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The Height of Maximum Speed-Up in 
the Atmospheric Boundary Layer 
Flow Over Low Hills 
In this paper, we study the height of the maximum speed-up, l, for atmospheric boundary 
layer flows over low hills in a neutral atmosphere. A recent analytically-derived 
expression for l is compared to the results of several other expressions available in the 
literature. A critical analysis of all these equations is presented and a new constant 
obtained from field data is proposed for one of them. We find that the new expression 
describes observational data better than the others. Through an order of magnitude 
analysis, we also show that the inner layer depth, calculated as the height where inertia 
and turbulent forces dominate the other terms and balance each other in the x-momentum 
equation, can also be used to estimate the height of maximum speed-up. Starting from four 
analytical speed-up profiles available in the literature, we calculate l by searching for the 
critical points of these speed-up functions, resulting in new equations for l. All these 
equations are analysed and our results suggest which one of them performs better when 
compared to field and wind tunnel data. 
Keywords: Flow over hills, height of maximum speed-up, inner-layer depth, small scale 
topographic features, atmospheric boundary layer 
 
 
 

Introduction 

There is considerable technological interest in estimating the 
height where the wind speed-up is maximum in the Atmospheric 
Boundary Layer (ABL) over low hills. Wind energy specialists are 
often interested in the precise value of this height in order to 
efficiently site the wind turbines. Since the output power of a wind 
turbine is proportional to the cube of the wind velocity, a small wind 
speed-up corresponds to a large power increase. Engineers also need 
to know the height of the maximum speed-up to calculate the wind 
loads on structures that are located on the hilltop, such as antennas 
and transmission towers.1 

On the other hand, the correct calculation of the height of the 
maximum speed-up, usually denoted by l, is also important in itself. 
The knowledge of l allows for the adequate prediction of the value 
of the maximum wind speed-up, which can be obtained by 
substitution of its value in an expression for the vertical profile of 
the wind velocity, if this expression is available. In addition, 
numerical schemes can use the value of l as a subdividing height of 
the flow field in order to separate fine-mesh regions from coarser 
ones. 

Due to the recognition that hills provide a natural way to 
enhance wind speeds, many mathematical expressions to calculate l 
have been proposed in the literature. The most well-known 
expressions come from the works of Jackson and Hunt (1975) (and 
Hunt et al., 1988a), Jensen et al. (1984), Claussen (1988) and 
Beljaars and Taylor (1989), here referred to as JH, JEN, CL and BT, 
respectively. Walmsley and Taylor (1996) write these expressions as 
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In Eqns. (1)–(4), Lh is the half-length of the hill, defined 
following JH as ‘the distance from the hilltop to the upstream point 
where the elevation is half its maximum’, z0 is the roughness length 
and κ is the von Karman’s constant. A comparative study of the 
relative merits of each equation can be found in Walmsley and 
Taylor (1996). Dividing Eqns. (1) – (4) through by z0 and rewriting 
the constants in Eqns. (3) and (4) as C1κ2 and Cnκ2, respectively, we 
obtain 

 
+++ = hLll 22)ln( κ , (5) 

 
+++ = hLll 22 2)(ln κ , (6) 
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1)ln( κ , (7) 
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where 0zll ≡+  and 0zLL hh ≡+ .  

Based on the 210o wind direction case of the Askervein Hill 
experiment (Taylor and Teunissen, 1985, 1987), Claussen (1988) 
suggests that C1κ2 = 0.09 in Eq. (7). This implies that C1 = 0.56, for 
κ = 0.4, a commonly accepted value. After comparison with the 
results of MSFD, a mixed spectral finite-difference model described 
in Beljaars et al. (1987), BT suggest two different pairs of values for 
n and Cn, depending on the turbulence closure assumed. For the 
mixing-length model, they suggest n = 1.6 and Cnκ2 = 0.55 in Eq. 
(8) and for the E-ε model, n = 1.4 and Cnκ2 = 0.26. This yields Cn = 
3.62 and 1.71, respectively.  

In their work on the ABL flow over hills, JH divides the flow 
field in two regions, one external, where the inertia and pressure 
gradient effects are dominant, and one internal, where inertia and 
turbulence effects are dominant and balance each other. Their 
analysis is based on the theory of perturbed turbulent shear layers 
developed by Townsend (1965) and Bradshaw (1971) and it was 
further developed by Hunt et al. (1988a,b), who divide the external 
region in two parts to solve a matching problem with the internal 
region. More recently, Raupach and Finnigan (1997) divide the 
wind field in three parts, called inner, outer and wake regions. In 
JH’s model, the depth of the inner layer, l, calculated from Eq. (1), 
is also the height of the maximum speed-up, lmax. A number of 
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works published later adopt this assumption and try to verify that the 
estimate obtained for l from the available expressions do in fact 
confirm the field data for lmax. Other authors, such as Taylor et al. 
(1987) and Beljaars and Taylor (1989), acknowledge that there is a 
difference between l and lmax, but they still compare predictions for l 
with field data for lmax. Taylor et al. (1987) state that ‘l is probably 
best considered as a scale height for the inner layer rather than the 
height at which something specific occurs’. Beljaars and Taylor 
(1989) point out that ‘since the inner-layer depth, l, has been 
introduced by means of order of magnitude considerations, its 
practical definitions is somewhat arbitrary’. 

Apart from this issue, much discussion is found in the literature 
about which one of Eqns. (1)–(4) provides the best estimate for lmax. 
The following aspects are summarised from Walmsley and Taylor 
(1996): 

• regardless of the expression used to obtain l, authors always 
consider l=lmax; 

• values predicted by JH are too high when compared to field 
results; 

• values predicted by JEN agree well with observed values in 
the whole range of variation of Lh/z0, but CL gives better 
agreement at the specific value of Lh/z0 based on which Eq. 
(3) was calibrated;  

• model results suggest a value for n between 1 and 2 in BT; 
• more observational data is required to resolve definitively 

the question of which mathematical expression describes l 
best. 

