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A Methodology and Computational 
System for the Simulation of Fluid-
Structure Interaction Problem 
In this paper a flexible finite element computational tool developed to investigate fluid-
structure interaction applications in two dimensions is described. We consider problems 
which can be modelled as a viscous incompressible fluid flow and a rigid body-spring sys-
tem interacting nonlinearly with each other. The coupling is dealt with the use of an inter-
face approach, in which each physics involved is solved with different schemes and the re-
quired information is transferred through the interface of both systems. This approach is, 
at least in principle, very flexible and computationally efficient as the best available 
scheme can be adopted to solve each physics. Here, a stabilized FEM considering the 
“ALE” (Arbitrary Lagrangian-Eulerian) formulation with Crank-Nicholson time-
integration is employed for the fluid-dynamics analysis, and the Newmark Method is used 
for the structural dynamics. Several important tools were incorporated into our system in-
cluding different possibilities for the mesh movement algorithm, the computational domain 
decomposition into regions with and without mesh deformation, and the remeshing strat-
egy (either global or local) to keep the necessary mesh quality. As application we present a 
study of the forced lock-in phenomena and a preliminary investigation on the suppression 
(or at least the reduction) of the vortex induced vibrations (VIV) on a solid circular cylin-
der using an idealization of a periodic acoustic excitation. 
Keywords: Fluid-structure interaction, vortex induced vibrations (VIV), finite element 
method (FEM), arbitrary Lagrangian-Eulerian (ALE) formulation, lock-in phenomena, 
suppression of structural vibration 
 
 
 

Introduction 

Several practical structures, in different engineering fields, are 
subjected to vibration as a result of flow induced phenomena. Such 
behavior can compromise the integrity of the structure or make it 
uncomfortable for human use. The analysis of these problems in-
volve the study of a coupled fluid-structure interaction model and 
can be done using computational modeling. The numerical simula-
tion of such applications is most commonly performed using an 
interface approach and involves the modification of the computa-
tional domain as the geometry under consideration is moving with 
time. In order to avoid updating the computational discretization too 
frequently, an Arbitrary Lagrangian Eulerian (ALE) formulation 
(Nomura and Hughes, 1992; Childs, 1999) is normally adopted 
together with a mesh movement algorithm. In such approach, gener-
ally, the reference frame at the moving interface between the struc-
ture and the fluid has a Lagrangian description, and regions away 
from the interface have a mixed Lagrangian and Eulerian descrip-
tion to accommodate the arbitrary movement of the frame of refer-
ence. 1 

In this paper we briefly describe the finite element procedure 
developed to simulate the two dimensional fluid-structure interac-
tion of a rigid circular cylinder, supported by elastic springs, im-
merse in an incompressible viscous fluid flow. The analysis of such 
model application gives insight on many problems of industrial 
interest, for instance the study of “VIV” (Vortex Induced Vibra-
tions) (Blevins, 1986) on offshore platform legs. The adopted pro-
cedure uses a stabilized Petrov-Galerkin/Generalized Least Squares 
ALE finite element formulation with Crank-Nicholson time-
integration for the fluid-dynamics analysis (Sampaio, 1991 and 
Sampaio et al., 1993). This scheme represents an SUPG-like algo-
rithm (Streamline Upwind Petrov-Galerkin (Brooks and Hughes, 
1982)) with the optimal upwind parameter implicitly determined 
through the formulation and a timescale analysis (Sampaio et al., 
1993). For the structural analysis a simple lumped model with three 
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degrees-of-freedom and the Newmark Method (Hughes, 1987) is 
used. The fluid-structure coupling is solved through forced coupling 
of the variables at the interface and implemented in a segregated 
approach, using an algorithm to control errors due to the existing 
time delay between the fluid and structural analysis (Blom and 
Leyland, 1998). Several alternatives for the subdivision of the do-
main into subdomains, where the different descriptions (Eulerian, 
Lagrangian or ALE) are adopted, were incorporated in our computa-
tional system. Different types of mesh movement and mesh smooth-
ing were implemented in order to reduce the distortion of the com-
putational meshes over the fluid domain. The capabilities of auto-
matically generating and adapting the mesh (using local or global 
remeshing) (Lyra & Carvalho, 2000) were also incorporated into the 
computational system, allowing the study of problems with large 
displacements. All these features will be briefly described. Further 
details and the results to many applications dealing with different 
levels of difficulty and interaction between fluid and structure were 
analyzed to validate the computational system developed  and can 
be seen in Antunes et al. (2002), Antunes (2002) and Lyra et al. 
(2003). The obtained results are in good agreement with the experi-
mental, theoretical and numerical data available in the literature. 
The analysis of the lock-in phenomena is described and a prelimi-
nary numerical study on the suppression of the vortex-induced 
vibration of a circular cylinder by acoustic excitation is presented. 
The results shows the influence of the acoustic excitation frequency 
on the vortex shedding frequency and on the amplitude of the struc-
tural vibration. Finally, we draw the most important conclusions and 
some on going and future extension of this research. 

