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The Height of Maximum Speed-Up in
the Atmospheric Boundary Layer
Flow Over Low Hills

In this paper, we study the height of the maximum speed-up, |, for atmospheric boundary
layer flows over low hills in a neutral atmosphere. A recent analytically-derived
expression for | is compared to the results of several other expressions available in the
literature. A critical analysis of all these equations is presented and a new constant
obtained from field data is proposed for one of them. We find that the new expression
describes observational data better than the others. Through an order of magnitude
analyss, we also show that the inner layer depth, calculated as the height where inertia
and turbulent forces dominate the other terms and balance each other in the x-momentum
equation, can also be used to estimate the height of maximum speed-up. Sarting from four
analytical speed-up profiles available in the literature, we calculate | by searching for the
critical points of these speed-up functions, resulting in new equations for I. All these
equations are analysed and our results suggest which one of them performs better when
compared to field and wind tunnel data.
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In Egns. (1)—(4),L, is the half-length of the hill, defined

Introduction

There is considerable technological interest inneging the
height where the wind speed-up is maximum in thex@spheric
Boundary Layer (ABL) over low hills. Wind energyespalists are
often interested in the precise value of this heigh order to
efficiently site the wind turbines. Since the outpower of a wind
turbine is proportional to the cube of the windoggty, a small wind
speed-up corresponds to a large power increasénéarg also need
to know the height of the maximum speed-up to dateuthe wind

loads on structures that are located on the hjllboigh as antennas

and transmission towers.
On the other hand, the correct calculation of tealht of the
maximum speed-up, usually denotedl big also important in itself.

The knowledge of allows for the adequate prediction of the value

of the maximum wind speed-up, which can be obtairgd
substitution of its value in an expression for tregtical profile of
the wind velocity, if this expression is availablen addition,
numerical schemes can use the valukad a subdividing height of
the flow field in order to separate fine-mesh regidrom coarser
ones.

Due to the recognition that hills provide a natuvedy to
enhance wind speeds, many mathematical expressiaradculate
have been proposed in the literature. The most -kmelvn
expressions come from the works of Jackson and H@w5) (and

following JH as ‘the distance from the hilltop teetupstream point
where the elevation is half its maximurg),is the roughness length
and « is the von Karman’s constant. A comparative stoflythe
relative merits of each equation can be found inlrifgeey and
Taylor (1996). Dividing Eqns. (1) — (4) through kyand rewriting
the constants in Eqns. (3) and (4)Xa&” andC,4% respectively, we
obtain

1" Ing %) =2«2L,", (5)
I"In2(%) = 2«21, (6)
1" In( %) =Ck Ly, )
1" In"(1*)=Cpi?Lyt, (8)

wherel™ =1/zy and L,," = Ly/2, .

Based on the 2P0wind direction case of the Askervein Hill
experiment (Taylor and Teunissen, 1985, 1987), $3an (1988)
suggests that,4* = 0.09 in Eq. (7). This implies th&y = 0.56, for
k = 0.4, a commonly accepted value. After comparisath the
results of MSFD, a mixed spectral finite-differermoedel described

Hunt et al., 1988a), Jensesrt al. (1984), Claussen (1988) andin Beljaarset al. (1987), BT suggest two different pairs of values f

Beljaars and Taylor (1989), here referred to asl#i, CL and BT,
respectively. Walmsley and Taylor (1996) write #hegpressions as

(/L) In(1/ z9) = 22, (JH) @
(/Ly)In%(11 z9) = 22, (JEN) (2)
(I/Ly)In(1/ ) = constant, ~ (CL) @)
(/Ly)IN"(1/ z) = constant. ~ (BT) @)
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n and C,, depending on the turbulence closure assumed. For th
mixing-length model, they suggest= 1.6 andC.* = 0.55 in Eq.

(8) and for the B model,n = 1.4 andC.4* = 0.26. This yield<, =
3.62 and 1.71, respectively.

In their work on the ABL flow over hills, JH dividethe flow
field in two regions, one external, where the iimednd pressure
gradient effects are dominant, and one internakreshinertia and
turbulence effects are dominant and balance eabkr.offheir
analysis is based on the theory of perturbed teriiushear layers
developed by Townsend (1965) and Bradshaw (197d)itamwas
further developed by Huret al. (1988a,b), who divide the external
region in two parts to solve a matching problemhwitie internal
region. More recently, Raupach and Finnigan (198i¥)de the
wind field in three parts, called inner, outer amdke regions. In
JH’s model, the depth of the inner laykgrcalculated from Eq. (1),
is also the height of the maximum speed-p, A number of
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works published later adopt this assumption andiotmyerify that the assume that a hill has a low slope when its avestgme does not
estimate obtained for from the available expressions do in factexceed 10 For a horizontal length scale of 10 km, the héight

confirm the field data fol,,. Other authors, such as Tayliral.
(1987) and Beljaars and Taylor (1989), acknowlethge there is a
difference betweehandl ., but they still compare predictions for
with field data forl . Tayloret al. (1987) state that is probably
best considered as a scale height for the inner legther than the
height at which something specific occurs’. Belgaand Taylor
(1989) point out that ‘since the inner-layer depthhas been
introduced by means of order of magnitude constiers, its
practical definitions is somewhat arbitrary’.

Apart from this issue, much discussion is foundhia literature
about which one of Eqns. (1)—(4) provides the befitnate fol .
The following aspects are summarised from Walmslegl Taylor
(1996):

» regardless of the expression used to obta@thors always

considen=lax

» values predicted by JH are too high when compardiéid
results;

» values predicted by JEN agree well with observddesin
the whole range of variation df/z, but CL gives better
agreement at the specific valuelgfzy based on which Eq.
(3) was calibrated;

* model results suggest a value ffidvetween 1 and 2 in BT;

* more observational data is required to resolvenitafely
the question of which mathematical expression desst
best.

In the present study, we obtain an equation fesised on order
of magnitude arguments applied to tkenomentum equation for
the ABL. The focal point of the work is to evaludles expression,
along with the most common expressions availabkhénliterature,
to be able to estimate the height of the maximueedpup,!may
through a comparison with the experimental fieldl avind tunnel
data available in the literature.

