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Non-Linear Problems Arising from the
SUPG/PSPG Solution of Steady
Incompressible Navier-Stokes
Equations

The finite element discretization of the incompl#es steady-state Navier-Stokes

non-linear problem, due to tl@vective terms in the momentum

equations. Several methods may be used to sob/@dhilinear problem. In this work we
study Inexact Newton-type methods, associated thithSUPG/PSPG stabilized finite

element formulation. The resulting systems of egoatare solved iteratively by a
preconditioned Krylov-space method such as GMRESe¥ical experiments are shown
to validate our approach. Performance of the nosdin strategies is accessed by
numerical tests. We concluded that Inexact Newgpe-tnethods are more efficient than
conventional Newton-type methods.

Keywords: Inexact

Newton-type methods, Newton-Krylov methoblavier-Stokes,

incompressible fluid flow, finite elements

Introduction

We consider the simulation of incompressible fluidw
governed by Navier-Stokes equations using the |&edi finite
element formulation proposed by Tezduyar (1991)s Térmulation
allows that equal-order-interpolation velocity-mee elements are
employed, circumventing the Babuska-Brezzi stabdiindition by
introducing two stabilization terms. The first teisnthe Streamline
Upwind Petrov-Galerkin (SUPG) presented by Brook#H&ghes
(1982) and the other one is the Pressure StalglR&trov Galerkin
(PSPG) stabilization proposed initially by Hugletsal (1986) for
Stokes flows and later generalized by Tezduyar 1196 finite
Reynolds number flows. SUPG/PSPG implementations feeen
very successful in the simulation of complex, lasgele fluid flow
problems in parallel computers (Tezduyer al, 1993, 1996).
Nowadays it has been used for simulations of 3D@dfaructure
interaction problems on unstructured grids with endhan one
billion of elements (Aliabadet al, 2002). Usually the resulting fully
coupled (velocity-pressure) linearized systems qfiations are
solved by a preconditioned Krylov-space iterativetmd such as
GMRES (Saad, 2003).

If we restrict ourselves to the steady case,khiswn that, when
discretized, the incompressible Navier-Stokes eégnsitgive rise to
a system of nonlinear algebraic equations due tesepce of
convective terms in the momentum equations. Amoagersl
strategies to solve nonlinear problems the Newtaon&thods are
attractive because it converges rapidly from anffigent good
initial guess (Dembeet al 1982), (Kelley, 1995). However, the
implementation of Newton’s method involves somesiderations:
determining steps of Newton’'s method requires thkt®n of
linear systems at each stage and exact solutions bea too
expensive if the number of unknowns is large. Imitah, the
computational effort spent to find exact solutidosthe linearized
systems may not be justified when the nonlineaatiéss are far from
the solution. Therefore, it seems reasonable to arsdterative

The inexact Newton method associated with a pripeative
Krylov solver, presents an appropriated framewodk dolve
nonlinear systems, offering a trade-off betweenuexy and
amount of computational effort spent per iteratiior a proper
mathematical description of the inexact Newton roétlve refer to
Kelley (1995). It is often necessary to increasertbbustness of the
inexact Newton method adding some globalizationcedare
(Kelley, 1995, Pernicet al, 1998).

In the context of the SUPG/PSPG formulation for theady
incompressible Navier-Stokes equations coupled hatt and mass
transfer, the work of Shadiet al (1997) investigated in depth the
behavior of the inexact Newton method with backtiag. They
have shown its computational efficiency and robessn However,
they pointed out that globalization by backtrackimgy be less
robust when high accuracy is required at each firsedve than
when less accuracy is required. A mathematicalamgilon for this
behavior is provided in Tuminaret al (2002). In the works of
Shadidet al (1997) and Tuminaret al (2002) the Jacobian was
evaluated by a mixed method. Contributions emagatiom the
Galerkin term were computed analytically, whereastigbutions
from the stabilization terms were evaluated by nucaé
differentiation.

In this work, we evaluate the effectiveness of sdtaaiton-type
methods dealing with problems involving steady mpoessible
fluid flows. We also investigate the influence b&tJacobian form
described by Tezduyar (1999). This form is basedTawylor's
expansions of the nonlinear terms and presentdtamative and
simple way to implement the tangent matrix employgdinexact
Newton-type methods. The Krylov-subspace iteratliviger of the
Newton-type algorithms is a nodal-block diagonatgmnditioned
element-by-element GMRES solver. The test problarashe well-
known driven cavity flow and flow over a backwaatihg step.