Numerical Formulation 

Most fluid structure interaction problems where there is a strong 
coupling between the displacement of the structure and the flow 
field are characterized by large displacements of some of the 
boundaries of the domain. The regions close to these moving 
boundaries are more naturally discretized with a Lagrangean ap-
proach. The fluid regions away from the moving boundaries, how-
ever, are more naturally treated with a conventional Eulerian formu-
lation, with a fixed reference frame. We use an Arbitrary La-



A. R. E. Antunes et al 

 / Vol. XXVII, No. 3, July-September 2005 ABCM 256 

grangean Eulerian framework to combine these two approaches in a 
single numerical technique. The differential equations that described 
the dynamics of the fluid and the structure therefore must be written 
in this framework. 

Fluid Dynamics 

Standard Eulerian Formulation 

The flow of incompressible fluids can be described by a spe-
cialization of the general Navier-Stokes Equations, where we will 
also consider that the viscosity is constant and that the fluid is New-
tonian. Unless otherwise stated, in the following we will use indicial 
notation with the summation convention. Within an Eulerian 
framework, i.e., using a fixed frame of reference and fixed control 
volumes, the incompressible Navier-Stokes equations in non-
conservative form reduce to: 
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In the above equation, 2,1, =ji , ix are the spatial coordinates, 

t  is the time variable, ρ is the density of the fluid, iu  are the com-
ponents of the velocity of the fluid, ib  are the external body forces, 
and ijτ  is the stress tensor. Equation (1) is subjected to the incom-
pressibility restriction  
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and the stress tensor is given by 
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where µ is the dynamic viscosity, p  is the pressure and ijδ is the 
Kroenecker’s delta. Equations (1), (2) and (3) are written for a fixed 
geometric domain fΩ  and for a time interval I . For a well posed 
problem, it is also necessary to impose boundary conditions on Γ , 
the boundary of the domain fΩ , and initial conditions on fΩ . The 

boundary conditions are known velocities u  on uΓ  and known 

surface tractions t  at tΓ , with tu Γ∪Γ=Γ  and 0=Γ∩Γ tu . The 
boundary conditions associated with the mass balance are given in 
terms of known pressure  p  at pΓ  and known mass flux G at GΓ , 

with Gp Γ∪Γ=Γ  and 0=Γ∩Γ Gp . Here, ii nuG ρ= with in  being 
the outward unit normal vector to Γ . The initial conditions are 
known velocities and pressure on fΩ  in the initial time of the 
analysis. 
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Figure 1. Schematic diagram of mappings for the mixed Lagrangian-
Eulerian description. 

 
To develop a finite element discretization applicable to deform-

able domains, we use an ALE formulation, as proposed in Hughes et 
al (1981). We define the three domains shown in Fig. 1: the spatial 
domain YΩ  which is the physical space defined by the material 
particles at time t ; the referential domain XΩ , which is a fixed 

domain whose image at time t , subjected to a transformation φ̂ , is 
the spatial domain; and the material domain ZΩ , which is the do-
main occupied at the time 0=t  by the material particles that oc-
cupy the spatial domain at time t. If we define the transformation 
from the material domain to the spatial domain as φ , i.e., 

YZ Ω→Ω:φ , then the transformation from the material domain to 

the referential domain is given by XZ Ω→Ω:ψ , where φφψ 1ˆ−=  
(  is the functional composition operator). Now let us consider that 

iz  and ix  represent particles in ZΩ  and XΩ  whose image at time 
t  is iy  in YΩ . 