The analysis is slightly different from the onesgelly found

in the literature (Tayloet al., 1987). The resulting equation differs

from Eq. (6) only by a constant, which needs to dstimated
through a comparison with field data. Once the eabf this
constant is obtained, calculated values|oére compared with
available field data and the agreement is shownbeo good.

Calculated values df are also compared with those predicted by
Egns. (5)—(8) and are seen to perform better. \&f alopose a new

value for the constant in the CL equation and slioat predicted
results are at least as good as the ones obtaintkd thve JEN
equation. In addition, we confirm that the JEN dipmagives better
results than the JH equation, suggesting that dkterl should be
substituted by JEN or CL, corrected with the comistaroposed
here. Further analysis of the equation foiindicates that the
predicted values can also be used to estitpaieWe also calculate

A
z
Uo(l)\
Uo(2) [
Uo(2) \l TUp(2) + 4l(x,2)
4 Streamlin:
\‘.‘.’b\\\\\\\\\\ \\
NW L _'_\\\\\\\\\\\\\\\\\\\\\\\\\\\‘R*
Ly
h/2 h

should not exceed 900 m. Lengths smaller than|¢zat to smaller
heights and, therefore, the corresponding hillssaré to be low.

Figure 1 illustrates the main features of a typioa¥ hill. The
vertical coordinate is defined as the height above the local terrain
rather than the vertical height above sea level.th® cases of very
large roughness elementsis considered to be the displaced height
above the local terrain.

Figurel. Definitions of z h, Ly, Ug and AU .

We assume that the vertical profile of the horiabmtean wind
velocity is essentially logarithmic far upwind diet hilltop (HT).
This profile is denoted byuy(z), and the location where it is
observed is referred to as the reference site (RI¥. RS profile
suffers the influence of the hill in such a waytttias modified by a
speed-upAu(x,z) , becomingli(x,2) at a given point over the hill.
Thus the speed-up is defined as

u(x,2) =Ug(2) +Au(x,2) . 9)
Based on this equation, we define the relative djpgeas
AS(X,2) EM :M-l (10)

U(2)  U(2

The height wheré\u is a maximum is denoted by, whereas
the depth of the inner-layer is denoted by

In what follows, we develop an order of magnitudelgsis of
the governing equations to obtain an expressioh,farWe proceed
in two steps: first we obtain the expression far ittmer layer depth,
I; next, we show that this depth can also be usedstionate the
maximum speed-up heighj,ax.

expressions folna from the analytical speed-up profiles proposed

by Taylor and Lee (1984), Lemeligt al. (1988), Finnigan (1992)
and Pellegrini and Bodstein (2002b). The resuléxgressions for
Imax @are compared to field data, and it can be seenthigaresults
obtained from the profiles of Taylor and Lee (19843 Lemelinet
al. (1988) are rather similar to that of JH.

Order of Magnitude Analysis

Consider an isolated 2D hill in the middle of ahertvise flat
terrain of constant roughness length and undengrally stratified
atmosphere. Following Kaimal and Finnigan (19949, sonsider a
hill to be a topographical feature with a (horizhtcharacteristic
length less than 10 km. Based on the height-tottesgale ratios
observed in natural hills (1:10), this leads toghés of up to 1 km.
Larger topographical features are considered misitaVe also
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Inner-Layer Depth

In order to determing we follow Kaimal and Finnigan (1994)
and work with the streamlineoordinate system, which is suitable
for distorted flows of this type. The megmomentum equation for
2D flows in this system can be obtained from Fianig1983). As
only the neutral atmosphere case is considered treebuoyancy
term has been neglected. The equation, then, reads

10p _ou? _ouw  u?-w?
p oX  Ox 0z L

uw

_au
= +2?+VX' (11)

g -_
ox

a

In Eq. (11),x is the direction parallel to the streamlines and
and U are the mean and turbulent velocities in thatedion,
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respectively. The direction normal to the streagtinsz, andw' is > —— 5 5 —_—
pectvey rect " ! 06T . 10p_ou?_ouw u?-w? uw

the corresponding turbulent velocity. The thermadwic mean g — O0-=— +2—+V, .(16)
pressure is denoted by, the mean density byp and thex- 0x pox ox oz La R
component of the mean viscous force\jy The quantityR is the

local radius of curvature of constantlines, i.e., the streamlines  In order to impose the conditiodAT/0z=0 at z=ly,y, we

(Kaimal and Finnigan, 1994)., is the local radius of curvature of differentiate Eq. (16) with respectpand the result is
constant z lines. They are related to the mean variables by
R:.u./(Q +0U/02) ar?d La :u./(au/.az), Whereg .|s the megn %Mﬁﬂi 02AT o a[1ap _azu'z _azm
vorticity component in they direction of the original Cartesian 0z ox 5ox| oz 072
coordinate system.

Following Tayloret al. (1987), we suppose the existence of a P F_F oWl av
region where the inertia and turbulence terms af (Efj) dominate | — 22— |+ .
the remaining terms and balance each other, wevdts 0z La R 0z

O9mx 0z

17

_0_UD0UW'.

12) To replace the terms in Eq. (17) by their corresiiog orders of
ox 0z magnitude, it is necessary to choose an adequatmgdor the
pressure term. To first order of approximation Jd&glni (2001) and

To estimate the order of magnitude of this exporgsive Pellegrini and Bodstein (2000, 2002b) show thateEsilequation,
assume tha 0Ly, and z 0| . We also assume that (T,, which  Written in streamline coordinates, holds for thelLAow over hills

L under neutral atmosphere. Hence,
means thatAu << u . Finally, we assume that' Ow Ou«, where P

u- is the friction velocity. With these assumptioaspression (12) 72 10p
becomes R :‘55- (18)
To2(1) _u? 2
. 0 I (13) Equation (18) indicates the scaling(l/ p)(dp/0z) ~uy“/R.
h

Substituting this result and the conditi@Au/0z=0 at z =1,
Introducing an unknown functioB,(x) of order 1, expression into Eq. (17), and assuming thatOL,, zOl, UOu, and
(13) can be rewritten a2 (1) /Ly = C,(x)u-2/I . Rearranging this  U'0OW Du. as before, yields
equation, we have
, UAT _Tp®  u? _w? o w? L w? v, 19)
(14) Ima)(l-h RLy, Ima\xl-h Imax2 Imaxl-a ImaxR Imax

I

—=C(X)——.

