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Chaos and Order in Biomedical 
Rhythms 
Nature is full of nonlinearities, responsible for a great variety of responses in natural 
systems. Physiological rhythms constitute a central characteristic of life, which is 
motivating the analysis of dynamical aspects related to natural systems. Natural rhythms 
could be either periodic or irregular over time and space and, each kind of dynamical 
behavior may be related to both normal and pathological physiological functioning. This 
review article presents an overview of nonlinear dynamics and chaos concepts useful for 
the analysis of biomedical system. After that, it is presented an overview of dynamical 
aspects related to different biomedical systems. Cardiovascular rhythms, brain rhythms, 
cellular and molecular rhythms are discussed from a dynamical approach pointing some 
characteristics of normal and pathological responses.  
Keywords: Chaos, nonlinear dynamics, control, biomedical systems, cardiovascular, 
brain, cellular, natural rhythms, arrhythmias 
 
 
 

Introduction 

Nature is full of nonlinearities, responsible for a great variety of 
responses in natural systems. Rhythmic phenomena represent one of 
the most striking manifestations of dynamical behavior in biological 
systems. Actually, physiological rhythms constitute a central 
characteristic of life, which is motivating the analysis of dynamical 
aspects related to natural systems. The understanding of the 
mechanisms responsible for biological rhythms is crucial for the 
comprehension of the dynamics of life (Glass, 2001; Goldbeter, 
2002). 

 Natural rhythms could be either periodic or irregular over time 
and space. Each kind of dynamical behavior related to biomedical 
systems may be related to both normal and pathological 
physiological functioning. Extremely regular dynamics may be 
associated with diseases including periodic breathing, certain 
abnormally heart rhythms, cyclical blood diseases, epilepsy, 
neurological tics and tremors. On the other hand, there are 
phenomena where regular dynamics reflect healthy behavior as 
sleep-wake cycle and menstrual rhythms. Moreover, irregular 
rhythms can also reflect disease: cardiac arrhythmias, such as 
fibrillation, and different neurological disorders (Glass, 2001; 
Ferriere & Fox, 1995). 

1The term dynamical diseases captures the notion that abnormal 
rhythms arise from alterations related to physiological control 
systems. The richness of rhythms related to natural processes, 
together with nonlinear characteristics of nature, points to the 
chaotic behavior as a typical response of biological systems. 
Prigogine (Prigogine, 1980; Nicolis & Prigogine, 1989) said that 
“our physical world is a world of instabilities and fluctuations 
which are ultimately responsible for the amazing variety and 
richness of forms and structures we see in nature around us”. 
Therefore, the dynamical analysis of biomedical rhythms employing 
nonlinear system theory, including chaos, has gained recent interest. 

Chaotic response has sensitive dependence on initial condition, 
which implies that the system’s evolution may be altered by small 
perturbations. Moreover, chaotic structure is associated with a dense 
set of unstable periodic orbits, presenting an ergodic property which 
means that the system often visits the neighborhood of each one of 
them. Under these conditions, chaos control may become effective 
using tiny perturbations for the stabilization of an unstable periodic 
orbit embedded in a chaotic attractor, which makes this kind of 
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behavior to be very flexible (Ott et al., 1990; Pereira-Pinto et al., 
2004).  

Due to these properties, chaos has an intrinsically richness 
related to its structure and, because of that, there are benefits for 
biological systems of adopting chaotic regimes with their wide 
range of potential behaviors. Consequently, the system may quickly 
react to some new situation, changing conditions and their response 
(Faure & Korn, 2001). Therefore, chaos and many regulatory 
mechanisms control the dynamics of living systems. These 
mechanisms are associated with the regulation of voltage-dependent 
ion channels, regulation of enzyme activity, the control of receptor 
activity or transport processes, and also circadian rhythms 
(Goldbeter, 2002). 

The dynamical analysis of biomedical phenomena may be done 
either by mathematical modeling or by time series analysis. The first 
imply some effort to construct a realistic model that can be used to 
obtain useful information associated with the biomedical 
phenomenon. On this basis, it should be pointed out the importance 
of the analysis of high-dimensional dynamical systems. Recently, 
the spatiotemporal chaos has attracted so much attention due to its 
theoretical and practical applications (Awrejcewicz, 1991; 
Umberger et al., 1989; Lai & Grebogi, 1999; Shibata, 1998). In 
biomedical systems, spatiotemporal chaos has been analyzed to 
investigate the interaction between intelligence and electrical brain 
activity (Anokhin et al., 1999).  

On the other hand, time series analysis considers just a scalar 
time series, usually associated with an experimental acquisition, to 
understand the system dynamical behavior. The essential point of 
this analysis is that a time series contains information about 
unobserved variables of the system, which allows the system 
analysis performing state space reconstruction. Biomedical signals 
are generated by complex self-regulating systems that process inputs 
with a broad range of characteristics. Many physiologic time series 
are extremely inhomogeneous and non-stationary, fluctuating in an 
irregular and complex manner (Ivanov et al., 1999).  

This review article presents an overview of nonlinear dynamics 
concepts useful for the analysis of biomedical system. At first, it is 
presented a historical review related to chaos theory. Then, general 
background is introduced, discussing the main characteristics and 
tools related to chaos analysis. In brief, it is discussed the Smale 
horseshoe transformation, characteristics of the Cantor set, Poincaré 
maps, fractal dimension and Lyapunov exponents. Moreover, the 
main concepts associated with time series analysis and chaos control 
are discussed. After that, it is presented an overview of dynamical 
aspects related to different biomedical systems. Cardiovascular 
rhythms, brain rhythms, cellular and molecular rhythms are 
discussed from a dynamical point of view, presenting a general 
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overview of these fields, allowing a comprehension of 
characteristics related to normal and pathological responses. 