By adopting the following notation: S for spatial, R for referen-
tial and M for material domain, respectively, and the partial differ-
entiation operators will be indicated by the following notations: 
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It follows directly from the previous definitions that 
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Considering the transformation φ , 
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where 
iSd  is the displacement, 

iSv  is the velocity and 
ijSg  is the 

deformation gradient. In a similar manner, considering the 
transformation φ̂ , we can write: 

 

iiiR xyd −= , 
R

i
iR t

y
t

v ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂

=
φ̂ and   

j

i
ijR x

y
g

∂
∂

= , (7) 

 
where 

iRd  is the displacement, 
iRv  is the velocity and 

ijRg  is the 

deformation gradient. Finally, considering the transformation ψ , 
we can write: 
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where 

iMd  is the displacement, 
iMv  is the velocity and 

ijMg  is the 

deformation gradient. Equations (6) to (8) are the kinematic rela-
tionships for the different descriptions of a continuum. The equa-
tions (8) are the classical kinematic relations of the Lagrangian 
description of a continuum. 

With the above mappings, we can write (Hughes et al. 1981) 
that: 
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where ic is defined as the convective velocity. If f is a scalar func-
tion of the flow field, the material derivative of this function is given 
by (Childs, 1999): 
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=  is the deformation gradient between the reference 

and the spatial domain, and ic  is the convective velocity defined in 
Eq. (9). In this work, we used a single step Crank-Nicholson scheme 
for the time integration, therefore throughout the duration of each 
and every time step, the referential and spatial domains are coinci-
dent. The deformation gradient between these two domains is the 
identity transformation, so Eq. (10) reduces to: 
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It is worth noting that if  0=Rv  in Eq. (9) and (11), we have the 

conventional Eulerian description, and if SR vv =  we have the La-
grangean description. With this definition of the material derivative, 
the incompressible Navier-Stokes equations in the ALE formulation, 
subject to the divergent free velocity, reduce to: 
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Finite Element Discretization 

Initially, the momentum equations are discretised in time using a 
θ-averaged finite difference scheme. The Crank-Nicolson scheme, 
θ=1/2, was adopted because it gives second order time accuracy. It 
leads to 
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with the superscript n+1/2 refering to the arithmetic average of the 
variable values at time-levels n and n+1, and a suitable linearization 
for the convective term has been achieved by the use of the ap-
proximation n

i
n
i cc ≈+ 2/1 . 

Suppose that the spatial domain Ω  has been discretized using 
linear triangular elements. An approximate solution which belongs 

to the subspace of the trial functions )( pℜ  is sought. The subspace 
of trial functions has dimension p, equal to the number of discrete 
nodes, and is defined by 
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where the superscript hat (^) define the approximated function, and 
with 0U  denoting the initial condition in domain Ω  at time t=0, 
and JN  are trial or shape functions. The introduction of the discre-
tization of U represented by Eq. (15) into expressions (13)-(14) 

leads to the approximated quantities iF̂  and a least-squares discrete 
formulation of the problem given in Eq. (13) can be stated as 
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Here it should be observed that all terms are defined on the ele-

ments interiors, where the shape functions are of class ∞C , thus 
avoiding the 1C  inter-element continuity requirements of standard 
least-squares formulations when used to solve second-order partial 
differential equations. The solution of the equivalent problem de-
scribed in (16) is achieved by minimizing the functional Π  with 
respect to the free parameter 1+n

JU , i.e. 
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This expression can be re-written as  
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which can also be regarded as a Petrov-Galerkin weighted approxi-
mation of the momentum balances, where 
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where, IN  are the linear shape functions defined on the element. 