Y%
Assuming that, >> | and L, >> |, @llows the second and

Equation (14) is assumed to be valid for the valtmofiles of fourth terms on the right-hand side of Eq. (17)b®neglected in
the incident wind at any location. If the terrain is flat and the wind comparison to the fourth. In the atmosphere , theous term may
profile is logarithmic at RS, we havé@,/u. = U/ k)In(l/zp) . be neglected by recognizing that it is several rad magnitude
smaller than the other terms, except in the lovi@st centimetres

Therefore, Eq. (14) becomegL, =C, k2/In?(11z5) . Dividing  above the surface. This fact is generally acceptetie literature,
this equation through ke and rearranging it, yields based both on observational data (Stull, 1997)amsdcale analysis

(Holton, 1992). Equation (19) then simplifies to

1" In2(1%) =Cy (K 2Ly" . (15) o, 5 5
UpAU _ Up” Uk U 20)
This equation is identical to that of JEN, exceptthe constant Imaxkn  Rbn 1.2 TmaxR
C, that needs to be determined from a direct comparigith
observational data. at | =gy
) ) The order of magnitude of the terms containitin Eq. (20)
Height of Maximum Speed-Up can be evaluated using the definitidR=0/(Q +9u/dz), which

In this section we show thhtpredicted by Eq. (15) as the inner-shows thatR Ol 5. Substituting this conclusion into Eg. (20) and
layer depth, can in fact be used to estimate thghheof the
maximum speed-up. The analysis is different fromdhe presented
in the preceding section for three reasons: thelition of balance _ 5 2
between inertia and turbulence is not assumed diedmd; Au is M DL_ (21)
introduced in the calculation; and, most importgnthe condition, Lh Imax
of maximumoAu/dz =0 at z=1,,,, is explicitly imposed.

Substituting Eq. (9) into Eqg. (11) and taking irgocount that EqL_Jationl (21_)this_forrr|1all¥ ider;itlicalt i;OS Eq.lit(hlgt). eFgfore,
3in(2)/x = 0 and AT << , we obtain assuming a logarithmic velocity profile a ineglitha

recalling again thaf\u <<U yields

1*In2(1") = C3()x2L,", (22)
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where the functionCs(x) can be determined through comparison
with observational data, similarly @(x).

The preceding analysis shows that Eq. (22) can ds=l uo .
estimate the height of the maximum speed-up. Strisddentical to  where C; =1/(Ax?).
Eq. (15), we conclude that tfienction C,(x) can be adjusted so that

I*In(1*) =C, k°L,", (28)

Eq. (15) also furnishes the height of the maximupees-up.
Therefore, Eqns. (15) and (22) can both be usedstonate the
height where inertia and turbulence effects arthefsame order of
magnitude and the height of maximum speed-up.

Mathematical Expressions for | Obtained from Vertical
Velocity Profiles

The availability of a closed-form analytical exmsies for the
speed-up in flows over hills allows for the caltida of the point
where its maximum occurs by settid\u/dz=0, atz = |. The

maximum itself can also be calculated by substitutof the
expression obtained fbinto the original speed-up function.

Some expressions for the speed-up function availdblthe
literature can be easily subject to this procedwieereas others
cannot. This analysis applied to Jackson and H{h®35) solution,
for example, does not produce a simple expression because
their speed-up profile depends on a function thairniknown in the
general case. On the other hand, the results peddmg Taylor and

Equation (28) is identical to Eq. (5), derived Iy, dr Eq. (7),
derived by CL, except for the value of the consthifA«®) on the
right-hand side. Considering a value of =04, results in

C, =156, for 3-D hills, C;” = 208 for 2-D hills andC;” = 179

for 3-D elongated hills. The value for the 2-D #ils very close to
the JH value of 2. In all these cases, howevercweclude that
assuming the validity of Taylor and Lee’s (1984)naviprofile

mathematically leads to the laws of JH or CL foe theight of
maximum speed-up, from the point of view of an ord#

magnitude analysis.

The Vertical Profile of Lemelin et al. (1988)

Lemelinet al. (1988) propose the following expression for the
relative speed-up

p] 2 -2
AS(2) = ASpay 1+ 3{%} {1+ a{L—ZhH : (29)

Lee (1984), Lemeliret al. (1988) and Finnigan (1992) yield a rather

straightforward calculation. In a recent study, |€&gini and
Bodstein (2002a) also obtained an expression fer thight of
maximum speed-up based on the analytical speedngiidn they
proposed on a companion paper (Pellegrini and Bods2002b).

In what follows, the expressions foAU(x,z) obtained by
Taylor and Lee (1984), Lemelit al. (1988), Finnigan (1992) and
Pellegrini and Bodstein (2002b) are differentiatgth respect ta
in order to calculate the value of the height okimaum speed-up.