The remainder of this paper is organized as followke
governing equations and the SUPG/PSPG finite elefoemulation
are stated in Section 2. In Section 3 we presentribxact Newton
and inexact successive substitution methods, stgphomv to choose

method (Barretet al 1994), such as BiCGSTAB or GMRES, tothe parameter used to force the residual to beldyitsmall, the

solve these linear systems only approximately.
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backtracking strategy and the evaluation of the r@pmate
Jacobian. In Section 4 parametric studies are ptegdor two test
problems, accessing performance and accuracy ofntminear
solution methods. The paper ends with a summarpusf main
conclusions.
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Gover ning Equations and Finite Element For mulation 12 2 Y2
2|u 4y
Let Q00O be the spatial domain, whemg is the number of Tsupg =T pspc= M +9 vl (8)
space dimensions. Lét=T,UT, denote the boundary d@ . We (h )
consider the following velocity-pressure formulatiof the Navier-

Stokes equations governing steady incompressinhesfl Here u" is the local velocity vectony represent the kinematic

p(u (Mu _f)_EH]J-=0 onQ (1) viscosity andh” is the element length, defined to be equal to the
diameter of the circle which is area-equivalenthie element. The
spatial discretization of equation (7) leads to thkowing set of

Om=0 onQ 2 non-linear algebraic equations,
wherep andu are the density and velocity respectively, anid the N(u)+Ns(u) +Ku-(G+G;)p =1, ©)
stress tensor given as T —
9 GTu+N,(u)+G,p =f,
o(pu)=-pl+2ue(u), ®) , .
whereu is the vector of unknown nodal valueswf and p is the
with, vector of unknown nodal values op". The non-linear vectors
il (T ' N(u) , Ns(u) , and N (u) the matricesk , G, G5 and G,
8(“)‘5@3” (Qu) ] () emanate, respectively, from the convective, viscand pressure

terms. The vectors, and f, are due to the boundary conditions

Here, p and u are the pressure and dynamic viscosity, lasd gy anq (6). The subscrip and ¢ identify the SUPG and PSPG
the identity tensor. The essential and natural Hagnconditions ., wibutions respectively. In order to simplifyetmotation we

i ith i 1 2
associated with equations (1) and (2) are repredent denote byx :(u,p) a vector of nodal variables comprising both

u=g onlg (5) nodal velocities and pressures, thus, equationg@®)e written as,
no=h only,. (6) F(x)=0 (10)

Let us assume following Tezduyar (1991) that weehasme WhereF(x) represents a nonlinear vector function.
suitably defined finite-dimensional trial solutiand test function For Reynolds numbers much greater than unity thelimear
spaces for velocity and pressur;, V', Sy and V) =S). The character of the equations becomes dominant, makimghoice of

stabilized finite element formulation of equatiofi§ and (2) can the solution algorithm, especially with respectit® convergence

. o h—h h o h and efficiency, a key issue. The search for a Blataonlinear
then be written as follows: Find" LS, and p"US; such that g1 tion method is complicated by the existence sefveral

Ow" OV, and Og" I]VFT: procedures and their variants. In the followingtisecwe present
the nonlinear solution strategies based on the dletype methods

which are evaluated in this work.

Iw“ o (u" EI]]u“—f)dQ+Is(w"):o( p'u’) dQ+_[ qom"d

Q Q Q

Nonlinear Solution Procedures

Nel

h h h h h  h
+ZJ.TSUPGU Mw Eﬁp(u (Du )—IZIBJ(p u )_pf}dQ Consider the nonlinear problem arising from thecmitization
ela of the fluid flow equations described by equati@0)( We assume
r@ . . . . . nSd .
+Zji7pspd:|qh Eﬁp(uhtﬂjuh)—um(ph,u h)—pf}dQ that F is continuously differentiable in( and denote its
10 P Jacobian matrix byF' 00" . The Newton's method is a classical

algorithm for solving equation (10) and can be eiated as: Given
an initial guessx,, we compute a sequence of stepsand iterates
X, as follows,

In the above equation the first three integralstluan left hand Algorithm N
side and the right hand side integral represemigethat appear in FOR k = TEP1 UNTIL * " DO:
the standard Galerkin formulation of the problerz(@), while the © 0S v Convergence” DO:
remaining integral expressions represent the aufdititerms which