Note that the second-order term in IW  vanishes and that the re-
sulting weighting function is discontinuous across element bounda-
ries for the adopted 0C  linear shape function IN .  The parameter 

2/t∆  acts to bias the integral in Eq. (18) in favour of the upwind 
term of the trial function, i.e. first term of Eq. (19), and so upwind-
ing is incorporated into the finite element framework in the stream-
line direction. The resultant weighting functions II WN +  have an 
equivalent structure to those employed in the standard SUPG 
(Brooks and Hughes, 1982). The time step is chosen according to  
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where h is the element size, and ( )ERe  is the element Reynolds 
number. For linear triangles h is the smallest triangle height. Sam-
paio (1991) presented some heuristic arguments, concerning the 
time-scales of convection-diffusion processes which are represent-
able in a given mesh, to justify the use of the expression (20) for a 
multidimensional incompressible Navier-Stokes algorithm. 

A term which refers to the viscous flux boundary conditions and 
their compatibility across element interfaces, EΓ , must be added to 
the Petrov-Galerkin method given in Eq. (18) in order to have a 
well-posed formulation. Here this is enforced, in a weak form, 
according to 
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Assuming the boundary conditions, where I refers to time inter-

val  
ii uu = , on ID ×Γ  and, 0=∇ ii nuµ , on IN ×Γ  with  
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where DΓ  refers to Dirichlet boundary condition and NΓ  refers to 
Neumann boundary, and the compatibility conditions for the exact 
viscous flux 
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where EΓ  represents the internal inter-elements boundaries. 

Considering an homogeneous problem, i.e., without body forces, 
the approximate weak form of the Eqs. (12), for the momentum 
equations becomes  
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The continuity equation has not been considered and a discreti-

zation following the standard mixed formulation is dismissed, be-
cause the same interpolation for all variables has been used and this 
would imply the violation of Babuska-Brezzi condition. Following 
Sampaio et al. 1993, the incompressibility condition is used to ob-
tain Eq. (25) when the sum of the squared residuals is minimized 
with respect to the pressure parameters, and after some manipula-
tions, results in, 
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which represents an elliptic-type equation. The solution of this 
equation is sought over the domain Ω  for all 0tt ≥ , subject to the 
boundary conditions  

pp = , on Ip
D ×Γ , and unu ii = , on Iv

D ×Γ    with  
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where, if 0≡Γ p

D , at least one pressure reference value must be 
prescribed to determine a unique pressure field. 

In the Eq. (25) the boundary integral is computed only at 
boundaries with prescribed velocity, being different from zero just 
for moving boundaries. This term is responsible for a contribution 
into the pressure-continuity equation producing a reduction or an 
increase in the pressure near the moving boundary, which in turn is 
responsible for  the lift, that induces transversal oscillations of the 
solid body. 

The integrals in Eq. (24) and (25) can be evaluated by summing 
individual contributions and, by adopting a compact matrix notation, 
can be summarized as 
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The matrices vp BBDJHH ,,,,, 21  represents the various terms 

of the Eq. (24) and (25). 
These equations are solved in a segregated manner, the pressure-

continuity equation are first solved to obtain the nodal values of the 
pressure at 2/1+nt , followed by the solution of the momentum equa-
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tions, using the updated pressure 2/1+np , to obtain the velocities 
1+n

iu . The matrices pK  and vK  are symmetric positive definite and 
the conjugate gradient method, with Jacobi preconditioner, is em-
ployed to solve these algebraic systems of equations. See Sampaio 
et al. (1993) for further information when using an Eulerian formu-
lation, which has been extended in this work for ALE formulation. 

Structural Dynamics 

In this work, we only consider dynamics of rigid bodies. The 
movement of the body is obtained with a straightforward application 
of the Newmark’s method (Hughes, 1987) which results in the 
following system of equations: 
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where d, v, and a are the displacement, velocity and acceleration 
vectors, and β , γ  are parameters of the method, M, C, and K are 
the mass, damping and stiffness matrices of the structure. In this 
work we used 2/1=γ  and 4/1=β , which leads to an implicit, 
second order accurate and unconditionally stable time integration 
scheme. The stability of this scheme is important because the time 
step increment for the structural time evolution is taken as the same 
as the time increment chosen for the CFD solution. This time incre-
ment is determined by the stability requirements of the CFD algo-
rithm, and therefore its time scale is completely unrelated to the 
dynamic behavior of the structure. 