The Vertical Profile of Taylor and L ee (1984)

Taylor and Lee (1984) propose a relative speed-efical
profile of the form

AS(2) = ASy e b (24)

whereA = 4 for 3-D hills andA = 3 for 2-D hills. In the case of 3-D
hills that are elongated in shape, the authorsesidg= 3.5. The
definition of AS, Eq. (9), implies that

AU(2) = Tg(2)ASare ™ . (25)

Differentiating this expression with respectztand setting the
result equal to zero a = |, yields the following expression

0= AS, 4 [(0T, /02) €4/ +T(-Al Lp)e /], Recalling
that the velocity profile is logarithmic at the RSfpllows that

_ Ux Ux
0= ASy e /| =+~
ZK K

In[iJ(—A/ Lh)} . (26)
Zp

atz=|. Simplifying and rearranging Eq. (26), we obtain

Eziml_ (27)
| Lh ZO
Using the definitions ofl® and L," and after some

rearrangement, we can write
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wherea, n andp are constants that depend on the kind of the hill
considered. Denoting the term inside the first pasquare brackets
by F(x) and using the definition oAS, yields

(30)

-2
AT(Z) = UO(Z)ASmaXF(x){l+ a[l_iﬂ .
h

Differentiating Eq. (30) with respect msetting it equal to zero
atz= | and assuming a logarithmic profile at RS, yields

RE G

Rearranging Eq. (31) and using the definition§" cndLy,", we
finally obtain

(1)

I |n(|+)—1|+ =C; k2L,

> (32)

where C; " =1/(2ax? ).

Equation (32) is also similar to Egns. (5) and fQcording to
Lemelinet al. (1988),a = 2 for 3D axisymmetric hills, crests and
escarpments, as long ds<L;. A value of x = 04 produces

C, =156, which is also relatively close to the value Eip (5).

The Vertical Profile of Finnigan (1992)
Finnigan (1992) proposes that

u U= .
6_u= l+ai+'8R|C ,
0z zKk Ly

(33)
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where a and S are constants. The parametgris the curvature
radius of thez axis (in the streamline coordinate system), wligch
given by

0

0x

cl

(34)

Sl

1
La
The remaining parameter in Eq. (33),.,Ris the curvature
Richardson number, which is defined B&. = 2u/(QR) , whereQ
is they-component of the vorticity anR is the radius of curvature
of the streamlines.
The analysis of Eq. (33) can be simplified if trependency of

Ri. on Q is eliminated. Using an order of magnitude analysi
Kaimal and Finnigan (1994) show that

Ri, O0—Z.

U R (3 5)

Substituting Eq. (9) into Eq. (33), differentiatitige result with
respect toz, setting dAu/0z=0 at z | and supposing a
logarithmic profile at RS, yields

[aL—Za + ,BRic},

atz=|. Substituting Egns. (34) and (35) into Eq. (3&ules in

U*
ZK

0= (36)

u z

u R

zadu
U ox 37)
atz=1.

Substitution of the expression fool obtained from the
integration of Eqg. (33) into expression (37) proelia recursive
loop because Eq. (34) depends og ®Rhich, in turn, depends on
again. An alternative to this procedure is to camty an order of
magnitude analysis of Eq. (37) as follows.

Assuming, as before, thatOL;,, zOl and T Ouy in Eq. (37),
recalling that the profile is logarithmic at RStraducing a function
C4(X) to turn the order of magnitude relation into aquaity and
rearranging the result, yields

iIn[l—j = C4*/(2,
R (7%

with C4* = (-a/B)(Cy/k) . Again, C4* must be determined by
comparison with observational data.

(38)

The Vertical Profile of Pellegrini and Bodstein (2002b)

In recent papers, Pellegrini and Bodstein (20002B) propose
the following new equation for the-direction mean-wind speed
over low hills under a neutral atmosphere:

(2 =~/ [Ei(z/R,) - Ei(/R,)] (39)

In Eq. (39), Ei is the Exponential Integral functiovhich has
well-known properties (Abramowitz and Stegun, 19780d R,

surface, i.e.Ry = f(Rw) = f(R=0). One is referred to Pellegrini and
Bodstein (2002b) or Pellegrini (2001) for a dethilderivation of
Eq. (39). For completeness, a brief derivation risspnted in the
Appendix. It is worth mentioning that, as Finnigéi®83) points
out, the sign ofR depends on the sign aP. If the center of
curvature lies in the direction of increasinghenR > 0, and vice-
versa. For real hills, this means tiRat 0 near the HT an&> 0 on
the slopes. In the scope of the present solutiom,stme rule of
signs is assumed to hold f&g.

From Egns. (9) and (39) and the logarithmic proéiteRS, the
speed-up function can be written as

au(x,2) = e /™ [Ei(z/R,) - Ei(%/&)]—%ln(ij (40)

where the friction velocity and the roughness langt RS are
denoted byu.g and zqq, respectively. Analysis of Eq. (40), also

included in the Appendix, shows that the heighthaeikimum speed-

up is
:|+ZO'

where U« is the friction velocity at a specific site ang the
friction velocity at RS.

The procedure of settingAu/dz =0, for z=I, finds the critical
points of a function, but it does not distinguislpriori between a
maximum or a minimum of the function. One way tatidiguish
them is analyzing the intervals where the functiocreases and
decreases through its first derivative. This arnislissapplied to Eq.
(41) and can be found in Pellegrini (2001) anchim Appendix. The
results show that is a maximum forR, <Oand u.g<u., a
situation verified in practice at HT, and tHats a minimum for
R, >0 and us >ux, verified in practice on the upwind slope of the
HT. Cases with reverse flow are not covered bytlikery. In the far
more common case, interest is placed on calculdtiagthe HT,
where R, <0, so that Eq. (41) gives a maximum.

Ug*
Usx

=R, In{ (41)

Comparison with Observational Data

We are interested in observational data that alfowthe values
of Cyin Eq. (7)C; in Eq. (15) andC," in Eq. (38) to be calculated.
Many field studies provide such data. A list of thest well known
sets of observational data can be obtained fronwti of Taylor
et al. (1987), which includes experiments made at tHiing
sites: Black Mountain (Bradley, 1980), AskerveinlTaylor and
Teunissen, 1983, 1985), Kettles Hill (Micklet al., 1984),
Bungendore Ridge (Bradley, 1983), abbreviated BR wihat
follows, and Nyland Hill (Mason, 1986). A more ratexperiment
performed for non-neutral atmosphere (Copinal., 1994) over
Cooper's Ridge can also provide useful neutral .detea rather
recent study, Taylor and Walmsley (1996) reviseousr aspects of
the Askervein experiment and do not mention thsterce of any
other studies conducted between 1987 and 1996.d&oetnal.
(1997) confirms this conclusion. To the authorsoktedge, only
Reid’s (2003) experiment has been carried out urrdrtral
atmosphere since 1996, but the measurement denedy the
surface is not high enough to allow foto be determined. Among
all these field experiments, the Askervein Hill gaign seems to be

called radius length, is a theoretical length used to integrate théhe most important. According to Kaimal and Finmiga994), the

equation of motion in the streamwise direction. PlaeameteR;, is
a function of the radius of curvature of the striéa@s on the hill's
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Askervein experiment is ‘the most complete fieldpesment to
date’. Taylor and Walmsley (1996) state that ‘sinceexperiments
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of comparable logistical scale have been condwsitemk Askervein,
the data still represent a benchmark for such esidi