:jwh thdr @

arise from the stabilized finite element formulatiof the problem. Solve F'(x, ) s, = -F(x,) 1)
Note that the stabilization terms are evaluatedthes sums of Set Xy = Xy + S

element-wise integral expressions. The first suronatorresponds

to the SUPG (Streamline Upwind Petrov/Galerkinyrteand the Newton’s method is attractive because it convergpilly from

second correspond to the PSPG (Pressure Stahifizatiyny sufficiently good initial guess (see Demiet al, 1982).
Petrov/Galerkin) term. We have calculated the Beattion pHowever, one drawback of Newton’s method is thednigesolve
parameters (Tezduyat al, 1992) as follows, the Newton equations (11) at each stage. Compuitiegexact

solution using a direct method can be expensiwhafnumber of
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unknowns is large and may not be justified whgnis far from a

solution. Thus, one might prefer to compute sompr@pmate
solution, leading to the following algorithm:

Algorithm In
FOR k=0 STEP1 UNTIL “Convergence” DO:

FIND somer, [I[O,l) AND s, THAT SATISFY

"F(Xk) +F (Xk)sk" S ’7k||F(X k)"
Set X, = X, +S

12

for some nkD[O,l), where is a norm of choice. This

formulation naturally allows the use of an iteratisolver: one first
choosegy, and then applies the iterative solver to equafidr) until
ascis determined for which the residual norm satiséguation (12)
In this contextry is often called the forcing term, since its ralea
force the residual of (11) to be suitably smallisTkerm can be
specified in several ways (see, Eisenstat & Walke86, Shadidkt

R. N. Elias et al

Here the parametef,axis an upper limit of the sequencegg}.

We have chosep= 0.9 according to Eisenstat & Walker (1996) and
adopted)ma= 0.9, 0.5, 0.1 arbitrarily in our tests.

It may happen that/,ﬁ’ is small for one or more iterations while
Xk is still far from the solution. A method of safegding against
this possibility was suggested by Eisenstat & WalKe996) to
avoid volatile decreases . The idea is that ify; is sufficiently

large we do not ley decrease by much more than a factonof,
that is:

/7max k :0'
/7; = min(”maxni) k>0WI§—1<O'1r
min{ e ma{ 7% 172 ) >0 7%, >01
(15)

The constant 0.1 is arbitrary. According to Kell995) the

al, 1997, Pernicet al, 1998) to enhance efficiency and convergenceafeguarding does improve the performance of ération.

and will be treated in the following section belown our
implementation we have used the nodal

There is a chance that the final iterate will resll€] far

block-diagon@eyond the desired level, consequently the cotteo§olution of the

preconditioned GMRE®&{) method to solve the Newton equationsjinear equation for the last step will be highearthreally needed.
(11), wherem represents the number of basis vectors used Whis oversolving in the final step can be contlmparing the

GMRES algorithm (Saad, 2003).

A particularly simple scheme for solving the noekn system of
equations (10) is a fixed point iteration procedals known as the
successive substitution, the Picard iteration, fional iteration or
successive iteration. Note in the algorithms abibnd if we do not
build the Jacobian matrix in equations (11) and €l the solution
of previous iterations were reused, we have a sgoge substitution
(SS) method. In this work, we have evaluated the ifficy of
Newton and successive substitution methods and tinexact
versions. We may also define a mixed strategy comiSS andN
(or ISS andIN) iterations, to improve performance, as discussed
the following. In this strategy the Jacobian evabrais enabled
after k successive substitutions. Thus, we have labelednthxed
strategy ask-SS+N or as k-ISS+IN in the case of its inexact
counterpart.

Forcing Term

We have implemented the forcing term as a variatbrihe
choice from Eisenstat & Walker (1996) that tendsntmimize
oversolving while giving fast asymptotic convergerio a solution
of (10). Oversolving means that the linear equaf@mnthe Newton
step is solved to a precision far beyond what edled to correct the
nonlinear iteration. Kelley (1995) considered théofving measure
of the degree to which the nonlinear iteration agpnates the
solution,

(13)

a = FJ/F el

where yD[O,l) is a parameter. In order to specify the choice at%

k =0 and bound the sequence away from 1 we set

k=0,
k>0.

b _ ,7ma><

7= i) o
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norm of the current nonlinear residual to the nuedr norm at
which the iteration would terminate

Ine = Tres"FO" (16)

and boundingyc by a constant multiple ofy, /|F(x,)|. We have
used the choice proposed by Kelley (1995)

= min(ﬂmax’mw(/]i 05t N'-/"F (X K)")) )

where 1, represent the nonlinear tolerance.