Historical Review of Chaos Study 

Nature is essentially nonlinear and the idea that natural 
processes have regular behavior is a consequence of linear 
paradigms. The excessive use of linear analysis had limited the 
comprehension of natural processes for many years. One of these 
paradigms is the strict determinism, clearly illustrated by the 
Laplace thinking: “If we conceive of an intelligence which at a given 
instant comprehends of all the relations of the entities of this 
universe, it could state the respect positions, motions, and general 
effects of all these entities at any time in the past or future”. In the 
end of the XIX century, Poincaré studied the dynamical response of 
the three-body problem. Poincaré tries to analyze the stability of the 
universe, studying a complicated problem compared with the two-
body problem, usually employed in that time. Figure 1 presents 
some orbits of the third body, showing complex responses (Stewart, 
1991).  

 
 

 
Figure 1. Orbits related to the thee-body problem (Modified from Stewart, 
1991). 

 
The analysis of Poincaré includes the chance in contrast of the 

strict determinism of Laplace: “Even if the case that the natural 
laws had no longer secret for us, ... it may happen that small 
differences in initial conditions produce very great ones in the final 
phenomena”. 

Although Poincaré has an absolutely clear vision with respect to 
chaos (as it is understood nowadays), only in 1963, when Lorenz 
developed studies about meteorology, the idea of chance related to 
dynamical systems is taken again. Lorenz studied the classical 
problem of Rayleigh-Benard for fluid convection, which 
contemplates two parallel plates, separated by a fluid, where the 
upper plate has a lower temperature when compared with the lower 
plate. The Lorenz’s analysis shows that small variations on initial 
conditions may cause great changes in the system response, being 
identified as the start of the modern study of chaos. This 
phenomenon represents sensitive dependence on initial conditions, 
being a characteristic feature of chaos. Colloquially, it became 
famous as the butterfly effect, which means that if a butterfly flaps 
its wings in China, then it may cause a hurricane in Brazil. Figure 2 
shows different response patterns related to the Lorenz’s problem 
(Van Dyke, 1982). 

 

 

 
Figure 2. Natural convection (Modified from Van Dyke, 1982). 

 
Since that, many researchers are dedicated to analyze chaos in 

different fields of sciences. May (1976), for example, treats a system 
related to the insects population dynamics. This work became 
known as logistic map, evaluating the insect population in one year, 
Xi+1, from the previous year, Xi: )1(1 −=+ iii XXX α . The parameter α 
defines environmental characteristics. There is no doubt about the 
simplicity of this mathematical model, however, its dynamical 
response is very rich.  

Together with these pioneer studies, many relevant contributions 
may be found in the chaos study. Just as a tribute to important 
authors, one could mention: Grebogi, Fegeibaum, Smale, Shaw, 
Duffing, van der Pol, Yorke, Ott, Guckenheimer, Holmes, Moon, 
Abarbanel, Thompson, Chua. 

In the same time of the dynamical systems study, Mandelbrot 
(1982) establishes the existence of the geometry of nature in 
contrast with the classical geometry, which provides just a first 
approximation to the structures of physical objects. Therefore, 
fractal geometry may be considered as an extension of classical 
geometry. Fractals have been observed in nature in different 
situations varying from geometry to physical sciences. Basically, it 
is possible to categorize fractals into two different groups: solid 
objects and strange attractors. The first type includes physical 
objects that exist in ordinary physical space. On the other hand, the 
second type considers conceptual objects that exist in the state space 
of chaotic dynamical systems (Theiler, 1990). Figure 3 shows some 
fractal representations of natural systems. 

 

   
Figure 3. Fractal geometry (Modified from Barnsley, 1988). 

 
In order to offer an understanding of the essential aspects of 

chaos, some interesting illustrations are now focused on. Lorenz 
(1996) says that pinball may represent the central ideas related to 
chaos. Small variations on initial conditions associated with ball 
launch, may cause great differences after some time, making 
impossible to predict the ball trajectory. This is similar to changes 
related to a skyman after his initial velocity (Figure 4). 

Nowadays, the analysis of chaotic behavior is becoming 
common in many different fields of science as engineering, 
medicine, ecology, biology and economy. In this context, Briggs & 
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Peat (2000) say that “chaos reveals that, we need to use all 
uncertainties of life instead of resist to them”. 

 

 
 

 

 
Figure 4. Sensitive dependence on initial conditions (Modified from 
Lorenz, 1996). (a) Pinball. (b) Sky. 

Chaotic Behavior: Background 

A dynamical system may be mathematically expressed either by 
continuous set of equations, or by discrete system, called map, as 
follows:  

 
nRxxfx ∈= ,)(� . (1a) 

 
n

ii RXXFX ∈=+ ,)(1 . (1b) 
 
Spatiotemporal aspects of the dynamical system may also be the 

objective of analysis. The complex patterns that appear in nature are 
vastly studied in different fields of sciences. The inclusion of these 
spatial aspects in the dynamical system is done considering partial 
differential equations as mathematical models (Cross & Hohenberg 
1993; Gollub & Langer, 1999). For simplicity, ordinary differential 
equations are assumed here to represent a dynamical system.  

On this basis, a dynamical system may be understood as a 
transformation f that is imposed to a vector field x. The space of 
dependent variables, x, called state space or phase space, may have 

different topologies. In brief, topology is the science that studies 
continuous transformations and furnishes the tools to understand 
global aspects related to dynamical systems. Essentially, it is 
possible to define geometrical properties of objects under 
transformations (Singer & Thorpe, 1967).  

An equilibrium point (or fixed point) is a special point of the 
state space where the system may stay stationary, which means that 
the solution does not vary with time. Therefore, if nRx∈  is an 
equilibrium point of the system, hence 0)( =xf . In the same way, 

for a map, nRX ∈  is an equilibrium point if )( XFX =  
(Guckenheimer & Holmes, 1983). 