Fluid Structural Coupling 

The coupling between the fluids and structural field is imposed 
in a segregated manner, and the compatibility conditions are im-
posed a posteriori, at the end of each time step, to enforce the con-
sistency of the interface between both fields. This approach has the 
advantage, in contrast to a monolithic approach, that the most effi-
cient numerical solution technique can be used for each particular 
field. 

At the start of each time step, we assume that the interfaces are 
consistent, i.e., that points lying on the interface between the struc-
tural and fluid domain have the same velocities, when considered 
belonging to either domain. Each domain is then advanced in time 
independently, according to its own physics. The other domain is 
considered static, and used only as a source of initial and boundary 
conditions for the current time step. At the end of the time step, the 
interfaces will therefore no longer be consistent, therefore a series of 
predictor-corrector steps is repeated until satisfactory agreement 
between the two fields is reached. Usually incompressible fluid flow 
analysis requires smaller time steps than the structural analysis in a 
couple fluid-structural applications. This fact could be exploited by 
advancing the flow problem several time steps before interchange 
data within the two sub-problems. However, as our structural model 
is very simple, and so very cheap computationally, we do not exploit 
this fact. 

 As the interfaces between domains move along the time, the 
mesh is distorted by the movement of the boundaries of the domain, 
and when this distortion becomes excessive, the inadequate ele-
ments are removed and the mesh is recreated in these regions. The 
predictor-corrector technique adopted is adapted from the one pro-

posed by Bloom and Leyland (1998), and the general procedure is 
summarized below: 

 

a. For all time step do: 
b. Estimate a predictor velocity pv  
c. Move the structure and the mesh in the computational domain 
d. If the quality of the mesh is not satisfactory, then: 
e. Delete distorted elements and recreate the mesh 
f. Interpolate the solution to the new mesh 
g. Solve the CFD problem 
h. Solve the structural dynamics problem 
i. Compute a corrector velocity cv  
j. If pv  and cv  converged to each other, then: 
k. Advance to next time step 
l. Else: 
m. cp vv =  
n. Repeat from step c 
 

The predictor velocity pv  at the start of each time increment 
(step b) is taken as an estimate of the current velocity of the struc-
ture. This velocity is computed by a simple linear extrapolation from 
the structural velocity and acceleration computed at the previous 
time step. As the interpolation of the solutions between meshes (step 
f) is not cheap and can introduce errors, we try to minimize it by 
restricting the regions where the mesh is allowed to move. This will 
be further described later. The CFD solution (step g) uses as bound-
ary conditions for the moving boundaries the current velocity of the 
interface, pv . The corrector velocity cv  (step i) is the interface 
velocity that results from the solution of the structural dynamics 
problem (step h). The convergence test (step j) verifies if the differ-
ence between the corrector velocity cv  and pv  are less than some 
prescribed tolerance. If this is so, the algorithm advances to the next 
time step (step k), otherwise the current corrector velocity is taken 
as the new predictor velocity and the predictor-corrector loop is 
repeated. In this work, we only dealt with rigid bodies, therefore the 
velocity of the interface nodes can be easily computed from the 
velocity of the body with simple transformation matrices (Nomura 
and Hughes, 1992). 

Numerical Tools 

Many practical issues must be dealt with to obtain a successful 
computational implementation of the procedures described above. 
Clearly, facilities for dealing with deformable domains, which in-
volve automatic mesh generation, assessment of mesh quality, 
automatic mesh movement and regeneration are all important as-
pects. The most interesting aspects of our implementation will be 
described below. 

Subdomain Partitioning 

We adopted the technique of partitioning the domain into sub-
domains in which different descriptions can be employed for the 
discretization on each subdomain. We have implemented three 
distinct possibilities: a conventional Eulerian formulation, an ALE 
formulation with a deformable mesh and an ALE formulation where 
the mesh is movable but not deformable. The Eulerian formulation 
is more appropriate for regions of fluid away from the moving 
boundaries. The ALE formulation with non-deformable but moving 
meshes is used in the regions very close to the moving interfaces. 
These meshes are attached to the moving bodies, and are not de-
formable because, in general, complex flow phenomena that require 
very fine and high quality meshes, such as boundary layer formation 
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or separation bubbles, occur in these regions. Deformation of the 
mesh would quickly destroy the quality of these meshes and com-
promise the quality of the solution. The ALE formulation with 
deformable meshes is used to couple the two types of domain just 
described. A simple sketch example can be seen in Fig. 2. For the 
structure, of course, we use a Lagrangian description. 