Backtracking Procedur es

The backtracking procedures are employed, in theesd of
nonlinear methods, to improve the convergence dkiyafor any
initial guess (Eisenstat & Walker, 1994). Thesecptures, also
known as line searches or globalization procedaresbased on
trying to recover the convergence of a nonlineathwe performing
reductions on a Newton step according to the eiowudf nonlinear
residual. There are several forms to impose thése reductions
and a constant reduction is often employed suasgssfbut
sometimes disturbing the nonlinear convergencehis work we
employ the Armijo rule as described in Kelley (129Ehis rule tries
to compute a sufficient Newton step reduction withdisturbing
the nonlinear convergence, according to a residiedreasing
function (see Kelley, 1995). Thus we may descritee Armijo rule
y the procedures below.

After rejecting j step reductions we have the following
sequence:

[F ()], Fxe+ s, ” F(sc+A184) “2 (18)

whereA is the reduction factor that we are looking foot&lthat the
sequence above can be modeled by the scalar fanctio
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£(4) =] F (x4 + 48], - (19) p(u+au)M(u+Au)0p(um)u
(26)
The minimal of the function (19) can be used fompaoting the +p(u@)Au+ p(Au@)u
next step reduction. According to Kelley (1995), Wwvave used a
third order polynomial to compute the step reductidlhis Note that the first term in the right hand sideeq@iation (26) is

procedure can be summarized as: After rejgciand build the the corresponding residual vector and the remaiténgs represent
polynomial model we compute the minimal 4fanalytically and the numerical approximation of?N; . If we apply similar

the following adjustment is performed, derivations taNs(u) and N (u) we obtain,
ok if A <0, TsupaP] (U +Au) 0 [w O (u +Au) (T |(u +Au) O
/1]-+1 =10/, if A >0/, (20)
A otherwise Tsupa?(u M)W Hu () u + 7 gypee(u M) w [{Au M)u
In a 3-point parabolic model, the procedure forleagng f (0) +TsupeP (U MD)W fu D) Au + 7 g ypeo (AU D) w [u MD)u
and f (1) is performed by the following steps. If thepsfer 1 =1 (27)

was rejected, adjust = g; and try again. After the second step
rejection, we have the following values to constrti@ 3-point
parabolic model,

and
Tpspddd [ﬁ(u +Au) []]]](u +Au) 0

Tpspd1d [ﬂu DD)U +T pspéld EQAU DD)U +T pspldd [ﬂu DD)AU

where A; and 4; are the values ofi most recently rejected. The (28)
interpolation polynomial off at the points 0}, /; is,

£(0),f(A)andf(4,), (21)

where again the first terms in the right hand siflequations (27)
and (28) are the SUPG and PSPG contributions tordkilual

(N)=1(0+ A ((/‘ _/]j)(f(/]c)_f(o)) +(Ac _/‘)(f(/]j)_ f (O)) vector and the remaining terms define the approtigms of 2o/,
P A=A L A A " and Moy

(22)

We do not assemble and store the resulting Jacabigamather
We must evaluate two possibilities for the curvatusf We compute its action in the matrix-vector produgteded in

polynomial in equation (22). Thus we have, GMRES from element contributions, that is,
1 (0)=Z (3 (£ (A) =1 (9)=A (1 (1)=1(9)), @3 Fx=Arx (29)
p(0) =4, ( (A) =1 (9) A (1 (4,)- 1 (9)]. @3
c i
and where A is the standard finite element assembly oper#toghes,
2000), F, is the e-th contribution for the global Jacobiaml & is
p (0) the restriction of a general search direction odalement degrees of
A=——— . (24) freedom. A similar strategy is employed in the sssive
p"(0) substitution methods.

If the curvature of p is positive, sétto the minimal of p and

, , Test Problems
compute,; by equation (20); otherwisp" (0) < 0, set/; as the

In this section we present the results obtainedh whe
formulation described in the previous sections iagplto two
classical CFD problems. The first example congibthe lid driven
cavity flow and the second is the flow over a baaidvfacing step.
For both examples we have tested the nonlinearitilgts proposed
Jacobian Matrix Evaluation at Reynolds numbers 100, 500 and 1000. The nunhgnioaedure

. ) considers a fully couplegp version of stabilized formulation using

To form the Jacobiar' required by Newton-type methods we|inear triangular elements. The computations weket when the

use a numerical approximation described by Tezdug&99). . L I _ _
Consider the following Taylor expansion for the liwear ONOWING criteria were met]|F|/|Fo[ <10 and [sf/[x]|<107 or

minimal of p in the intervaldpA, 0i1] or reject the parabolic model
and setd; as gpd or gid. In this work we adopted the second
strategy, settind;.; = gil.

convective term emanating from the Galerkin forrtiata the total number of nonlinear iterations exceed¥10
N
N(u+Au)=N(u)+a—Au+... (25) o _
ou Lid Driven Cavity flow