Measurements obtained in wind tunnels may alsoigeavseful
experimental data for the problem being studiegamess of their
frequent scaling problems. Kaimal and Finnigan &)9point out
that, as a hill is scaled down to fit into a winahitel, the surface
roughness (grass, heather, stones) usually shtimksmuch to
satisfy the aerodynamically fully rough conditidmat ensure flow
similarity. This fact, widely recognized in theeliature (Britteret
al., 1981; Gong and Ibbetson, 1989; Finnighal., 1990), reduces
the applicability of such measurements. As Athaadssi and
Castro (2001) observe, ‘Laboratory experiments .nceatrate on
flow that is not always fully rough and, as a résabt directly
applicable to the atmosphere.” The result, repooed eunisseret
al. (1987), for example, falls into this category atidrefore, is not
used here.

Although this scaling problem exists, it does nodvents the
use of wind tunnel data in our analysis. The uapglroach taken to
deal with the problem is either to work with an aBmamically
smooth model or to violate the similarity laws aimdrease the
surface roughness length beyond the correct veBath ways
produce measurements that do not represent the sweéace
properties of real ABL flows exactly. They do ordgproximately
This may be a possible explanation for the fact weme authors
(Briter et al., 1981; Athanassiadou and Castro, 2001) do natdiecl
| measurements in their otherwise very thorough exgats.
Another possibility is to use fully rough models represent hills
covered with rather tall vegetation. Finnigetral. (1990) and Gong
and Ibbetson (1989) report measurements of thid kind their
results are included here. These measurements atid td the
‘rough surface end’ of the range, as Figures 2—efvsh

The available field and wind tunnel measurementsl fare
plotted in Figs. 2 and 3 together with the resaft&gns. (5), (6), (7)
and (15) (due to JH, JEN, CL and present work,aetsgely). The

results of Eq. (8) (due to BT) are shown in Fig. 4.
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Figure 2. Comparison of egns. (6) and (15) with fie  Id and wind tunnel data.
Black Mountain: #, Askervein Hill: o, Kettles Hill. e, BR(max) and
BR(min): A, BR(1m): A, Nyland Hill: ¢, Cooper’s Ridge: o, wind tunnel: X.

Eq. (6): ——, Eq. (15):

Figure 2 shows that Eq. (6) agrees fairly well viite measured
data except for two of the BR (max) and BR (mirgules (the dark
triangles). Figure 2 also shows the valu€ef 2.29 that gives the
best fit between Eq. (15) and the data using thast.&quares
Method, excluding the BR (max) and BR (min) resaltsl passing
through the origin. All measurements were madehat HT and,
therefore, it is not possible to assess the demerdefC, on x.
With the value obtained with the best fit, Eq. (1&ds,
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1*In2(1%) = 229421, . (42)
There has been much discussion in the literatuoeitahe value

of k, in particular about the fact that it may notebeonstant at all,

varying with Re* =u*z,/v (Frenzen and Voguel, 1995, for

example). In this work, we follow Hogstrom (1996hdaadopt
k =04, since this choice affects the value@f Apart from this
discussion, more field data is necessary beforgahee ofC,, given
in Eq. (42), can be stated as definitive.

Comparison between Eq. (5) and the experimentah dat
shown in Fig. 3. The agreement is only acceptairi¢hie BR(max),
BR(min), Black Mountain and Finnigaet al. (1990) wind tunnel
data. Mickleet al. (1988), Beljaars and Taylor (1989) and Taylor
and Walmsley (1996) has come up with this same losiun,
except for the wind tunnel data, which was notuded in their
works.

100000
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Fan)
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10 T T
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Figure 3. Comparison of Egns. (5) and (7) with obse rvational data.
Symbols as in Figure 2. Eq. (5): ——, Eq. (7):

According to Tayloet al. (1987), the value of varied between
0.002 and 0.005 m during the BR experiment, andas 5 m
approximately. The two points corresponding to rieeximum and
minimum values of, are represented in Figs. 2—4 as BR(max) and
BR(min), respectively. Taylogt al. (1987) point out that the speed-
up vertical profile presented a very broad maximénorn the first
measurement point up to the height of 8 m. Thisnaethat the
position of these points in Figs. 2—4 is poorlyidedl. To illustrate
this, a new point was included in the figures, ddersngz, equal to
0.0035 m (the average between 0.002 and 0.005 dr)=ad m. The
value of this new point, represented by BR(1m)séen to agree
very well with the trend of the others in Figs. 2—Fhis leads to the
conclusion that, given the uncertainties involved the BR
measurements, the agreement between Eq. (5) an®Rhéata
points may be fortuitous. For these reasons, then@asurements
should be considered with caution.

As depicted in Fig. 3, the new value of 0.39 @ris obtained
by best fitting Eq. (7) to the observational d&egluding BR(max)
and BR(min) results and including BR(1m). Agreemisrgeen to be
much better. Thus, Eq. (7) can be rewritten as,

1"In(1 ") = 03921, " . (43)

The same reasoning was used to exclude the BR(m@aX)
BR(min) data from Fig. 2.

Observing that Eqns. (5) and (7) differ only by traue of the
constant, the result above agrees with the comlusf Walmsley
and Taylor (1996) that the JH expression, Eq. i&)not to be
completely discarded but it needs to have its @omsiecalculated.
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However, more experimental data must be made &lmitefore the
value ofC,=0.39 can be considered the best estimate.