In the present study, we obtain an equation for l based on order 
of magnitude arguments applied to the x-momentum equation for 
the ABL. The focal point of the work is to evaluate this expression, 
along with the most common expressions available in the literature, 
to be able to estimate the height of the maximum speed-up, lmax, 
through a comparison with the experimental field and wind tunnel 
data available in the literature.  

The analysis is slightly different from the ones generally found 
in the literature (Taylor et al., 1987). The resulting equation differs 
from Eq. (6) only by a constant, which needs to be estimated 
through a comparison with field data. Once the value of this 
constant is obtained, calculated values of l are compared with 
available field data and the agreement is shown to be good. 
Calculated values of l are also compared with those predicted by 
Eqns. (5)–(8) and are seen to perform better. We also propose a new 
value for the constant in the CL equation and show that predicted 
results are at least as good as the ones obtained with the JEN 
equation. In addition, we confirm that the JEN equation gives better 
results than the JH equation, suggesting that the latter should be 
substituted by JEN or CL, corrected with the constant proposed 
here. Further analysis of the equation for l indicates that the 
predicted values can also be used to estimate lmax. We also calculate 
expressions for lmax from the analytical speed-up profiles proposed 
by Taylor and Lee (1984), Lemelin et al. (1988), Finnigan (1992) 
and Pellegrini and Bodstein (2002b). The resulting expressions for 
lmax are compared to field data, and it can be seen that the results 
obtained from the profiles of Taylor and Lee (1984) and Lemelin et 
al. (1988) are rather similar to that of JH.  

Order of Magnitude Analysis 

Consider an isolated 2D hill in the middle of an otherwise flat 
terrain of constant roughness length and under a neutrally stratified 
atmosphere. Following Kaimal and Finnigan (1994), we consider a 
hill to be a topographical feature with a (horizontal) characteristic 
length less than 10 km. Based on the height-to-length scale ratios 
observed in natural hills (1:10), this leads to heights of up to 1 km. 
Larger topographical features are considered mountains. We also 

assume that a hill has a low slope when its average slope does not 
exceed 10°. For a horizontal length scale of 10 km, the hill height 
should not exceed 900 m. Lengths smaller than that lead to smaller 
heights and, therefore, the corresponding hills are said to be low.  

Figure 1 illustrates the main features of a typical low hill. The 
vertical coordinate z is defined as the height above the local terrain 
rather than the vertical height above sea level. For the cases of very 
large roughness elements, z is considered to be the displaced height 
above the local terrain. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure1. Definitions of z, h, Lh, 0u  and u∆ . 

 
We assume that the vertical profile of the horizontal mean wind 

velocity is essentially logarithmic far upwind of the hilltop (HT). 
This profile is denoted by )(0 zu , and the location where it is 

observed is referred to as the reference site (RS). The RS profile 
suffers the influence of the hill in such a way that it is modified by a 
speed-up ),( zxu∆ , becoming ),( zxu  at a given point over the hill. 
Thus the speed-up is defined as 
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Based on this equation, we define the relative speed-up as 
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The height where u∆  is a maximum is denoted by lmax, whereas 

the depth of the inner-layer is denoted by l.  
In what follows, we develop an order of magnitude analysis of 

the governing equations to obtain an expression for lmax. We proceed 
in two steps: first we obtain the expression for the inner layer depth, 
l; next, we show that this depth can also be used to estimate the 
maximum speed-up height, lmax.  

Inner-Layer Depth 

In order to determine l, we follow Kaimal and Finnigan (1994) 
and work with the streamline coordinate system, which is suitable 
for distorted flows of this type. The mean x-momentum equation for 
2D flows in this system can be obtained from Finnigan (1983). As 
only the neutral atmosphere case is considered here, the buoyancy 
term has been neglected. The equation, then, reads  
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In Eq. (11), x is the direction parallel to the streamlines and u  

and u’ are the mean and turbulent velocities in that direction, 

Streamline 
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respectively. The direction normal to the streamlines is z, and w’ is 
the corresponding turbulent velocity. The thermodynamic mean 
pressure is denoted by p , the mean density by ρ  and the x-
component of the mean viscous force by Vx. The quantity R is the 
local radius of curvature of constant x lines, i.e., the streamlines 
(Kaimal and Finnigan, 1994). La is the local radius of curvature of 
constant z lines. They are related to the mean variables by 

)/( zuuR ∂∂+Ω=  and )/( zuuLa ∂∂= , where Ω is the mean 

vorticity component in the y direction of the original Cartesian 
coordinate system. 

Following Taylor et al. (1987), we suppose the existence of a 
region where the inertia and turbulence terms of Eq. (11) dominate 
the remaining terms and balance each other, we can write 
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To estimate the order of magnitude of this expression, we 

assume that hLx ∼  and lz ∼ . We also assume that 0uu ∼ , which 

means that uu <<∆ . Finally, we assume that *'' uwu ∼∼ , where 

*u  is the friction velocity. With these assumptions, expression (12) 

becomes 
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Introducing an unknown function C2(x) of order 1, expression 

(13) can be rewritten as luxCLlu h
2

*2
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equation, we have 
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Equation (14) is assumed to be valid for the vertical profiles of 

the incident wind at any x location. If the terrain is flat and the wind 
profile is logarithmic at RS, we have )ln()/1( 0*0 zluu κ= . 

Therefore, Eq. (14) becomes )/(ln 0
22

2 zlCLl h κ= . Dividing 

this equation through by z0 and rearranging it, yields 
 

+++ = hLxCll 2
2

2 )()(ln κ . (15) 
 
This equation is identical to that of JEN, except for the constant 

C2 that needs to be determined from a direct comparison with 
observational data.  

Height of Maximum Speed-Up 

In this section we show that l, predicted by Eq. (15) as the inner-
layer depth, can in fact be used to estimate the height of the 
maximum speed-up. The analysis is different from the one presented 
in the preceding section for three reasons: the condition of balance 
between inertia and turbulence is not assumed beforehand; u∆  is 
introduced in the calculation; and, most importantly, the condition, 
of maximum 0=∂∆∂ zu  at maxlz = , is explicitly imposed. 