The two-dimensional flow in a driven cavity whidhettop wall
moves with a uniform velocity has been used ragixéensively as a
validation test case by many authors in the laaty/¢see, Ghiat
al, 1982). In this problem the Reynolds number itam the size

where Au is the velocity increment. Discarding the high errd
terms and omitting the integral symbols we arrioahe following
approximation,
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of the cavity, the flow velocity on the lid and ifiluviscosity. The
problem domain and mesh with 1,681 nodes and 3Rff@ents are
presented in Figs. 1a and 1b respectively.

r1.0

- 0.0

Figure 1. Two-dimensional lid-driven cavity problem
Problem, (b) Finite element mesh (1,681 nodes and 3

— (a) Domain
,200 elements).

Table 1 shows the results for tests with differaonlinear
strategies to solve the lid driven cavity flow ag¢yRolds number
100, 500 and 1000. In all tests we employed GMREB{th nodal
block-diagonal preconditioning to solve the linpaoblem. For the
classical Newton-type methods the linear solvesrtoice was set to
105, For the inexact methods we have tested 0.1, i50& as the
maximum linear solver toleranceja. FOr each Table presented in
this section, the first column lists the nonlineaethod employed,
where SS and ISS-#7 labels represent th8uccessiveSubstitution
and I nexactSuccessiveSubstitution methods respectively arpdis
the maximum linear solver tolerance adopted byirthract method.
The second column shows the number of linear iterat(# LI)
performed by GMRES. The third column gives the nembf
nonlinear iterations (# NLI) performed by each noethThe fourth
column presents the time spent in the solution gsscand the

Euclidean solution norms| ¢ ||,) were presented on the three last

columns as solution quality indicators. Some Talgessent two
additional columns with the labelNFO) comprising warning
messages or information about the solution proardsBCT) with
the number of backtracking steps performed.
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Table 1. Performance of Successive Substitution and Inexact Successive

Substitution. Influence of the maximum linear solve r tolerance.
GMRES(45), Re =100, 500 and 1000.
L NL T u ke el
Re =100
SS 8668 5 38.0 10.6873 5.6228 5.4948
1ISS-0.1 1388 7 6.08 10.6873 5.6210 5.4783
ISS-0.5 1174 13 5.15 10.6862 5.6183 5.4748
1ISS-0.9 779 11 3.40 10.6826 5.5825 5.4686
Re =500
SS 11678 7 50.8 9.6971 5.7740 2.2638
1ISS-0.1 1831 14 8.05 9.6979 5.7738 2.2163
ISS-0.5 1142 23 5.03 9.6974 5.7687 2.2114
1ISS-0.9 968 41 4.28 9.6972 5.7600 2.2065
Re = 1000
SS 19850 11 86.3 9.0300 5.2626 1.5739
ISS-0.1 1685 14 7.37 9.0318 5.2653 1.5234
ISS-0.5 1199 28 5.27 9.0345 5.2681 1.5162
1ISS-0.9 905 39 4.01 9.0342 5.2689 1.5182

We can see in Table 1 that although the clasS8amethod
requires less nonlinear iterations, it needed n&VHRES iterations
and thus, it is slower than the inexact method.alge observe that
increasing the Reynolds number the solution probessmes more
difficult.

Table 2 presents a performance comparison amoniyeton-
type implementations described in previous sectiofibese
Newton-type methods differ by the form on which thecobian
matrix evaluation is performed in the linearizedlgem. In thd SS
method the nonlinear derivatives are not evalualadng the
solution process. In the inexact Newton methddN)( the
approximated Jacobian matrix is built and evaluatesihg the
expressions in equations (26) to (28) from thet $tathe end of the
nonlinear solution. We may also use a mixed salustrategy to
circumvent initialization problems observed in sopreblems. In
this strategy we enable the approximate Jacobiatuation afteik
successive substitutions, thus this method will l&igeled ask-
ISS+HIN. We have adopted arbitrarily in our tests=5 and

Nmax = 0.1.

Table 2. Performance of the Newton-type methods. GM  RES(45), Nma = 0.1,
Re =100, 500 and 1000.