Chaos may be geometrically understood considering some 
characteristics related to dynamical system transformations. On this 
basis, let a unitary square Q, subject to f such that one direction is 
contracted while the other is expanded (Figure 5). This 
transformation is considered to be the positive part of a more 
general transformation. Analogously, it is possible to think in the 
reverse transformation (the negative part of transformation), where 
contraction and expansion of Q is taken in a different way, shown in 
Figure 6.  
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Figure 5. Sequence of transformations subjected to the square Q for the 
function f. 
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Figure 6. Sequence of transformations subjected to the square Q for the 
inverse of function f. 

 
In the limit, the positive part of transformation, ∩

+∞

=

+ =
0

)(
i

i QfΛ , 

tends to form a set of vertical lines, while the action of the inverse 
function, ∩

−∞

=

− =
0

)(
i

i QfΛ , tends to form a set of horizontal lines. 

Hence, the set of all transformations −+= ΛΛΛ ∩  forms an invariant 
set of disconnected points that has the structure of a Cantor set. This 
set is closed, disconnected and has an uncountable infinity of points. 
An example of this set is shown in Figure 7, that is constructed from 
a repetition of a simple rule. This kind of structure has a fractal 
characteristic as a reference of the factionary nature of its 
dimension. 
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Figure 7. Cantor set (Modified from Gleick, 1987). 

 
A generic point of this set may be identified by a sequence of 

0’s and 1’s and, because of that, it is possible to construct a structure 
that represents orbits of dynamical systems from these sequences. 
This approach is called symbolic dynamics and since it is based on 
sequences of integer numbers, it is not associated with floating point 
errors, being useful in several situations. 

Because of the form of the transformed square and also as a 
tribute to the mathematician Steve Smale, this kind of 
transformation became known as the Smale horseshoe. A dynamical 
system subjected to this kind of transformation has some special 
characteristics. This transformation implies that, to a general point 
of Q, p, it is possible to associate a neighbor, ε, which may be too 
small, where it can be chosen another point, p~ . It does not matter 
the size of the neighbor ε, there is a number of iterations imposed by 
f such as pp ~ and  are separated by a finite distance. Therefore, the 
system presents a sensitive dependence on initial condition, as 
shown in Figure 8 (Wiggins, 1990; Strogatz, 1994). This property 
characterizes the chaotic behavior of a dynamical system. This 
sensitive dependence represents the butterfly effect described in 
Lorenz’s work.  

 

 
Figure 8. Smale horseshoe transformation (Modified from Strogatz, 1994). 

Chaotic behavior is closed related to the existence of the Smale 
horseshoe. Consequently, chaos is associated with nonlinear systems 
with, at least, three distinct directions: one related to expansion, one 
related to contraction, and a neutral one, where folder occurs. This 
means that a dynamical system may have at least three dimensions 
in order to exhibit chaotic behavior (Wiggins, 1990; Guckenheimer 
& Holmes, 1983). Many authors refer to the horseshoe 
transformation as the baker transformation, as a reference of the 
process of bread paste. An original paste (related to square Q), is 
prepared by a sequence of contraction-expansion-folder (Gleick, 
1987; Stewart, 1991).   

Nonlinear dynamics and chaos study involves a series of proper 
tools to diagnose and understand all related phenomena. Poincaré 
section and the estimation of dynamical invariants are some 
examples that are briefly discussed in the following sections. 

Poincaré Map 

Poincaré map constitutes a procedure employed to eliminate a 
dimension of the system and, therefore, a continuous system is 
transformed into a discrete one (Thompsom & Stewart, 1986). There 
are many forms to define a Poincaré map, but in general, it is 
considered as a surface that transversely intersects a given orbit. For 
systems subjected to periodic forcing, Poincaré section may be 
represented by a surface that corresponds to a specific phase of the 
driving force. On this basis, one has a stroboscopically sample of the 
system response (Figure 9).  

 
Figure 9. Poincaré section (Modified from Moon, 1992). 

Attractor and Fractal Dimension 

The attractor dimension counts the effective number of degrees 
of freedom in a dynamical system. The term chaotic refers to the 
dynamics on the attractors while strange refers to its geometrical 
structure. There are different possible situations: chaotic attractors 
that are strange; chaotic attractors that are not strange; and also 
strange attractors that are not chaotic (Grebogi et al., 1984). 
Usually, chaotic dynamical systems exhibit trajectories in their 
phase space that converges to a strange attractor. The strangeness of 
the chaotic attractor is associated with its dimension in which 
instance it is described by a noninteger dimension. Hausdorff (1919) 
gave a rigorous definition of dimension that is a basic property of an 
attractor.  

There are a variety of forms to define or quantify the dimension 
of an attractor. Farmer et al. (1983) presents an overview of these 
definitions, considering two general types: those that depend only 
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on metric properties and those that depend on the frequency with 
which a typical trajectory visits different regions of the attractor. 
Furthermore, there is the Kaplan-Yorke conjecture that defines the 
Lyapunov dimension calculated from Lyapunov exponents (Kaplan 
& Yorke, 1983; Wolf et al., 1985; Franca & Savi, 2001b). 

A geometrically intuitive notion of dimension, D, is as an 
exponent that expresses the scaling of an object’s bulk with its size: 
Bulk ∼ SizeD. Here, Bulk may correspond to a volume, a mass, or 
even a measure of information content, while Size is a linear 
distance. Hence, the definition of dimension is usually cast as an 
equation of the form (Theiler, 1990), 

 

)log(
)log(lim

0  Size
BulkD

Size→
= , (2) 

 
where the limit of small size is taken to ensure invariance over 
coordinate changes. This also implies that dimension is a local 
quantity and that any global definition of dimension require some 
kind of averaging.  