Substituting Eq. (9) into Eq. (11) and taking into account that 
0)(0 =∂∂ xzu  and uu <<∆ , we obtain 
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In order to impose the condition 0=∂∆∂ zu  at maxlz = , we 

differentiate Eq. (16) with respect to z, and the result is 
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To replace the terms in Eq. (17) by their corresponding orders of 

magnitude, it is necessary to choose an adequate scaling for the 
pressure term. To first order of approximation, Pellegrini (2001) and 
Pellegrini and Bodstein (2000, 2002b) show that Euler’s equation, 
written in streamline coordinates, holds for the ABL flow over hills 
under neutral atmosphere. Hence,  
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Equation (18) indicates the scaling Ruzp /~)/)(/1( 2
0
−∂∂− ρ . 

Substituting this result and the condition 0=∂∆∂ zu  at maxlz =  

into Eq. (17), and assuming that hLx ∼ , lz ∼ , 0uu ∼  and 

*'' uwu ∼∼  as before, yields 
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Assuming that Lh >> lmax and La >> lmax allows the second and 

fourth terms on the right-hand side of Eq. (17) to be neglected in 
comparison to the fourth. In the atmosphere , the viscous term may 
be neglected by recognizing that it is several orders of magnitude 
smaller than the other terms, except in the lowest few centimetres 
above the surface. This fact is generally accepted in the literature, 
based both on observational data (Stull, 1997) and on scale analysis 
(Holton, 1992). Equation (19) then simplifies to 
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at maxll = .  

The order of magnitude of the terms containing R in Eq. (20) 
can be evaluated using the definition ( )zuuR ∂∂+Ω= , which 

shows that maxlR ∼ . Substituting this conclusion into Eq. (20) and 

recalling again that uu <<∆  yields 
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Equation (21) is formally identical to Eq. (13). Therefore, 

assuming a logarithmic velocity profile at RS implies that 
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where the function C3(x) can be determined through comparison 
with observational data, similarly to C2(x).  

The preceding analysis shows that Eq. (22) can be used to 
estimate the height of the maximum speed-up. Since it is identical to 
Eq. (15), we conclude that the function C2(x) can be adjusted so that 
Eq. (15) also furnishes the height of the maximum speed-up. 
Therefore, Eqns. (15) and (22) can both be used to estimate the 
height where inertia and turbulence effects are of the same order of 
magnitude and the height of maximum speed-up. 

Mathematical Expressions for l Obtained from Vertical 
Velocity Profiles  

The availability of a closed-form analytical expression for the 
speed-up in flows over hills allows for the calculation of the point 
where its maximum occurs by setting 0≡∂∆∂ zu , at z = l. The 

maximum itself can also be calculated by substitution of the 
expression obtained for l into the original speed-up function.  

Some expressions for the speed-up function available in the 
literature can be easily subject to this procedure, whereas others 
cannot. This analysis applied to Jackson and Hunt’s (1975) solution, 
for example, does not produce a simple expression for l because 
their speed-up profile depends on a function that is unknown in the 
general case. On the other hand, the results proposed by Taylor and 
Lee (1984), Lemelin et al. (1988) and Finnigan (1992) yield a rather 
straightforward calculation. In a recent study, Pellegrini and 
Bodstein (2002a) also obtained an expression for the height of 
maximum speed-up based on the analytical speed-up function they 
proposed on a companion paper (Pellegrini and Bodstein, 2002b).  

In what follows, the expressions for ),( zxu∆  obtained by 
Taylor and Lee (1984), Lemelin et al. (1988), Finnigan (1992) and 
Pellegrini and Bodstein (2002b) are differentiated with respect to z 
in order to calculate the value of the height of maximum speed-up.  

The Vertical Profile of Taylor and Lee (1984) 

Taylor and Lee (1984) propose a relative speed-up vertical 
profile of the form 

 

 hLAzeSzS /
max)( −∆=∆ , (24) 

 
where A = 4 for 3-D hills and A = 3 for 2-D hills. In the case of 3-D 
hills that are elongated in shape, the authors suggest A = 3.5. The 
definition of S∆ , Eq. (9), implies that  

 

hLAzeSzuzu /
max0 )()( −∆=∆ . (25) 

 
Differentiating this expression with respect to z and setting the 

result equal to zero at z = l, yields the following expression 
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at z = l. Simplifying and rearranging Eq. (26), we obtain 
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Using the definitions of l+ and Lh

+ and after some 
rearrangement, we can write 

+++ = hLCll 2*
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where )/(1 2*
1 κAC = . 

Equation (28) is identical to Eq. (5), derived by JH, or Eq. (7), 
derived by CL, except for the value of the constant 1/(Aκ2) on the 
right-hand side. Considering a value of 4.0=κ , results in 

56.1*
1 =C , for 3-D hills, 08.2*

1 =C  for 2-D hills and 79.1*
1 =C , 

for 3-D elongated hills. The value for the 2-D hills is very close to 
the JH value of 2. In all these cases, however, we conclude that 
assuming the validity of Taylor and Lee’s (1984) wind profile 
mathematically leads to the laws of JH or CL for the height of 
maximum speed-up, from the point of view of an order of 
magnitude analysis. 

The Vertical Profile of Lemelin et al. (1988) 

Lemelin et al. (1988) propose the following expression for the 
relative speed-up 
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where a, n and p are constants that depend on the kind of the hill 
considered. Denoting the term inside the first pair of square brackets 
by F(x) and using the definition of S∆ , yields 
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Differentiating Eq. (30) with respect to z, setting it equal to zero 

at z = l and assuming a logarithmic profile at RS, yields  
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Rearranging Eq. (31) and using the definitions of l+ and Lh

+, we 
finally obtain 
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where )2/(1 2**
1 κaC = .  