#LI  #NLI Tg)‘e Nucle  Nugll:  liplk

Re= 100

ISS 1388 7 6.05 10.6873 5.6210 5.4783

IN 1400 5 6.12 10.6871 5.6224 5.4794
5SS+IN 1543 7 6.67 10.6871 5.6224 5.4787
Re = 500

ISS 1832 14 800 9.6979 57738 2.2163

IN 1952 10 854 9.6970 5.7739 2.7762
5ISS+IN 1405 9 6.05 9.6970 57739 2.2162
Re = 1000

ISS 1685 14  7.30 9.0318 5.2653 1.5234

IN 42818 12 1860 9.0306 5.2636 1.5995
5ISS+IN 1488 10  6.39 9.0308 5.2639 15230

Table 2 shows that the inexact successive substitimethod
executed more nonlinear iterations, however, thtesations spent
less time at all Reynolds numbers than the ineagtton method.
Note that the mixed methods-(SS+IN) also presented good
performance, spending less nonlinear iterations tand than the
other methods for Reynolds 500 and 1000. We alste no
discrepancies among the pressure normdNocases at Reynolds
numbers 500 and 1000. Clearly the numerically axprated
Jacobian deteriorates the GMRES performance. Tétisbor may
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be associated to an ill-conditioning of the resgitinumerically Table 3. Performance of inexact methods with global

ization (backtracking)

approximated Jacobian. Figs 2a to 2c show the uakiiecay per Procedures. GMRES(45), fima = 0.1, Re = 100, 500 and 1000.
iteration for each strategy in Table 2.

log, ([T /117 1)

log, (11rI1/11rl1)

05
-1.04
-1.54
-2.04
-2.54
-3.04
-3.54
-4.04
4.5
5.0
5.5

T T T T T T T
—o—|SS
—O0—IN
—A—5-ISS+IN | 7

N

15

o\ A 0]
o] \A
1 2 3 4 5 6 7 8
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1.0
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:Z:Z:F& O i
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(b) Reynolds 500

1.0
0.5+
0.0+

—0—1ISS T
—O0—IN .
—A—5-ISS+IN| |

fL L (e #BCT Nl wle NPl

Re =100

ISS 1388 7 6.0 0 10.687 5.621 5.478
IN 1401 5 6.1 0 10.687 5.622 5.479
5-ISS+IN 1543 7 6.7 0 10.687 5.622 5.479
Re =500

ISS 1831 14 7.9 0 9.698 5.774 2.216
IN 1478 7 6.4 2 9.697 5.774 2.216
5-ISS+IN 1405 9 6.1 0 9.697 5.774 2.216
Re=

1000

ISS 1783 14 7.8 1 9.032 5.266 1.514
IN 1641 9 7.1 3 9.031 5.263 1.524
5-ISS+IN 1339 9 5.8 1 9.031 5.265 1.513

,0_5_3‘&0/0‘0\0
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Figure 2. Convergence history - Influence of numeri cal
evaluation in Newton-type methods.

Jacobian

We can note in these Figures that for increasingnBes
numbers convergence deteriorates. These Figuressalsw that
convergence is faster for the methods based inntimerically
approximated Jacobian evaluations than for the essiee
substitution methods.

In Table 3 we present the results of inexact nealirmethods
with backtracking enabled. Note that backtrackireg wivoked only
for Re=500 and 1000. It was particularly import&ont recovering
accuracy and reducing processing times of Mheolutions.
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Figures 3 and 4 show the results obtained withribelinear
methods for Reynolds numbers 100, 500 and 1000seTnesults
were obtained with the inexact successive suhistituhethod. Note
in these Figures the vortex displacement for threezeof the square
for increasing Reynolds numbers.

Velocity

(a) Reynolds 100

(b) Reynolds 500

(c) Reynolds 1000

Figure 3. Steady-state solution for the lid-driven

cavity flow.
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Streamlines recirculation zone on the lower channel wall, and dufficiently
—— high Reynolds it also produces a recirculation zdaether
downstream on the upper wall. The finite elemensimeith 1,800
elements and 1,021 nodes, boundary conditions adblem
domain are present in Fig. 5a-b. Note that the Fagshows only the
part of the computational domain that containsth# essential

features.
u(:ul:O
15 u=1
075+ W=0 WQ /
0.0
l&=l{,=0
0.0 75 30.0

@

(b)

Figure 5. Flow over a backward facing step. (a) Pro  blem domain and (b)
finite element mesh (1,800 elements and 1,021 nodes ).

Table 4 presents the performance results obtaimedtte
Newton-type methods. The definitions adopted heestlae same
employed in the previous example. The additionhlroa identified
by RM, means one more quality parameter. It represdms t
ResidualMass found for the incompressibility constraint givmy
equation (2).

