systems can lead to
important differences. The classical model proposed by Kononenko
(1969) is based on the pure mechanical model of the DC motor and 
takes into account the stationary characteristic of the energy source.
That approach considers only mechanical interactions between the
oscillating system and the energy source, which is limited by an
assumed straight line. To be close to the realistic system, the model
should take into account also influence of the dynamics of the
oscillating mechanical elements on electrical properties of the DC
motor. Therefore, two alternative models were analysed in this
paper: the simplified classical model and the complete electro-
mechanical model. Numerical simulations show that for regular
motion, and for slow transition through the resonance region,
behaviour of two considered models is similar. Nevertheless, if the
dynamics of the systems becomes complex, then the difference in
the response of those two models is more significant. Transition
from regular motion to chaos is possible for both models. However,
the tendency in going to chaos for the electro-mechanical model is
bigger. The general conclusion is that simplified model attenuates
dynamics of the realistic system. For example, if the chaotic region
is found for the simplified model, we can expect that for the
complete electro-mechanical model chaotic motion will appear in a
much wider area. The opposite situation was not observed.
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