Equation (32) is also similar to Eqns. (5) and (7). According to 
Lemelin et al. (1988), a = 2 for 3D axisymmetric hills, crests and 
escarpments, as long as hLh ≤ . A value of 4.0=κ  produces 

56.1**
1 =C , which is also relatively close to the value 2 in Eq. (5).  

The Vertical Profile of Finnigan (1992) 

Finnigan (1992) proposes that 
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where α and β are constants. The parameter La is the curvature 
radius of the z axis (in the streamline coordinate system), which is 
given by  

 

x

u

uLa ∂
∂= 11

. (34) 

 
The remaining parameter in Eq. (33), Ric, is the curvature 

Richardson number, which is defined as )/(2Ric Ru Ω= , where Ω 

is the y-component of the vorticity and R is the radius of curvature 
of the streamlines.  

The analysis of Eq. (33) can be simplified if the dependency of 
Ric on Ω is eliminated. Using an order of magnitude analysis, 
Kaimal and Finnigan (1994) show that  
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Substituting Eq. (9) into Eq. (33), differentiating the result with 

respect to z, setting 0/ =∂∆∂ zu  at z = l and supposing a 
logarithmic profile at RS, yields  
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at z = l. Substituting Eqns. (34) and (35) into Eq. (36) results in  
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at z = l.  

Substitution of the expression for u  obtained from the 
integration of Eq. (33) into expression (37) produces a recursive 
loop because Eq. (34) depends on Ric, which, in turn, depends on u  
again. An alternative to this procedure is to carry out an order of 
magnitude analysis of Eq. (37) as follows. 

Assuming, as before, that hLx ∼ , lz ∼  and 0uu ∼  in Eq. (37), 

recalling that the profile is logarithmic at RS, introducing a function 
C4(x) to turn the order of magnitude relation into an equality and 
rearranging the result, yields 
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with ))(( 4
*

4 κβα CC −= . Again, *
4C  must be determined by 

comparison with observational data.  

The Vertical Profile of Pellegrini and Bodstein (2002b) 

In recent papers, Pellegrini and Bodstein (2000, 2002b) propose 
the following new equation for the x-direction mean-wind speed 
over low hills under a neutral atmosphere:  

 

( ) ( )[ ]hh
Rz RzRze

u
zxu h

0
* EiEi),( 0 −= −

κ
. (39) 

 
In Eq. (39), Ei is the Exponential Integral function, which has 

well-known properties (Abramowitz and Stegun, 1970), and Rh, 
called radius length, is a theoretical length used to integrate the 
equation of motion in the streamwise direction. The parameter Rh is 
a function of the radius of curvature of the streamlines on the hill’s 

surface, i.e., Rh = f(Rh0) = f(Rz=0). One is referred to Pellegrini and 
Bodstein (2002b) or Pellegrini (2001) for a detailed derivation of 
Eq. (39). For completeness, a brief derivation is presented in the 
Appendix. It is worth mentioning that, as Finnigan (1983) points 
out, the sign of R depends on the sign of Ω. If the center of 
curvature lies in the direction of increasing z, then R > 0, and vice-
versa. For real hills, this means that R < 0 near the HT and R > 0 on 
the slopes. In the scope of the present solution, the same rule of 
signs is assumed to hold for Rh.  

From Eqns. (9) and (39) and the logarithmic profile at RS, the 
speed-up function can be written as 
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0
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z
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u
zxu hh

Rz h , (40) 

 
where the friction velocity and the roughness length at RS are 
denoted by 0*u  and 00z , respectively. Analysis of Eq. (40), also 

included in the Appendix, shows that the height of maximum speed-
up is 

 

0
*

*0ln z
u

u
Rl h += , (41) 

 

where *u  is the friction velocity at a specific site and 0*u  the 

friction velocity at RS.  
The procedure of setting 0≡∂∆∂ zu , for z=l, finds the critical 

points of a function, but it does not distinguish a priori between a 
maximum or a minimum of the function. One way to distinguish 
them is analyzing the intervals where the function increases and 
decreases through its first derivative. This analysis is applied to Eq. 
(41) and can be found in Pellegrini (2001) and in the Appendix. The 
results show that l is a maximum for 0<hR and *0* uu < , a 

situation verified in practice at HT, and that l is a minimum for 
0>hR and *0* uu > , verified in practice on the upwind slope of the 

HT. Cases with reverse flow are not covered by the theory. In the far 
more common case, interest is placed on calculating l at the HT, 
where 0<hR , so that Eq. (41) gives a maximum. 

Comparison with Observational Data 

We are interested in observational data that allows for the values 
of C1 in Eq. (7), C2 in Eq. (15) and C4

* in Eq. (38) to be calculated. 
Many field studies provide such data. A list of the most well known 
sets of observational data can be obtained from the work of Taylor 
et al. (1987), which includes experiments made at the following 
sites: Black Mountain (Bradley, 1980), Askervein Hill (Taylor and 
Teunissen, 1983, 1985), Kettles Hill (Mickle et al., 1984), 
Bungendore Ridge (Bradley, 1983), abbreviated BR in what 
follows, and Nyland Hill (Mason, 1986). A more recent experiment 
performed for non-neutral atmosphere (Copin et al., 1994) over 
Cooper’s Ridge can also provide useful neutral data. In a rather 
recent study, Taylor and Walmsley (1996) revise various aspects of 
the Askervein experiment and do not mention the existence of any 
other studies conducted between 1987 and 1996. Founda et al. 
(1997) confirms this conclusion. To the authors’ knowledge, only 
Reid´s (2003) experiment has been carried out under neutral 
atmosphere since 1996, but the measurement density near the 
surface is not high enough to allow for l to be determined. Among 
all these field experiments, the Askervein Hill campaign seems to be 
the most important. According to Kaimal and Finnigan (1994), the 
Askervein experiment is ‘the most complete field experiment to 
date’. Taylor and Walmsley (1996) state that ‘since no experiments 
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of comparable logistical scale have been conducted since Askervein, 
the data still represent a benchmark for such studies’.  