The fact that both Eqns. (42) and (43) describel e
observational data corroborates the conclusion ©f tBat it is

possible to obtain a value farbetween 1 and 2 that provides good

agreement with the data. In Fig. 4, a comparisomasle between

Eq. (8), for the two values of and C, suggested by BT, and Eq.

(42), showing that Eq. (42) describes the obseymatidata better,
as a whole, than Eq. (8). As shown in Fig. 4, ER)ndescribes the

observations slightly better than Eq. (42) in the |Lh+K2 end (the

high I/L,, end of BT's paper), whereas Eq. (42) describes th

remaining experimental data better than Eq. (&)ufé 4 also shows
that neither Eq. (8) nor Eq. (42) describes obdemwal data well in

the whole range. Nevertheless, it seems reasot@lglenclude that
Eq. (42) predicts better the experimental data fqn(8).

100000
10000 - ™w
A
A
o~
X 1000 -
3
X BT2
100 - />< BT1
10 : :
10 100 1000 10000

+
I
Figure 4. Comparison of Egns. (8) and (42) with dat a. Symbols as in Fig. 2.

TW: this work, BT1: Eq. (8) with ( n,C,) = (1.4,1.71); BT2: Eq. (8) with ( n,C,) =
(1.6,3.62).

So far, we have observed that Eq. (42) performgebehan
Egns. (6) and (8), and slightly better than Eq.)(4Bhis last
conclusion can be drawn from the fact that bothsE¢2) and (43)
describe well the field observation, but Eq. (42}lightly closer to
the Black Mountain results (Figs. 2 and 3) than @8). We also
infer that Eq. (5), with its constant equal to 2@gvides the worst
performance of all, and it should definitely beadigled. For this
reason, Egns. (28), (32), (38) and (41) are onmgared with Eq.
(42) in what follows.

Pellegrini and Bodstein (2002b) compare Eqns. @19 (42)
and show that the former gives consistently beatsults than the
latter. In this analysis, whose results are repceduhere, only the
Askervein and Black Mountain data are used, bec&cse(41)
requires the knowledge of parametB;, which can only be
calculated from the vertical velocity profiles meesd up to
considerable heights.

Figure 5 is a comparison between the results oBE@H) and
(42) and the Askervein Hill data. In this figurketdistance between
the 45 line and the data points represents the differdrete/een
calculated and observed values. The analysis af J-ighows that
Eq. (41) indeed describes the Askervein data b#tter Eq. (42) as
a whole. It can be seen that Eq. (42) overestinthtesbserved data
by a considerable amount and presents a higheee@drscattering
then Eqn (41). In fact, the average of the diffeen between
calculated and observed valueslas 43.9% for Eq. (42) and —
12.2% for Eq. (41) and the standard deviations1a&9% for Eq.
(42) and 21.9% for Eq. (41). For the only valud abserved over
Black Mountain (not represented in Fig. 5), Eq.)(@&rforms better
than Eq. (41). In fact, while Eq. (42) yields = 15.1 m,
underestimating the observed value of 20 m (fomatid velocity
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profiles) in 24.5%, Eq. (41) yields= 41.8 m, which is 109.0%
larger than 20 m.
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Figure 5. Comparison of Egns. (41) and (42) with th e observational data of
Askervein. Equation (41): o; Eq. (42): A. Line of | field = | calculated: ____

In spite of the comparisons above, some considastabout
the way the height of maximum speed-up is deterdhiinem the
Askervein and Black Mountain data are worth of naiaece they
bring up some additional explanations for the sty in the data.

Experimental values of are estimated directly from the
Askervein and Black Mountain raw data. These eséimare made
by computing the difference between the wind veilesiat HT and
RS for each measurement level and searching fomasimum.
However, the limited number of measurement poimid #ne fact
that there was often just one point between th@asgd maximum
and the ground make it very difficult to establible exact point of
maximum Au . To overcome this difficulty, a best-fit line f&u is
drawn and the maximum is estimated directly fromintall but a
few cases, the value estimated forcoincides with the largest
experimental value ofAu . A better estimate could be made in a
small number of cases, where two neighbouring poihave
AU values very close to each other, suggesting tleatntximum is
somewhere between them, or cases where the differen AU
values between two neighbouring points is stillvgng as the
ground is approached. As an additional possiblecsoaf scattering
in the estimation of, some measurements carried out in 1982 were
not taken at the same levels at the RS and HT towWérerefore, to
calculateAu we need to interpolate the values of the wind aiglo
at RS logarithmically at the measuring heights wetddT.

Figure 6 shows a comparison between Eqns. (28),a(32 (41).
Eq. (38) was excluded from the comparison becaugives rather
poor results. The functio, is calculated rewriting Eq. (38) as
Cy = (Ln/4%Ry) In(l/2) , whereR is considered proportional ®,
and the proportionality constant is absorbed 8. Using the
observational data of Askervein, an average vafug,0= 2054 is
determined but with a standard deviation of 468%isTvalue
clearly indicates that, is not actually constant.

Figure 6 shows that predictionsldfased on Eq. (41) are clearly
superior to those based on Egns. (28) and (32} Tbnclusion
could have been anticipated, observing that E@8). 4nd (32) are
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rather similar to (42) which, in turn, does notfpen as well as Eq.
(41).

Finally, it is worth pointing out that several aoth, such as
Kaimal and Finnigan (1994), for example, suggestt th better
estimate of could be obtained from Eq. (5) dividing its resuty
three. Following this procedure and calculating tiéferences
between the observed and predicted valuds wé get an average
difference of 55.8% with standard deviation of B82. If the
division factor used is 4.7, which is the sametassing G = 0.39
in Eq. (7), the average difference goes down t&oOvwéth standard
deviation of 84.8%. This only confirms that Eq. ¢ijes the best fit
to experimental data, as it has already been shown.
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Figure 6. Height of maximum speed-up. Comparison be
observations. Eq. (28): 0, Eq. (32): ¢, Eq. (41): o.
calculated:

tween theory and
Line of | field = |

Conclusions

In this paper, we present a study of the heighthefmaximum
speed-up for atmospheric boundary layer flows ¢werhills under
a neutral atmosphere. The flow is assumed to bedimensional
and the upwind velocity profile is considered to lbgarithmic at
the reference site. All data used in this workfally documented in
the literature, and they have been acquired duigld and wind
tunnel studies performed over the hilltop, so thatconclusions are
restricted to this point.