Different definitions of these quantities imply different measures 
of dimensions. Hausdorff and capacity dimensions are some 
examples of fractal dimensions while pointwise, information and 
correlation dimensions are examples of dimension of the natural 
measure. Other definitions may be found in Farmer et al. (1983), 
Theiler (1990) and Franca & Savi (2001b). 

Lyapunov Exponents 

Lyapunov exponent evaluates the sensitive dependence on initial 
conditions estimating the exponential divergence of nearby orbits. 
These exponents have been used as the most useful dynamical 
diagnostic tool for chaotic system analysis and can also be used for 
the calculation of other invariant quantities as the attractor 
dimension. The signs of these exponents provide a qualitative 
picture of the system’s dynamics. The existence of positive 
Lyapunov exponents defines directions of local instabilities in the 
system dynamics and any system containing at least one positive 
exponent presents chaotic behavior. A response with more than one 
positive exponent is called as hyperchaos (Savi & Pacheco, 2002; 
Franca & Savi, 2003; Machado et al., 2003). 

The determination of Lyapunov exponents of dynamical system 
with an explicitly mathematical model, which can be linearized, is 
well-established from the algorithm proposed by Wolf et al. (1985). 
On the other hand, the determination of these exponents from time 
series is quite more complex. In essence, there are two different 
classes of algorithms: Trajectories, real space or direct method 
(Wolf et al., 1985; Rosenstein et al., 1993; Kantz, 1994); and 
perturbation, tangent space or Jacobian matrix method (Sano & 
Sawada, 1985; Eckmann et al., 1986; Brown et al., 1991; Briggs, 
1990; Kruel et al., 1993).  

In order to understand the idea related to the determination of 
Lyapunov exponents consider a D-sphere of states that is 
transformed by the system dynamics in a D-ellipsoid. Lyapunov 
exponents are related to the expanding and contracting nature of 
different directions in phase space. The evaluation of the divergence 
of two nearby orbits is done considering the relation between the 
initial D-sphere and the D-ellipsoid (Figure 10). This variation may 
be expressed by: d(t) = d0 bλt, where d is the diameter and b is a 
reference basis. The parameter λ is called as Lyapunov exponent 
and when it is negative or vanishes, trajectories do not diverge. On 
the other hand, when the exponent is positive, indicates that 
trajectories diverges, characterizing chaos. 
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Figure 10. Estimation of Lyapunov exponents. 

 
In chaotic situations, there is a local exponential divergence of 

nearby orbits and hence, it is necessary proper algorithms in order to 
evaluate Lyapunov exponents (Wolf et al., 1985; Parker & Chua, 
1989). These algorithms evaluate the average of this divergence 
considered in different points of the trajectory. Hence, when the 
distance d(t) becomes large, it is defined a new d0(t) in order to 
evaluate the divergence, as follows: 

 

∑
= −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=λ
n

k k

k
b

n td
td

tt 1 100 )(
)(log1 . (3) 

 
The attractor dimension may be evaluated from the Lyapunov 

spectrum considering the Kaplan-Yorke conjecture (Kaplan & 
Yorke, 1983).  

Bifurcations 

The term bifurcation was used for the first time by Poincaré in 
order to express a division of equilibrium solutions. In brief, 
bifurcation may be understood as a qualitative change in solution 
structure as a consequence of system parameters variations 
(Wiggins, 1990).  

Bifurcation phenomenon is closed related to chaos and usually 
its analysis is developed considering local and global bifurcations. 
Local bifurcations are developed in a small region of phase space, 
usually, near to an equilibrium point. On the other hand, global 
bifurcation is non-local. There are many different forms of 
bifurcations depending on the dynamical systems characteristics. 
The formation of Smale horseshoe is a common type of global 
bifurcation. Local bifurcation of a dynamical system may be 
analyzed from its normal form, pn RRxxfx ∈∈= µµ ,,);(� , 
where µ represents system parameters. The most common types of 
local bifurcation are presented in Figure 11: Saddle-node, 
transcritical, pitchfork and Hopf. 

Bifurcation diagrams represent the stroboscopically sampled 
variable values under the slow quasi-static increase of some system 
parameter (Thompsom & Stewart, 1986). These diagrams allow a 
global analysis of the parameter changes in the system response 
(Machado et al., 2004). Figure 12 shows some typical bifurcation 
diagrams obtained from the logistic map. In this particular system, 
the route to chaos is represented by period doubling cascades. 
Enlargement of regions of bifurcation diagrams shows the process 
of bifurcation until the accumulation point is reached. After that, the 
system presents a chaotic response. Besides, it is important to notice 
that there are periodic windows inside chaotic regions.  
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Figure 11. Types of local bifurcations.  

 

 
 

 
 

 
Figure 12. Bifurcation diagrams.  

Time Series Analysis 

In general, a dynamical system is analyzed from its 
mathematical model. Alligood et al. (1997) say that “of course, the 
idea of a real experiment being governed by a set of equations is a 
fiction. A set of differential equations, or a map, may model the 
process closely enough to achieve useful goals”. An alternative 
approach to deal with the dynamical system response is based on the 
analysis of data derived from an experiment. Therefore, a dynamical 
system may be analyzed either by a mathematical model or by a 
measured time series. The basic idea of the time series analysis is 
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that a signal contains information about unobserved state variables, 
which can be used to predict the present state (Kantz & Schreiber, 
1997, Franca & Savi, 2001a).  

This approach is of particular interest in biomedical systems 
where different signals may be measured to monitor some 
physiological functioning. Representative physiological time series, 
extracted from Glass (2001) are shown in Figure 13. White blood 
cell count (neutropenia), heart rate (high altitude), stride time 
(Huntington´s disease), blood pressure  (sleep apnoea) and 
Parkinsonian tremor of a finger are presented. Notice the complex 
characteristics of these signals. 

 

 
Figure 13. Representative physiological time series (Modified from Glass, 
2001).  