Measurements obtained in wind tunnels may also provide useful 
experimental data for the problem being studied, regardless of their 
frequent scaling problems. Kaimal and Finnigan (1994) point out 
that, as a hill is scaled down to fit into a wind tunnel, the surface 
roughness (grass, heather, stones) usually shrinks too much to 
satisfy the aerodynamically fully rough condition that ensure flow 
similarity. This fact, widely recognized in the literature (Britter et 
al., 1981; Gong and Ibbetson, 1989; Finnigan et al., 1990), reduces 
the applicability of such measurements. As Athanassiadou and 
Castro (2001) observe, ‘Laboratory experiments … concentrate on 
flow that is not always fully rough and, as a result, not directly 
applicable to the atmosphere.’ The result, reported by Teunissen et 
al. (1987), for example, falls into this category and, therefore, is not 
used here. 

Although this scaling problem exists, it does not prevents the 
use of wind tunnel data in our analysis. The usual approach taken to 
deal with the problem is either to work with an aerodynamically 
smooth model or to violate the similarity laws and increase the 
surface roughness length beyond the correct value. Both ways 
produce measurements that do not represent the near surface 
properties of real ABL flows exactly. They do only approximately. 
This may be a possible explanation for the fact that some authors 
(Briter et al., 1981; Athanassiadou and Castro, 2001) do not include 
l measurements in their otherwise very thorough experiments. 
Another possibility is to use fully rough models to represent hills 
covered with rather tall vegetation. Finnigan et al. (1990) and Gong 
and Ibbetson (1989) report measurements of this kind and their 
results are included here. These measurements add data to the 
‘rough surface end’ of the range, as Figures 2—4 show. 

The available field and wind tunnel measurements for l are 
plotted in Figs. 2 and 3 together with the results of Eqns. (5), (6), (7) 
and (15) (due to JH, JEN, CL and present work, respectively). The 
results of Eq. (8) (due to BT) are shown in Fig. 4. 
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Figure 2. Comparison of eqns. (6) and (15) with fie ld and wind tunnel data. 
Black Mountain: �, Askervein Hill: ○, Kettles Hill: ●, BR(max) and 
BR(min): ▲, BR(1m): ∆, Nyland Hill: ◊, Cooper’s Ridge: □, wind tunnel: X. 

Eq. (6):  ––––,  Eq. (15):  –––– . 

 
Figure 2 shows that Eq. (6) agrees fairly well with the measured 

data except for two of the BR (max) and BR (min) results (the dark 
triangles). Figure 2 also shows the value of C2 = 2.29 that gives the 
best fit between Eq. (15) and the data using the Least Squares 
Method, excluding the BR (max) and BR (min) results and passing 
through the origin. All measurements were made at the HT and, 
therefore, it is not possible to assess the dependence of C2 on x. 
With the value obtained with the best fit, Eq. (15) reads,  

 

+++ = hLll 22 29.2)(ln κ . (42) 
 
There has been much discussion in the literature about the value 

of κ , in particular about the fact that it may not be a constant at all, 
varying with ν0**Re zu=  (Frenzen and Voguel, 1995, for 

example). In this work, we follow Hogstrom (1996) and adopt 
4.0=κ , since this choice affects the value of C2. Apart from this 

discussion, more field data is necessary before the value of C2, given 
in Eq. (42), can be stated as definitive. 

Comparison between Eq. (5) and the experimental data is 
shown in Fig. 3. The agreement is only acceptable for the BR(max), 
BR(min), Black Mountain and Finnigan et al. (1990) wind tunnel 
data. Mickle et al. (1988), Beljaars and Taylor (1989) and Taylor 
and Walmsley (1996) has come up with this same conclusion, 
except for the wind tunnel data, which was not included in their 
works. 
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Figure 3. Comparison of Eqns. (5) and (7) with obse rvational data. 

Symbols as in Figure 2. Eq. (5): ––––, Eq. (7): –––– . 

 
According to Taylor et al. (1987), the value of z0 varied between 

0.002 and 0.005 m during the BR experiment, and l was 5 m 
approximately. The two points corresponding to the maximum and 
minimum values of z0 are represented in Figs. 2—4 as BR(max) and 
BR(min), respectively. Taylor et al. (1987) point out that the speed-
up vertical profile presented a very broad maximum, from the first 
measurement point up to the height of 8 m. This means that the 
position of these points in Figs. 2—4 is poorly defined. To illustrate 
this, a new point was included in the figures, considering z0 equal to 
0.0035 m (the average between 0.002 and 0.005 m) and l = 1 m. The 
value of this new point, represented by BR(1m), is seen to agree 
very well with the trend of the others in Figs. 2—4. This leads to the 
conclusion that, given the uncertainties involved in the BR 
measurements, the agreement between Eq. (5) and the BR data 
points may be fortuitous. For these reasons, the BR measurements 
should be considered with caution. 

As depicted in Fig. 3, the new value of 0.39 for C1 is obtained 
by best fitting Eq. (7) to the observational data, excluding BR(max) 
and BR(min) results and including BR(1m). Agreement is seen to be 
much better. Thus, Eq. (7) can be rewritten as, 

 
+++ = hLll 239.0)(ln κ . (43) 

 
The same reasoning was used to exclude the BR(max) and 

BR(min) data from Fig. 2. 
Observing that Eqns. (5) and (7) differ only by the value of the 

constant, the result above agrees with the conclusion of Walmsley 
and Taylor (1996) that the JH expression, Eq. (5), is not to be 
completely discarded but it needs to have its constant recalculated. 
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However, more experimental data must be made available before the 
value of C1=0.39 can be considered the best estimate.  