Our analysis can be divided in two parts. In thstfpart, we
carry out an order of magnitude analysis on ¥momentum
equation to show that the height where inertiatamnoulence effects
dominate the other terms and balance each otherbmaysed to
estimate the height where the maximum speed-uprec@és a
result, we obtain an expression fdhat differs from Eq. (6), due to
Jenseret al. (1984), only in the value of the constant. Wevsltioat
this constant can be calibrated so that Eq. (6gthe height of the
maximum speed-up. This procedure yields the newevalfC, =
2.29, which is proposed in Eq. (42). In additiomeav value for the
constant in Eq. (7), due to Claussen (1988), ip@sed to be&C; =
0.39, resulting in Eq. (43). Still in the first pawe conduct a
thorough comparison among four expressions availabl the
literature, that is, Eq. (5), due to Jackson andtHL975), Eq. (6),
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and Eq. (7), which has been calibrated againsbbservation only,
should be substituted by Eq. (43). Our analysis alows that Eq.
(42) performs better than Eq. (6) because its eons$ obtained by
direct curve fitting to the experimental data aafié. Equation (42)
also performs better than Eq. (8), consideringethéire set of data
available.

In the second part of our study, new expressionkdoe derived
analytically from available speed-up vertical plesi by calculating
their critical point through the conditiod(AtU)/0z=0, forz = I.

Four profiles are considered: Taylor and Lee (1984)nelinet al.
(1988), Finnigan (1992) and Pellegrini and Bodsi{@@02b). The
resulting expressions fdr presented in Eqns. (28), (32), (38) and
(41), respectively, allow us to conclude that Bd.)(performs better
than the others and, indeed, better than Eqns. &) (43),
suggesting that Eq. (41) is the one that provitlesbest prediction
forl.

Further aspects of the study presented here arth wbmote.
First, we point out that previous good agreementwben
predictions fol ,ax and observations fdrhave hidden the fact thit
can be shown mathematically to be a good estinwatk,f, within
the validity of the assumptions adopted in the oafemagnitude
analysis carried out here. This calculation canded as a new form
of obtainingl. An interesting aspect of this calculation is tlitat
makes no use of turbulence closure models and sllw a
recalibration ofC, (x )if new observational data becomes available.

We have shown that Eq. (41) describes the Askeffielih data
better than the other expressions analysed herehalieve that this
is true because Eq. (41) is essentially a dynanxigression.
Therefore, it requires that the atmospheric bountiarer equations
be fully solved. In other words, it neegls U« andR;, to be known

in advance. On the other hand, expressions likes E&) to (8) are
easier to use because they are purely geometHealever, one
should consider that:
» Egns. (5) and (6) also depend on the dynamicsefitw
because they includey(z) implicitly; this is usually where

the termin(l/zy) comes from;

* since Eq. (41) comes from a solution of thenomentum
equation for a specific region of the ABL, and frotm an
order of magnitude analysis, it does not dependaon
constant to be calibrated against experimental daitgis a
clear advantage, although Eq. (42) does require
experimental information to be tuned up for praaiticse;

* the value ofl is indeed to be expected to depend on the
dynamics of the flow and the detailed geometryhef hill
(expressed throudR, in Eqg. (41)) and not only on the ratio

Lh=L/z,
» the need to calculatg and u. is typical of boundary layer

solutions based on flux-profile relationships, suah Eq.
(41).

Finally, we stress that care must be taken whemusg. (41) to
distinguish between the minimum and the maximuniaf. If we
recall thatz, is a zero of the speed-up function, we see thémv
corresponds to a minimum, the value of speed-up=dtis negative.
Employment of Eq. (41) to site a wind turbine, éotample, at the
height of a minimum (and negative) speed-up ingiorewhereR,, >
0 could lead to unwanted results. This is importé@nbne is
interested in installing arrays of wind turbinestbe upwind slopes
of a hill. Implicit in this discussion is the fattat we expect Eqg.

due to Jensed al. (1984), Eq. (7), due to Claussen (1988), Eq. (8)41) to hold on the slopes of the hill as well asthe HT. The

due to Beljaars and Taylor (1989), and the new tmum we
propose, Eqgns. (42) and (43). This study indicdteg Eq. (5),
which produces the largest errors when comparetetdield data,
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performance of Eq. (41) on hill slopes requires etaied
comparison with field data, mainly on the upwinapsd. If the
downwind slope is too steep, flow separation iseekpd to occur,
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Appendix

In order to obtain Eq. (39), the definitionlgfis substituted into
Eqg. (11) to yield
o’ __14p_ou? auw  u?-w?

L pox ox oz L,

24y
R

(A1)

An approximate analytical solution to Eq. (Al) dam obtained
using the Intermediate Variable Technique, dendtedceforth as
IVT (Kaplun, 1967; Lagerstron and Casten, 1972; IdMel1972;
Roberts, 1984). In this method, the equation urcersideration
goes through the following steps: nondimensiontbna
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Allowing £to vary in this equation and collecting leadingeord
terms yields the following results:

Advective Region 2 <<g<1): A, =-P,;

Turbulent-Advective Regiong D&2): A =-P Ty +Cyo;

Fully Turbulent Region £g/ &2 << £ << &2): 0=-T,, +Cyy;

Turbulent-Viscous Regioné(DsR/E*z ): 0=-Typ +Cyp +Vy ;

Viscous Region £ << eg/&:2): 0=V, ,

whereV, represents the leading order terms of the viséoee and

o 2 . L .
‘stretching’ of thez-coordinate through an adequate transformatiofi i assumed that/er <<&°. This hypothesis is usual in IVT

of variable; variation of the value of a small paedere, involved in

the stretching process; and collection of the legdirder terms of
the resulting equation. After the first two of teesteps, Eq. (Al)
reads

U2
Lad
a

__O0P_ 2 au+? L Louw _uZ-w?
X X & oz L,

20 g +‘LUH+svad . (A2)

& U 0z

Here, X =x/L, Z=z/L, U=0/Uy, P=p/(pU,?) and

o EQ/UgL, where, L is the horizontal length scale of the

applied to high Reynolds number flows and is basethe fact that
as Re increasesg iy decreases and. increases. Physically, it is
supported by comparison with field data.