 
 

The first problem on the analysis of experimental signals is that 
data acquisition furnishes a time series of the observable 
measurements and it is necessary to convert observations into state 
vectors. On this basis, state space reconstruction needs to be 
employed. The other problem in the experimental data is the noise 
contamination, which is unavoidable in cases of data acquisition. 
Many studies are devoted to evaluate noise suppression and its 
effects in the chaos analysis, however, there are a small number of 
reports devoted to the effects of the system noise on chaos (Ogata et 
al., 1997; Franca & Savi, 2001a). 

Power Spectrum 

A dynamical system may be analyzed either in time or in 
frequency domain. Spectrum techniques or Fourier transform 
establish a relationship between these two domains. The idea of a 
decomposition of a signal in trigonometric series is well-established 
in sciences and engineering. Fourier transform for a function s(t) is 
defined as: 

 

∫=
∞

∞−
dtetsfs iftπ

π
2)(

2
1)(ˆ  (4a) 

 
or, using a discrete version: 

 

  ∑
=

=
N

n

Nikn
nk es

N
s

1

/21ˆ π  (4b) 

 
where fk = k/N∆t , k = −N/2, ..., +N/2 are frequencies while ∆t is the 
sampling interval. The power spectrum of a process is defined to be 
the squared modulus of the continuous Fourier transform, 

2)(ˆ)( fsfS = , or in discrete version, 2ˆkk sS = . 
A version of the discrete Fourier transform becomes popular 

because of its efficiency: FFT (Fast Fourier Transform). Press et al. 
(1992) show details of this technique available in many numerical 
packages, being very useful in the analysis of experimental signals. 
FFT is useful for the chaos characterization, being applied to system 
with low dimension (Moon, 1992). Frequently, the FFT of a chaotic 
signal presents continuous spectrum over a limited range. The 
energy is spread over a wider bandwidth. On the other hand, the 
FFT of a periodic signal presents discrete spectrum, where a finite 
number of frequencies contribute to the response (Moon, 1992; 
Mullin, 1993).  

One of the clues to detecting chaos is the appearance of a broad 
spectrum of frequencies in the output when the input is a single-
frequency harmonic motion. Therefore, even though these 
techniques are very useful, one must be cautioned on their 
application. In large degrees of freedom systems, for example, the 
use of the Fourier spectrum may not be of much help in detecting 
chaos. Hence, in many situations it may become difficult to 
distinguish noise and chaos. For these situations, there are other 
useful measures. Among linear tools, the autocorrelation function is 
an alternative (Mullin, 1993). Figure 14 shows the FFT of three 
different signals: periodic, chaotic and random. 
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Figure 14. Comparison between FFT of three different signals: periodic, 
chaotic and random. 

State Space Reconstruction 

The state space reconstruction establishes that a scalar time 
series, s(t), may be used to construct a vector time series that is 
topological equivalent to the original dynamics. The state space 
reconstruction needs to form a coordinate system to capture the 
structure of orbits in state space. The method of delay coordinates 
can be done using lagged variables, s(t+τ), where τ is the time 
delay. Then, considering an experimental signal, s(t), where t = t0 + 
(n−1)∆t with n = 1, 2, 3,…, N, it is possible to use a collection of 
time delays to create a vector in a De-dimensional space, u(t), which 
represents the reconstructed dynamics of the system. 

 
T

eDtstststu )})1((...,),(),({)( ττ −++=  (5) 
 
The method of delays was first proposed by Ruelle (1979) and 

Packard (1980) and then by Takens (1981) and Sauer et al. (1991). 
Its use has become popular for dynamical reconstruction, and the 
choice of the delay parameters, τ - time delay, and De - embedding 
dimension, is an important task related to this procedure. Among 
many possibilities to define the delay parameters (Franca & Savi, 
2001a) one could mention the average mutual information method 
to determine time delay (Fraser, 1989) and the method of false 
nearest neighbors to estimate embedding dimension (Kennel et al., 
1992). 

Method of Mutual Information 

Fraser & Swinney (1986) establishes that the time delay τ 
corresponds to the first local minimum of the average mutual 
information function I(τ), which is defined as follows, 
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where Γb(s(t)) is the probability of the measure s(t), Γb(s(t+τ)) is the 
probability of the measure s(t+τ), and Γb(s(t), s(t+τ)) is the joint 
probability of the measure of s(t) and s(t+τ). The average mutual 
information is really a kind of generalization to the nonlinear 
phenomena from the correlation function in the linear phenomena. 
When the measures s(t) and s(t+τ) are completely independent,    
I(τ) = 0. On the other hand, when s(t) and s(t+τ) are equal, I(τ) is 
maximum. Therefore, plotting I(τ) versus τ it is possible to identify 
the best value for the time delay which is related to the first local 
minimum. 

Method of False Nearest Neighbors 

The false nearest neighbors algorithm (FNN) was originally 
developed for determining the number of time delay coordinates 
needed to recreate autonomous dynamics, but it is extended to 
examine the problem of determining the proper embedding 
dimension. 

In an embedding dimension that is too small to unfold the 
attractor, not all points that lie close to one another will be neighbors 
because of the dynamics. Some will actually be far from each other 
and simply appear as neighbors because the geometric structure of 
the attractor has been projected down onto a smaller space (Kennel 
et al., 1992). 

The method of false nearest neighbors, considers a D-
dimensional space where the point u(t) has rth nearest neighbors, 
u(r)(t). The square of the Euclidean distance between these points is,  
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Now, going from dimension D to D+1 by time delay, there is a 

new coordinate system and, as a consequence, a new distance 
between u(t) and u(r)(t) . When these distances alter from one 
dimension to another, there are false neighbors. A natural criterion 
for catching embedding errors is that the increase in distance 
between u(t) and u(r)(t) is large when going from dimension D to 
D+1. The increase in distance can be stated with distance equations 
and some criteria must be established to designate the existence of 
false neighbors. Kennel et al. (1992) establishes proper criteria for 
this aim. 