The fact that both Eqns. (42) and (43) describe well the 
observational data corroborates the conclusion of BT that it is 
possible to obtain a value for n between 1 and 2 that provides good 
agreement with the data. In Fig. 4, a comparison is made between 
Eq. (8), for the two values of n and Cn suggested by BT, and Eq. 
(42), showing that Eq. (42) describes the observational data better, 
as a whole, than Eq. (8). As shown in Fig. 4, Eqn (8) describes the 

observations slightly better than Eq. (42) in the low 2κ+
hL  end (the 

high hLl /  end of BT’s paper), whereas Eq. (42) describes the 

remaining experimental data better than Eq. (8). Figure 4 also shows 
that neither Eq. (8) nor Eq. (42) describes observational data well in 
the whole range. Nevertheless, it seems reasonable to conclude that 
Eq. (42) predicts better the experimental data than Eq. (8). 
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Figure 4. Comparison of Eqns. (8) and (42) with dat a. Symbols as in Fig. 2. 
TW: this work, BT1: Eq. (8) with ( n,Cn) = (1.4,1.71); BT2: Eq. (8) with ( n,Cn) = 
(1.6,3.62). 

 
So far, we have observed that Eq. (42) performs better than 

Eqns. (6) and (8), and slightly better than Eq. (43). This last 
conclusion can be drawn from the fact that both Eqns. (42) and (43) 
describe well the field observation, but Eq. (42) is slightly closer to 
the Black Mountain results (Figs. 2 and 3) than Eq. (43). We also 
infer that Eq. (5), with its constant equal to 2.0, provides the worst 
performance of all, and it should definitely be discarded. For this 
reason, Eqns. (28), (32), (38) and (41) are only compared with Eq. 
(42) in what follows. 

Pellegrini and Bodstein (2002b) compare Eqns. (41) and (42) 
and show that the former gives consistently better results than the 
latter. In this analysis, whose results are reproduced here, only the 
Askervein and Black Mountain data are used, because Eq. (41) 
requires the knowledge of parameter Rh, which can only be 
calculated from the vertical velocity profiles measured up to 
considerable heights.  

Figure 5 is a comparison between the results of Eqns. (41) and 
(42) and the Askervein Hill data. In this figure, the distance between 
the 45o line and the data points represents the difference between 
calculated and observed values. The analysis of Fig. 5 shows that 
Eq. (41) indeed describes the Askervein data better than Eq. (42) as 
a whole. It can be seen that Eq. (42) overestimates the observed data 
by a considerable amount and presents a higher degree of scattering 
then Eqn (41). In fact, the average of the differences between 
calculated and observed values of l is 43.9% for Eq. (42) and –
12.2% for Eq. (41) and the standard deviations are 116.9% for Eq. 
(42) and 21.9% for Eq. (41). For the only value of l observed over 
Black Mountain (not represented in Fig. 5), Eq. (42) performs better 
than Eq. (41). In fact, while Eq. (42) yields l = 15.1 m, 
underestimating the observed value of 20 m (for all wind velocity 

profiles) in 24.5%, Eq. (41) yields l = 41.8 m, which is 109.0% 
larger than 20 m.  
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Figure 5. Comparison of Eqns. (41) and (42) with th e observational data of 
Askervein. Equation (41): ○; Eq. (42): ∆. Line of l field = l calculated:   ——— . 

 
In spite of the comparisons above, some considerations about 

the way the height of maximum speed-up is determined from the 
Askervein and Black Mountain data are worth of note, since they 
bring up some additional explanations for the scattering in the data.  

Experimental values of l are estimated directly from the 
Askervein and Black Mountain raw data. These estimates are made 
by computing the difference between the wind velocities at HT and 
RS for each measurement level and searching for its maximum. 
However, the limited number of measurement points and the fact 
that there was often just one point between the supposed maximum 
and the ground make it very difficult to establish the exact point of 
maximum u∆ . To overcome this difficulty, a best-fit line for u∆  is 
drawn and the maximum is estimated directly from it. In all but a 
few cases, the value estimated for l coincides with the largest 
experimental value of u∆ . A better estimate could be made in a 
small number of cases, where two neighbouring points have 

u∆ values very close to each other, suggesting that the maximum is 
somewhere between them, or cases where the difference in u∆  
values between two neighbouring points is still growing as the 
ground is approached. As an additional possible source of scattering 
in the estimation of l, some measurements carried out in 1982 were 
not taken at the same levels at the RS and HT towers. Therefore, to 
calculate u∆  we need to interpolate the values of the wind velocity 
at RS logarithmically at the measuring heights used at HT.  

Figure 6 shows a comparison between Eqns. (28), (32) and (41). 
Eq. (38) was excluded from the comparison because it gives rather 
poor results. The function C4

* is calculated rewriting Eq. (38) as 

)ln()/( 0
2*

4 zlRLC hh κ= , where R is considered proportional to Rh 

and the proportionality constant is absorbed into C4
*. Using the 

observational data of Askervein, an average value of C4
* = 2054 is 

determined but with a standard deviation of 468%. This value 
clearly indicates that C4

* is not actually constant.  
Figure 6 shows that predictions of l based on Eq. (41) are clearly 

superior to those based on Eqns. (28) and (32). This conclusion 
could have been anticipated, observing that Eqns. (28) and (32) are 
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rather similar to (42) which, in turn, does not perform as well as Eq. 
(41).  

Finally, it is worth pointing out that several authors, such as 
Kaimal and Finnigan (1994), for example, suggest that a better 
estimate of l could be obtained from Eq. (5) dividing its results by 
three. Following this procedure and calculating the differences 
between the observed and predicted values of l, we get an average 
difference of 55.8% with standard deviation of 132.9%. If the 
division factor used is 4.7, which is the same as choosing C1 = 0.39 
in Eq. (7), the average difference goes down to 0.6% with standard 
deviation of 84.8%. This only confirms that Eq. (7) gives the best fit 
to experimental data, as it has already been shown. 
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Figure 6. Height of maximum speed-up. Comparison be tween theory and 
observations. Eq. (28): □, Eq. (32): ◊, Eq. (41): ○.  Line of l field = l 
calculated:  ——— . 