Here again, we observe that the inexact methoddedemore
nonlinear iterations. As in the previous examplest iterations
required less time. Observe that for Reynolds 1@y SS and
ISS-0.1 methods were able to solve this problemaforariables.
We note that the classical methods were more coatbes,
presenting less residual mass than the inexactoaetiHowever,
the residual mass of the converged inexact Newatutisns are of
the same order of the required nonlinear accuraable 5 shows
the results obtained for the numerical Jacobiatuénte tests
applied to the backward facing step problems. Terances and
the other parameters were the same employed ididhériven
cavity flow problem.

Table 5 shows that the methods based on numescabihn
evaluations needed less nonlinear iterations. Hewevhese
methods were less efficient, spending more time thiaccessive
substitution methods. Also in this case the methbdsed on

(c) Reynolds 1000

Figure 4. Steady-state solution for the lid-driven cavity flow. numerical Jacobian evaluations were less accurate high
Reynolds numbers, as indicated in Table 5. Figue®ents the
Flow Over a Backward Facing Step residual decays for the backward facing step proble

) In Table 6 we present the results for the inexaethads with
As a second example we consider the flow over &wad giopalization procedures. Note that in this case globalization
facing step, which also has become popular astapteblem for procedures do not have any positive effect. ForsR8=and 1000

flow simulation codes. It consists of a fluid flowg into a straight eyen the 1SS method was unable to solve this pmobeth
channel which abruptly widens on one side. Numerfeaults  gjopalization switched on.

obtained using a wide range of methods can be fanir@artling
(1990). When the fluid flows downstream, it prodsice&
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Table 4. Performance of Successive Substitution and

500 and 1000.

#LI

#

NLI

Inexact Successive Substitution. Influence of the

RM

maximum tolerance choice. GMRES(45), Re = 100,

Time(y o Mwle  llwl  llple  INFO
Re =100
SS 11689 7 27.9 2.70E-08 17.7681 0.8313 18.2585 --
ISS-0.1 1745 11 4.2 -7.55E-04 17.7609 0.8316 18.240 --
ISS-0.5 1446 22 3.5 -1.92E-03 17.7504 0.8310 1§.215 --
ISS-0.9 1218 36 3.0 -4.92E-03 17.7185 0.8312 12139 --
Re =500
SS 33278 19 79.4 4.57E-08 19.2898 0.9705 2.8084 --
ISS-0.1 5389 60 13.0 -9.62E-04 19.2936 0.9465 2825 --
ISS-0.5 3918 162 9.3 -4.07E-03 19.2633 0.9742 2.839 --
ISS-0.9 4051 495 10.5 -4.97E-03 19.2546 0.9892 1884 #2
Re = 1000
SS 1931600 65 4597.3 -9.63E-08 19.9767 1.1787 6.113 #2
ISS-0.1 40991 170 98.0 1.27E-03 19.9740 1.1917 28.10 #2
ISS-0.5 96615 1000 233.0 -3.72E-02 20.1701 0.7343 4218 #1
ISS-0.9 13306 1000 35.2 1.02E-01 20.6229 0.1962 459.6 #1
#1 - Nonlinear method reached the maximum numbéemdtions without converging. #2 — GMRES(45) teadt
the maximum number of iterations without convergimgome nonlinear step.
Table 5. Performance of the Newton-type methods. GM  RES(45), Nmax = 0.1, Re = 100, 500 and 1000.
#L o eNLOF L ulk lle Pl INFO
Re =100
ISS 1745 11 4.2 -7.55E-04 17.7609 0.8316 18.2407 -
IN 2155 8 51 -2.97E-05 17.7682 0.8307 18.2579 #2
5-ISS+IN 1968 9 4.7 -8.26E-05 17.7676 0.8307 181256 #2
Re =500
ISS 5389 60 12.8 -9.62E-04 19.2936 0.9465 2.8254 -
IN 83142 21 198.9 -8.75E-03 19.2038 1.0314 28327 4 #
5-ISS+IN 95560 31 228.5 -1.54E-02 19.1303 1.0861 841 #4
Re =1000
ISS 40991 170 97.9 1.27E-03 19.9740 11917 3.1026 2 #
IN 127384 28 2984 3.96E-02 20.4647 0.4220 27222 4 #
5-ISS+IN 130485 30 312.2 7.05E-02 20.5361 0.2206 0798 #4
#2 — GMRES(45) reached the maximum number of i@matwithout converging in some nonlinear step—#4
nonlinear method stagnated without converging.
Table 6. Performance of inexact methods with global ization (backtracking) procedures. GMRES(45),  Nmax = 0.1, Re = 100, 500 and 1000.
#L #NL (O BCT fudk lule NPl INFO
Re =100
ISS 1745 11 4.2 0 17.7609 0.8316 18.2407 -
IN 2084 8 5.0 2 17.7672 0.8307 18.2555 #2
5-ISS+IN 1968 9 4.7 0 17.7676 0.8307 18.2567 #2
Re =500
ISS 2321 22 55 22 19.4987 0.6019 2.8774 #3
IN 62265 16 148.7 33 19.5327 0.6333 2.8968 #3
5-ISS+IN 62889 16 150.1 29 19.4784 0.7085 2.8936 #3
Re = 1000
ISS 117232 35 280.5 29 20.3386 0.2414 2.6355 #3
IN 34452 4 81.9 23 9.8003 0.3398 0.3897 #3
5-ISS+IN 23513 7 56.2 26 19.1764 0.6449 1.2578 #3