Reconstruction from a Time Series 

In order to illustrate the procedure presented for state space 
reconstruction, a general time series is shown as an example (Franca 
& Savi, 2001a; Pereira-Pinto et al., 2004). Figure 15 shows the time 
series; the analysis of the embedding parameters employing the 
average mutual information method for the estimation of time delay 
and the method of false nearest neighbors to estimate embedding 
dimension; the state space reconstruction forming the phase space 
and also the Poincaré section showing a strange attractor.  

 



Chaos and Order in Biomedical Rhythms 

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright © 2005 by ABCM             April-June 2005, Vol. XXVII, No. 2 / 165 

 

τ 

I(
τ)

 (b
its

) 

 
 

De 

Fa
ls

e 
N

ei
gh

bo
rs

 (%
) 

 

 

 
Figure 15. State space reconstruction from a time series. 

Chaos Control 

Since biological systems usually adopt chaotic regimes with 
their wide range of potential behaviors in order to quickly react to 
some new situation, chaos control is an important task related to 
natural rhythms. This control is associated with many regulatory 
mechanisms that control the dynamics of living systems.  

The mechanisms of chaos control were understood by the 
pioneer work of Ott et al. (1990) which propose the well-know 
OGY approach (a tribute to the authors Ott-Grebogi-Yorke). 
Essentially, chaos control is based on the richness of responses of 
chaotic behavior. A chaotic attractor has a dense set of unstable 
periodic orbits (UPOs) and the system often visits the neighborhood 
of each one of them. Besides, chaotic response has sensitive 
dependence on initial condition, which implies that the system’s 
evolution may be altered by small perturbations. Therefore, chaos 
control may be understood as the use of tiny perturbations for the 
stabilization of an UPO embedded in a chaotic attractor, which 
makes this kind of behavior to be desirable in a variety of 
applications, since one of these UPO can provide better performance 
than others in a particular situation.  

The control of chaos can be thought as a two-stage process. The 
first stage is composed by the identification of UPOs and is named 
as “learning stage” (Gunaratne et al., 1989). After the UPOs 
identification, one can proceed to the next stage of the control 
process that is the desired orbit stabilization, which can be done by 
different forms (Pereira-Pinto et al., 2004). The OGY approach 
considers a discrete system with a map form, ),(1 pF ii ξξ =+ , where 
p ℜ∈  is a control accessible parameter. This is equivalent to a 
parameter dependent map associated with a general surface, usually 
a Poincaré section. Let ),( 0pF FF ξξ =  denote the unstable fixed 
point on this section corresponding to an orbit in the chaotic 
attractor that one wants to stabilize. The control idea is to monitor 
the system dynamics until the neighborhood of this point is reached. 
After that, a proper small change in the parameter p causes the next 
state ξi+1 to fall into the stable direction of the fixed point. This 
procedure may be understood as a stabilization of a sphere over a 
saddle, as it is schematically shown in Figure 16. 

 

 
Figure 16. Schematically comprehension of the OGY control method 
(Modified from Ditto & Showalter, 1997). 

 
In order to find the proper variation in the control parameter, δp, 

it is considered a linearized version of the dynamical system near 
the equilibrium point.  

 

iii pwA δδξδξ +≅+1  (8) 
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where Fii ξξδξ −= , 0ppp ii −=δ , ),( 0pFDA Fξξ= , and 

),(/ 0ppFw Fξ∂∂= .  
The OGY method can be employed even in situations where a 

mathematical model is not available (Pereira-Pinto et al., 2004, 
2005). Under this situation, all parameters can be extracted from 
time series analysis. The Jacobian A and the sensitivity vector w can 
be estimated from time series using a least-square fit method as 
described in Auerbach et al. (1987) and Otani & Jones (1997). 

Cardiovascular Rhythms 

Rhythmic changes of blood pressure, heart rate and other 
cardiovascular measures indicate the importance of dynamical 
aspects in the comprehension of cardiovascular rhythms. Several 
studies are pointing to the fact that certain cardiac arrhythmias are 
instances of chaos. This is important because it may suggest 
different therapeutic strategies, changing classical approaches. 
Among cardiac arrhythmia, one can cite premature beats, atrial 
fibrillation, bradycardia, tachycardia and ventricular arrhythmias. 

Ventricular arrhythmias, as ventricular fibrillations and 
ventricular tachycardia, are the most severe and life-threatening 
arrhythmias being the cause of many deaths. Cardiac fibrillation 
may be understood as a spontaneous, asynchronous contraction of 
cardiac muscle fibers. Ventricular fibrillation is a frenzied and 
irregular disturbance of the heart rhythm that quickly renders the 
heart incapable of sustaining life. On the other hand, ventricular 
tachycardia is a rapid heartbeat arising in the ventricles.  

Heart rate variability (HRV) is one of the best predictors of 
arrhythmic events or sudden death after myocardial infarction 
(Mansier et al., 1996). HRV are partially modulated by the 
autonomic nervous system control of heart activity. Short-term 
variability is mediated by the parasympathetic system, while long-
term variability by both the sympathetic and parasympathetic 
pathways. HRV may vary considerably even in the absence of 
physical or mental stress and several measures of HRV have been 
applied for clinical and research purposes. 

There are different forms to evaluate the heart functioning by 
the measurement of some signal. A tachogram presents heart rate as 
a function of time. Basically, it shows a curve of registered time (or 
interval number) versus interval duration. An electrocardiogram 
(ECG) records the electrical activity of the heart being used to 
measure the rate and regularity of heartbeats as well as the size and 
position of the chambers. The electrical impulses related to heart 
functioning are recorded in the form of waves, which represents the 
electrical current in different areas of heart.  