Conclusions 

In this paper, we present a study of the height of the maximum 
speed-up for atmospheric boundary layer flows over low hills under 
a neutral atmosphere. The flow is assumed to be two-dimensional 
and the upwind velocity profile is considered to be logarithmic at 
the reference site. All data used in this work are fully documented in 
the literature, and they have been acquired during field and wind 
tunnel studies performed over the hilltop, so that our conclusions are 
restricted to this point. 

Our analysis can be divided in two parts. In the first part, we 
carry out an order of magnitude analysis on the x-momentum 
equation to show that the height where inertia and turbulence effects 
dominate the other terms and balance each other may be used to 
estimate the height where the maximum speed-up occurs. As a 
result, we obtain an expression for l that differs from Eq. (6), due to 
Jensen et al. (1984), only in the value of the constant. We show that 
this constant can be calibrated so that Eq. (6) gives the height of the 
maximum speed-up. This procedure yields the new value of C2 = 
2.29, which is proposed in Eq. (42). In addition, a new value for the 
constant in Eq. (7), due to Claussen (1988), is proposed to be C1 = 
0.39, resulting in Eq. (43). Still in the first part, we conduct a 
thorough comparison among four expressions available in the 
literature, that is, Eq. (5), due to Jackson and Hunt (1975), Eq. (6), 
due to Jensen et al. (1984), Eq. (7), due to Claussen (1988), Eq. (8), 
due to Beljaars and Taylor (1989), and the new equations we 
propose, Eqns. (42) and (43). This study indicates that Eq. (5), 
which produces the largest errors when compared to the field data, 

and Eq. (7), which has been calibrated against one observation only, 
should be substituted by Eq. (43). Our analysis also shows that Eq. 
(42) performs better than Eq. (6) because its constant is obtained by 
direct curve fitting to the experimental data available. Equation (42) 
also performs better than Eq. (8), considering the entire set of data 
available. 

In the second part of our study, new expressions for l are derived 
analytically from available speed-up vertical profiles by calculating 
their critical point through the condition 0)( =∂∆∂ zu , for z = l. 

Four profiles are considered: Taylor and Lee (1984), Lemelin et al. 
(1988), Finnigan (1992) and Pellegrini and Bodstein (2002b). The 
resulting expressions for l, presented in Eqns. (28), (32), (38) and 
(41), respectively, allow us to conclude that Eq. (41) performs better 
than the others and, indeed, better than Eqns. (42) and (43), 
suggesting that Eq. (41) is the one that provides the best prediction 
for l.  

Further aspects of the study presented here are worth of note. 
First, we point out that previous good agreement between 
predictions for lmax and observations for l have hidden the fact that l 
can be shown mathematically to be a good estimate for lmax, within 
the validity of the assumptions adopted in the order of magnitude 
analysis carried out here. This calculation can be used as a new form 
of obtaining l. An interesting aspect of this calculation is that it 
makes no use of turbulence closure models and allows for a 
recalibration of )(2 xC  if new observational data becomes available. 

We have shown that Eq. (41) describes the Askervein field data 
better than the other expressions analysed here. We believe that this 
is true because Eq. (41) is essentially a dynamic expression. 
Therefore, it requires that the atmospheric boundary layer equations 
be fully solved. In other words, it needs z0, *u  and Rh to be known 

in advance. On the other hand, expressions like Eqns. (5) to (8) are 
easier to use because they are purely geometrical. However, one 
should consider that: 

• Eqns. (5) and (6) also depend on the dynamics of the flow 
because they include )(0 zu  implicitly; this is usually where 

the term )ln( 0zl  comes from; 

• since Eq. (41) comes from a solution of the x-momentum 
equation for a specific region of the ABL, and not from an 
order of magnitude analysis, it does not depend on a 
constant to be calibrated against experimental data; this is a 
clear advantage, although Eq. (42) does require 
experimental information to be tuned up for practical use; 

• the value of l is indeed to be expected to depend on the 
dynamics of the flow and the detailed geometry of the hill 
(expressed through Rh in Eq. (41)) and not only on the ratio 

0zLLh ≡+ ,  

• the need to calculate z0 and *u  is typical of boundary layer 

solutions based on flux-profile relationships, such as Eq. 
(41). 

Finally, we stress that care must be taken when using Eq. (41) to 
distinguish between the minimum and the maximum of u∆ . If we 
recall that z0 is a zero of the speed-up function, we see that, when l 
corresponds to a minimum, the value of speed-up at z = l is negative. 
Employment of Eq. (41) to site a wind turbine, for example, at the 
height of a minimum (and negative) speed-up in a region where Rh > 
0 could lead to unwanted results. This is important if one is 
interested in installing arrays of wind turbines on the upwind slopes 
of a hill. Implicit in this discussion is the fact that we expect Eq. 
(41) to hold on the slopes of the hill as well as on the HT. The 
performance of Eq. (41) on hill slopes requires a detailed 
comparison with field data, mainly on the upwind slope. If the 
downwind slope is too steep, flow separation is expected to occur, 



The Height of Maximum Speed-Up in the … 

J. of the Braz. Soc. of Mech. Sci. & Eng.   Copyrig ht  2004 by ABCM       July-September 2004, Vol. XXVI, No. 3 / 257 

which invalidates the assumptions used to obtain Eq. (41). Our 
analysis also highlights the need to increase the amount of field and 
wind tunnel data, both at HT, and on the hill slopes, preferably with 
a higher density of velocity measurements and obtained at the same 
measuring levels of RS, so that the position of l can be more firmly 
established along the entire hill surface.  
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Appendix 

In order to obtain Eq. (39), the definition of La is substituted into 
Eq. (11) to yield 
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An approximate analytical solution to Eq. (A1) can be obtained 

using the Intermediate Variable Technique, denoted henceforth as 
IVT (Kaplun, 1967; Lagerstron and Casten, 1972; Mellor, 1972; 
Roberts, 1984). In this method, the equation under consideration 
goes through the following steps: nondimensionalization; 
‘stretching’ of the z-coordinate through an adequate transformation 
of variable; variation of the value of a small parameter ε, involved in 
the stretching process; and collection of the leading order terms of 
the resulting equation. After the first two of these steps, Eq. (A1) 
reads  
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Here, LxX ≡ , LzZ ≡ , gUuU ≡ , )( 2
gUpP ρ≡  and 