#2 — GMRES(45) reached the maximum number of i@matwithout converging in some nonlinear step .#3 —
Backtracking failure after 20 step reductions.
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05 — Figures 7 to 9 show the converged solutions obtiaémaploying
0.0 “o—1ss i the strategies listed in previous Tables.
-0.54 —0—IN _
B —A—51SS+IN
-1.04 u\ 7 I
o R I
-2.04 o K 4

I i (a) Velocity

-2.54 \
o]

tog, (LIl /11rgll)

-3.0
A u]

-3.5- \o \ \I:I\D i

77777777 1
-4.04 \ A 4 i
45 o \ 4 :
5.0 \ A | (b) Pressure

[e] Figure 7. Steady state solution for the backward fa  cing step flow at

-5.54 E

T T T T T T T T T T T

o 1 2 3 4 5 6 7 8 9 10 11 12
NONLINEAR ITERATIONS

Reynolds number 100.

[~
(a) Reynolds 100
0.5 T T T T T T vel it
R 155 (a) Velocity
R 2 gissen] |
e} A ASs+
05 A\X . §
- B30 (A
— -1.04 h\\ k\ -
= N A (b) Pressure
< .154 } A -
— L5 & A/AA Figure 8. Steady state solution for the backward fa cing step flow at
= X & Reynolds number 500.
- -2.04 \ 4
= A
E] o
8ot 1 — e —
3.04 Qoo i
]
-3.5 T T T T T T (a) VelOCity
0 10 20 30 40 50 60
NONLINEAR ITERATIONS
(b) Reynolds 500
- (b) Pressure
0‘ T T T T T T T
1SS Figure 9. Steady state solution for the backward f acing step flow at
IN | Reynolds number 1000.

—4A— 5-1SS+IN

] We can see the vortex recirculation forming on tthe wall at
high Reynolds numbers problems. This behavior & atteristic on
i backward facing step simulations.

7 Conclusions

J In this work we compare several Newton-type al@pons to
solve nonlinear problems arising from the SUPG/PS&eabilized
J finite element formulation of the steady incompieles Navier-
Stokes equations. Preconditioned GMRES is usedhaslinear

tog, (11T /11 l1)

3.0 | | | | | | : iterative solver and the fully coupled Jacobian nigmerically
0 20 40 60 80 100 120 140 approximated by a truncated Taylor expansion. Weodiiced a
NONLINEAR ITERATIONS mixed strategy which combines the successive futisti method
(c) Reynolds 1000 with Newton’s method using the numerically approaied
) ) ) ) Jacobians.
Figure 6. Convergence history - Influence of numeri cal Jacobian

We observed that in general the inexact methodsiarple to
implement, fast and accurate. The numerically axprated
_ ) ) o Jacobian reduces the number of nonlinear iteratidiosvever, the

These Figures show an increasing difficulty to eolthe i515] humber of GMRES iterations increases sigaiftty, resulting
backward facing step problem for high Reynolds newsb For ;3 more CPU time than the corresponding successisstitution
Reynolds 500 and 1000 the methods involving nurakricge|ytions. The mixed method combines the good featof both
approximate Jacobian stagnate without reachingezgevce. methods. In the backward facing step problem anRielg numbers
500 and 1000 the inexact solutions with the nuradyic

evaluation in Newton-type methods.
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approximated Jacobian needed globalization proesdorachieve a
solution. This is an indication that effective s@uns with this

option may need more robust preconditioners tharsiimple nodal
block-diagonal preconditioner used in this work.rQwmerical

results also indicate that globalization proceduneist be used with
care.

Sophisticated nonlinear solution methods are ceytaieeded
for solving complex flow problems. However, theyngeally
involve the choice of many parameters, which rexgia high
degree of expertise from the users. More numeegpéeriments are
needed to access the influence of all parametalst@rprovide
guidelines for the inexperienced user.
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