Several studies have established a relation between cardiac 
arrhythmias and chaos. This is related to the deterministic 
characteristics of some of these arrhythmias (Witkowski et al., 
1995; Radhakrishna et al., 2000). Since chaotic responses may be 
controlled by an efficient way using OGY method or its variants, 
this may inspire some interesting approaches in order to stabilize 
unstable orbits associated with the normal heart rhythm.  

The clinical arrhythmias that have the greatest potential for 
therapeutic applications of chaos theory are the aperiodic 
tachyarrhythmias, including atrial and ventricular fibrillation. 
Garfinkel et al. (1992) and Garfinkel et al. (1995) discuss the 
application of chaos control techniques in order to avoid heart 
arrhythmic responses. This approach may be incorporated into 
pacemakers, avoiding ventricular fibrillation, for example. 

Voss et al. (1996) presents interesting comparisons between 
dynamics characteristics of healthy persons and patients with high 
risk of sudden cardiac death. The authors show evidences relating 
chaotic response of heart signals (tachograms and ECGs) with 
cardiac arrhythmias. 

Therefore, based on the hypothesis that some arrhythmias are 
related to chaotic response of the heart, it is possible to employ 
some chaos control technique, making the heart response rhythmic. 
Moreover, it is possible to say that nonlinear dynamics are 
promising to be applied to clinical issue, being an important tool to 
diagnostic diseases and also to predict some pathological behaviors. 
On this basis, the application of different nonlinear tools has a 
growing importance. 

Brain Rhythms 

The richness of chaos offers benefits for a biological system of 
adopting chaotic regimes with their wide range of potential 
behaviors. Under this condition, the system may quickly react to 
some new situation, changing conditions and their response. Korn & 
Faure (2003) say that “there is a growing evidence that future 
research on neural systems and higher brain functions will be a 
combination of classical (sometimes called reductionist) 
neuroscience with more recent nonlinear science”. The search for 
chaos in neurodynamics starts in the 1980s with the analysis of 
electroencephalogram (EEGs) oscillations in rabbits (Freeman, 
2000; Korn & Faure, 2003).    

In brief, it is possible to say that the brain together with the 
nervous system controls all the functioning of the live being. 
Sensory nerves carry messages from the sense organs to the brain 
for processing, and then, the brain sends instructions in response 
through other specialized nerves to the physical parts of the body, 
such as the muscles, that can carry out its commands. 

An EEG reflects the electrical activity of the brain. The structure 
of EEG signal is non-stationary and results from a combination of 
nonlinearities and random perturbations (Diambra et al., 2001). 
Nowadays, many authors point that normal EEG signal has higher 
complexity while pathological signals (related to epileptic seizures, 
for example) exhibit low dimensional chaos. 

Neuronal cells possess a large repertoire of firing patterns. A 
single cell can behave in different modes and this richness is 
controlled by external inputs. Recent investigations on isolated cells 
have shown that dynamical information can be preserved when a 
chaotic input is converted into a spike train (Korn & Faure, 2003). 

The study of neurodynamics varies from mathematical modeling 
to time series analysis. Faure & Korn (2001) and Korn & Faure 
(2003) present a complete review of the main topics related to the 
brain dynamics. It should be pointed out that deterministic chaos 
offers a striking explanation for apparently irregular behavior. In 
brief, it is possible to say that certain pathological patterns of the 
brain may be associated with some kind of synchronization in brain 
functioning. Sarbadhikari & Chakrabarty (2001) says that neuronal 
network may present essentially different kinds of dynamical 
responses and each one can be related to different brain activity as 
epilepsy, depression, exercise and lateralization.  

Epileptic processes exhibit high frequency discharges scarcely 
modulated by physiological brain activity (Lehnertz & Elger, 1995). 
There is a growing agreement that epileptic seizure is related to a 
loss of the complexity of brain signals, reflected in EEG, for 
example. Despite the difficulties to apply the classical nonlinear 
tools in order to assure this conclusion, as Lyapunov exponents and 
fractal dimension (Theiler, 1995), many authors are presenting new 
arguments that emphasize this condition (Lehnertz, 1999). 
Sackellares et al. (1999) ague that epileptic brains repeatedly make 
the abrupt transitions into and out of the ictal state because the 
epileptogenic focus drives them into self-organizing phase 
transitions from chaos to order. Furthermore, the authors postulate 
that the seizure serves to reset the system. 

Despite all evidences, it should be pointed out all difficulties to 
characterize chaos in brain. Lai et al. (2003) presents an article 
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arguing the inability of Lyapunov exponents in order to predict 
epileptic seizures. Noise contamination is one of the drawbacks 
associated with this evaluation (Franca & Savi, 2003). 
Spatiotemporal characteristic of the brain activity is probably other 
drawback for this estimation. 

Parkinson’s disease is another pathology related to brain 
rhythms. Basically, it is a serious neurological disorder with a broad 
spectrum of symptoms, including a large amplitude and low 
frequency tremor. The origin of the Parkinsonian tremor is not well 
understood. Titcombe et al. (2001) shows a study where high 
frequency, electrical deep brain stimulation can suppress tremor in 
Parkinson’s disease. The authors ague that the mechanism related to 
this behavior is a supercritical Hopf bifurcation, showing the 
evidence of the dynamics characteristics of the phenomenon. 

Another psychosomatic disorder that can be associated with 
brain dynamics is the depression. The alteration of biological 
rhythms causes a decrease of complexity in brain activity, which can 
be identified by EEG (Pezard et al., 1996). 

As a final remark concerning with brain rhythms, one can say 
that brain activity is clearly related to complex dynamics, and there 
are evidences that its electrical activity is chaotic. Changes in 
control systems can promote qualitative changes in brain rhythms, 
leading to abnormal dynamics. The loss of complexity may be 
related to some diseases as epilepsy and depression. 