For the Fully Turbulent Region, a solution can hlmund
substituting the definitions of the nondimensionatiables and the

small parameters where appropriate and recalliagZhl. Hence,
this equation becomes

auw+2uw

0z R

: (A4)

valid for (U o /u.)? /Re<<z/L <<(u. /U 4)2.
To solve Eq. (A4), its region of validity is suppadsto be close

problem andJ, is the geostrophic wind speed. The turbulencegernfnough to the surface so th&(x,2) = R,(x,0) = Ry(x , Where

are nondimensionalized using the friction velocity; . The

Rno(x) is the radius of curvature of the hill's surfadeis also

stretched vertical coordinat&, of order one, is defined as assumed that turbulence can be modeled by the Wlikiength
Z=Z/e=z/eL, with £ being the small parameter characteristic of €Oy in streamline coordinates, with the mixiegdth given by

the IVT. The other small parameters are defined.as u« /U g and

lmw=kz (k being the von Karman's constant). With these
assumptions, the solution to Eq. (A4) can be writte

£r =1/Re, with Re=U4L /v being the Reynolds number. These

parameters are indeed small, sinee<<Uy and Re>>1 in the

ABL. Variables and, Laad and R® are the nondimensional

counterparts o¥,, L, andR respectively.

Variation of the value ot in Eqg. (A2) changes the relative

order of magnitude of its terms. For example, pgtt ~ sR/s*z
implies that &2(0U'W/dz) 0gg0?U/dz?, meaning that the
turbulence and viscous forces are of the same ondére region
defined by the transformatione., by €~ z/L ~ £R/£*2 (note that
Z[ by definition). This process can be used systealbt to

au _ {Ci(¥) eZRo

A5
0z K z (A%)

Equation (A5) can be integrated betweegf andz, assuming
that u(x, zg) = 0. The result, valid forz = z,, is

i(x2) :—vcil((X){Ei[z/awo(x)]—Ei[zo/Rho(X)]} ()

The determination o€4(x) requires a boundary condition valid

search for every possible valuesthat makes the terms containingfor the region. Field results show that over fiatrain (u'w) does
Z change its order. As the value&if continuously varied, different not vary appreciably withz next to the surface, so that

regions are obtained, each characterized by diffdeading order
terms in Eq. (A2).

To submit Eq. (A2) to the last two steps mentiorédve, a
change in notation is convenient. The advectiventen the left-

W\/(x, 2)= w2 asz-0. Assuming this behavior to be also valid

for low hills, Eq. (A6) yieldsC, (x)e?? F0o® =2 asz - 0. At

hand side is denotedl. On the right-hand side, the pressure term i€ = Zg, we can writey/Cy(x) = W e /R0t Equation (A6) may,

denoted byP,, the turbulence terms (second and third)Thyand
T., the curvature terms (fourth and fifth) I8, and C,, and the
viscous term (the last) By, Multiplying through bye? results in

£2A, = -€2P, —5*2(£2TX1 +&Tyy —€2Cyy - eCX2)+ £rVy.
(A3)
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then, be finally rewritten as

u(x,z) =

Ei(z/R\)—Ei(%/Ry) | - (A7)

An extra degree of freedom can be given to Eq. (Aihe
radius of curvature of the hill's surfacd,§) in Egn (A6) is
substituted byr,, theradius length. We expecR, # R,y because of

ABCM



The Height of Maximum Speed-Up in the ...

the hypothesis that the Fully Turbulent Region goesn toz = z,.
The validity of Eq. (A6) may be extended to hilsvered with tall
vegetation by a displacement in the origin, asfleterrain case.
Thus, we assume hereafter thaenotes the displaced height.

The height of maximum speed-up can be calculatedetng
0AU/0z =0 in Eg. (40), which is obtained from Eq. (A7), astug
that this point falls into the Fully Turbulent Regi Noting that
0AU/0z = 0u/0z - AUy /0z, it follows that

OAU _ U | U (z-2)/Ry _q =0, (A8)
0z kz | uxg

Assuming that no reverse flow occuns (> 0) and noting that
z2z4>0, Eqg. (A8) s

u elrit=20)/Rn =, which yields:

ug >0 and reduced to

u‘k
Zgrit = Ry In[ UO ] +Zy, (A9)

where z4j; > 0is the critical point ofAu . Equation (A9) implies

that u«g >u« if R, >0 and u« <u« if R, <0, which is a well-

known experimental fact. To determine zf; in Eq. (A9) is a
maximum or a minimum, the intervals whef&l increases and
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decreases are analysed. The express'.jom(z':f“"ZO)/Rh SUs IS
substituted into Eq. (A8) and the result is

0AU/0z > 0 = AU increasing= U lz)R, 5 Usg
= e(Z_ZO)/Rh > e(zcrit_zo)/Rh

dAl/0z < 0= AU decreasing> W dz2)/R < Usg
= e(Z_ZO)/Rh < e(zcm_zo)/Rh . (AlO)

For R, >0, these expressions yield

Z> 74y = AU increasin
2< 7 = AT decreasin% for Ry >0, (A11)

and, thereforezg; is the absolute minimum. Fd®, < ,0

2 < Zyjy = AU increasin
2> Zgiy = AT decreasir% for R, <0, (A12)

and, thereforezyiis the absolute maximum. In most cases, interest
lies in the maximum value, denotédSubstitutingz.;; by | in Eq.
(A9) finally yields

I =R, |n[“*°]+ Zy. (A13)
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