LU g
ad Ω≡Ω , where, L is the horizontal length scale of the 

problem and Ug is the geostrophic wind speed. The turbulence terms 
are nondimensionalized using the friction velocity, *u . The 

stretched vertical coordinate Z, of order one, is defined as 
LzZ εε =≡Z , with ε  being the small parameter characteristic of 

the IVT. The other small parameters are defined as gUu** ≡ε  and 

Re1≡Rε , with νLU g≡Re  being the Reynolds number. These 

parameters are indeed small, since gUu <<*  and 1Re>>  in the 

ABL. Variables ad
xV , ad

aL and adR  are the nondimensional 

counterparts of Vx, La and R respectively.  
Variation of the value of ε  in Eq. (A2) changes the relative 

order of magnitude of its terms. For example, putting 2
*R~ εεε  

implies that ( ) 222
* '' ZUZWU R ∂∂∼∂∂ εε , meaning that the 

turbulence and viscous forces are of the same order in the region 

defined by the transformation, i.e., by 2
*R~~ εεε Lz  (note that 

Z∼1 by definition). This process can be used systematically to 
search for every possible value of ε that makes the terms containing 
Z change its order. As the value of ε is continuously varied, different 
regions are obtained, each characterized by different leading order 
terms in Eq. (A2).  

To submit Eq. (A2) to the last two steps mentioned above, a 
change in notation is convenient. The advective term on the left-
hand side is denoted Ax. On the right-hand side, the pressure term is 
denoted by Px, the turbulence terms (second and third) by Tx1 and 
Tx2, the curvature terms (fourth and fifth) by Cx1, and Cx2 and the 
viscous term (the last) by Vx. Multiplying through by ε2 results in 
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Allowing ε to vary in this equation and collecting leading order 
terms yields the following results: 

 

Advective Region ( 12
* ≤<< εε ): xx PA −= ;  

Turbulent-Advective Region ( 2
*εε ∼ ): 22 xxxx CTPA +−−= ; 

Fully Turbulent Region ( 2
*

2
* εεεε <<<<R ): 220 xx CT +−= ; 

Turbulent-Viscous Region ( 2
*εεε R∼ ): xxx VCT ++−= 220 ; 

Viscous Region ( 2
*εεε R<< ): xV=0 , 

 
where Vx represents the leading order terms of the viscous force and 

it is assumed that 2
*εε <<R . This hypothesis is usual in IVT 

applied to high Reynolds number flows and is based on the fact that 
as Re increases, Rε  decreases and *ε  increases. Physically, it is 

supported by comparison with field data.  
For the Fully Turbulent Region, a solution can be found 

substituting the definitions of the nondimensional variables and the 
small parameters where appropriate and recalling that Z∼1. Hence, 
this equation becomes 
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valid for 2
*

2
* )/(/Re)/( gg UuLzuU <<<< .  

To solve Eq. (A4), its region of validity is supposed to be close 
enough to the surface so that )()0,(),( 0 xRxRzxR hh ≡≈ , where 

)(0 xRh  is the radius of curvature of the hill’s surface. It is also 

assumed that turbulence can be modeled by the Mixing Length 
Theory in streamline coordinates, with the mixing length given by 

zlm κ=  (κ being the von Karman’s constant). With these 

assumptions, the solution to Eq. (A4) can be written as 
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Equation (A5) can be integrated between 0z  and z, assuming 

that 0)( 0 =zx,u . The result, valid for 0zz ≥ , is 
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The determination of C1(x) requires a boundary condition valid 

for the region. Field results show that over flat terrain ( ''wu ) does 
not vary appreciably with z next to the surface, so that 

2),('' *uzxwu =  as 0→z . Assuming this behavior to be also valid 

for low hills, Eq. (A6) yields 2
*

)(/2
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0zz = , we can write )(/
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00e)( xRz huxC −= . Equation (A6) may, 

then, be finally rewritten as 
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An extra degree of freedom can be given to Eq. (A7) if the 

radius of curvature of the hill’s surface (Rh0) in Eqn (A6) is 
substituted by Rh, the radius length. We expect Rh ≠ Rh0 because of 
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the hypothesis that the Fully Turbulent Region goes down to z = z0. 
The validity of Eq. (A6) may be extended to hills covered with tall 
vegetation by a displacement in the origin, as the flat terrain case. 
Thus, we assume hereafter that z denotes the displaced height.  

The height of maximum speed-up can be calculated by setting 
0=∂∆∂ zu  in Eq. (40), which is obtained from Eq. (A7), assuming 

that this point falls into the Fully Turbulent Region. Noting that 
zuzuzu ∂∂−∂∂=∂∆∂ 0 , it follows that 
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Assuming that no reverse flow occurs ( 0* >u ) and noting that 

00* >u  and 0'0 >≥ zz , Eq. (A8) is reduced to 

( )
0**

0e uu hcrit Rzz =− , which yields: 
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where 0>critz  is the critical point of u∆ . Equation (A9) implies 

that *0* uu >  if 0>hR  and *0* uu <  if 0<hR , which is a well-

known experimental fact. To determine if zcrit in Eq. (A9) is a 
maximum or a minimum, the intervals where u∆  increases and 

decreases are analysed. The expression ( )
0**

0e uu hcrit Rzz =−  is 

substituted into Eq. (A8) and the result is 
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For 0>hR , these expressions yield 
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and, therefore, zcrit is the absolute minimum. For 0<hR , 
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and, therefore, zcrit is the absolute maximum. In most cases, interest 
lies in the maximum value, denoted l. Substituting zcrit by l in Eq. 
(A9) finally yields 
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