Cellular and Molecular Rhythms 

Cellular and molecular rhythms find their roots in many 
regulatory mechanisms that control the dynamics of life. There are 
many modes of cellular regulation that generates oscillations in 
genetic and metabolic networks (Goldbeter, 2002). Aspects of 
pattern formation in different biological phenomena constitute an 
area of increasing importance in different fields of science (Cross & 
Hohenberg 1993; Gollub & Langer, 1999). 

Several studies have been developed proposing mathematical 
models for different cellular or molecular processes. Goldbeter 
(2002) presents a general overview of some important features 
related to cell rhythms, analyzing calcium oscillations and circadian 
rhythms. Perc & Marhl (2003b) presents different models to study 
different types of bursting Ca2+. Aon et al. (2000) presents another 
review discussing coupling between the biochemical reactions 
dynamics and the geometry of cytoarchitecture observing its 
importance in the cells behavior. 

Calcium oscillation is a fundamental mechanism related to 
cellular processes, which controls the complex behavior of 
biological systems. Intracellular Ca2+ oscillations are observed in a 
large variety of cell types including cardiac cells, oocytes and 
hepatocytes. The mechanisms of these oscillations have been 
intensely investigated both from experimental and theoretical point 
of view. Calcium has to play a multiplicity of roles in order to 
trigger different cellular functions. Therefore, flexible, yet precisely 
regulated, information encoding of Ca2+ oscillations in their 
frequency as well as in their amplitude is required (Perc & Marhl, 
2003a). Although most of the experimental data show simple 
periodic oscillations, some others show more complex periodic 
behavior resembling bursting. Actually, chaos and bursting have 
been observed in Calcium dynamics. Borghans et al. (1997) presents 
some mathematical model that can capture the general behavior of 
Calcium oscillations for different kinds of response. 

Besides this intracellular oscillation, some extracellular signals 
are produced in a pulsatile manner. As example of this intercellular 
communication, one can cite the episodic hormone secretion and 
pulsatile signals of cAMP in the slime mould Dictyostelium 
discoideum (Goldbeter, 2002).  

Another important class of biological rhythms is called circadian 
rhythms which are related to a period close to 24 hours that allow 
organisms to adapt to periodic variations in the terrestrial 
environment. These rhythms originate from the negative 
autoregulation of gene expression. Important insights into the 
molecular mechanisms underlying circadian rhythm generation have 
been gained from the study of organisms such as Drosophila. 
Leloup & Goldbeter (1999) presents a discussion of circadian 
oscillations in the levels of two proteins (PER and TIM), presenting 
situations where there are chaotic oscillations. Moreover, Goldbeter 
(2002) presents results of mathematical model for the mammalian 
circadian clock providing cues for circadian rhythms sleep disorders 
in humans. 

Glycolysis is another phenomenon where rhythms can vary from 
order to chaos. Basically, glycolysis is the major source of 
metabolic energy in almost all living cells. In this process, the sugar 
molecule is converted into the product via a series of enzyme-
catalyzed reactions. Glycolysis constitutes a dynamical system that 
can present complex behaviors, varying from simple and sustained 
oscillations and also chaos. Kar & Ray (2003) analyzed collapse and 
revival of glycolytic oscillation using a model proposed by 
Goldbeter  (1996). In this analysis, limit cycle is the central 
characteristics of the dynamics of this system. On the other hand, 
Nielsen et al. (1997) shows chaotic behavior related to glycolysis. 
The authors ague that chaos have been induced by time dependent 
forcing with periodic varying flow of glucose. Nielsen et al. (1998) 
also presents experimental results related to this behavior, proposing 
a mathematical model to analyze the phenomenon.  

At this point, it should be pointed out that, once again, the 
analysis of biological rhythms related to cellular and molecular 
dynamics may be very rich, presenting either regular or irregular 
behaviors. Chaos occurs in different situations, showing the richness 
related to biomedical rhythms. 

Conclusions 

This review article discusses chaos and order in biomedical 
rhythms. Initially, it is presented a historical review of the chaos 
study. Then, a brief overview concerning chaotic behavior presents 
the main tools related to the nonlinear systems analysis. Chaos 
presents sensitive dependence on initial conditions being associated 
with the existence of the Smale horseshoe. Therefore, a system 
needs to have nonlinear characteristics and at least three dimensions 
in order to present a chaotic response. In general, chaos is related to 
a fractal structure having a strange attractor. Lyapunov exponents is 
the most effective diagnostic tool of chaos, and a system with one 
positive exponent presents chaotic behavior while more than one 
exponent is related to hyperchaos. Besides, chaos has a richness 
associated with an infinity number of unstable periodic orbits, which 
may be very interesting in biomedical systems since they can 
quickly react to some perturbation. Some tools related to the 
analysis of nonlinear time series is presented, which is useful in 
situations where a mathematical model is not available. Chaos 
control, which may be understood as the use of tiny perturbations 
for the stabilization of an unstable periodic orbit embedded in a 
chaotic attractor, is also discussed. This procedure may be useful in 
many applications being an important mechanism of biological 
systems. Finally, this article discusses some applications of the 
nonlinear analysis in cardiovascular, brain and cellular rhythms, 
using a dynamical approach. It should be pointed out that some 
diseases may be understood as a change in physiological system that 
causes alteration on natural rhythms. On this basis, it is possible to 
say that physiological rhythms constitute a central characteristic of 
life, and natural rhythms could be either periodic or irregular over 
time and space. Each kind of these dynamical behaviors may be 
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related to both normal and pathological physiological functioning. 
Therefore, chaos plays an important role in natural rhythms, being 
responsible to the flexibility of biomedical systems. As a 
consequence, the applications of nonlinear tools are becoming 
noticeable in the biomedical field. 
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