The use of different formulations for different subdomains is 
also important because it minimizes the needed interpolation of 
solutions between different meshes. Clearly, in the subdomains 
where an Eulerian formulation is used, the interpolation is com-
pletely unnecessary because the mesh never varies. Interpolation 
between unstructured meshes, even with the use of adequate data 
structures to speed up searches, is a somewhat costly procedure. The 
interpolation can also reduce the accuracy of the numerical solution 
(Sampaio et al. 1993), therefore it is important that it remains re-
stricted to the smallest possible regions. In the current implementa-
tion, the subdomain decomposition and the assignment of formula-
tions is done a priori by the user, therefore some knowledge of the 
expected amplitudes of displacement is necessary. In practice, how-
ever, this has not proven itself to be a problem. The alternate digital 
tree (ADT) (Bonet and Peraire, 1990) is used to find out within 
which element, on the mesh prior to its movement or to a remesh-
ing, each node of the “new” mesh falls inside. 

The mesh generation inside each subdomain is fully automatic, 
using an advancing front mesh generator (Lyra & Carvalho, 2000). 
The mesh density is controlled by a background mesh, and of course 
the generator enforces compatibility between the boundaries of the 
subdomains. This generator has been modified to produce highly 
elongated elements along solid surfaces using an advancing layer 
technique. 

 

Lagrangian Description (Structure)

  ALE Undeformable Description

    ALE Deformable Description

          Eulerian Description

 
Figure 2. Computational model: subdomain decomposition and different 
descriptions. 

Mesh Movement 

In the domains with a deformable ALE formulation, the move-
ment of the interface nodes causes distortion of the elements con-
nected to these nodes. Two techniques are used to minimize these 
effect: mesh movement and remeshing. Initially, a procedure akin to 
a mesh smoothing is used. The mesh is viewed as a network of 
elastic springs, see the Fig. 3, where each edge of the mesh corre-
sponds to a spring whose stiffness is inversely proportional to the 
edge length. Then an elastic problem is solved, where the boundary 
conditions are given by the new positions of the nodes on the inter-
faces of the subdomains. A simple direct iteration is done, and 
typically, very few iterations are sufficient for convergence to the 
required tolerance. The location of the mesh’s inner nodes are then 
determined by solving the static equilibrium equations which result 
from summing the forces in the spring system at each node. Hence 
the algorithm changes the positions of the interior nodes without 
altering the topology of the mesh. In this formulation the summation 
extends over all the nodes which surround node I and sufficient 
convergence is normally achieved in 10 iterations. By starting the 
iteration with the previous displacement at each node, the motion of 

the boundary is allowed to spread throughout the mesh. This proce-
dure is therefore very fast and will be detailed in what follows.  

 

Jx

Ix

IJk

 
Figura 3. Patch of elements of the fluid domain simulating the net of the 
springs. 

 
For each edge connecting the nodes I and J, the stiffness is given 

by 
 

( ) ( )22

1

IJIJ

IJ
yyxx

k
−+−

=  (31) 

 
A linear extrapolation is applied to pre-define the displacements 

for the node I, 1+n
Ixδ  e 1+n

Iyδ , in  x and y directions, as shown below: 
 

11 2 −+ −= n
Ix

n
Ix

n
Ix δδδ  and  11 2 −+ −= n
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n
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n
Iy δδδ  (32) 

 
The resulting system equations can be expressed in the follow-

ing compact form: 
 

nn FKδ =+1   (33) 
 

where, 
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The new position of the node is obtained as: 
 

11 ++ += n
ix
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i

n
i xx δ  and   11 ++ += n

iy
n
i

n
i yy δ  (35) 

 
This process is suitable for small displacements. When consider-

ing large displacements torsional springs are also necessary to avoid 
large deformation of the mesh (Farhat et al. 1997). 

Another possibility is to prescribe the mesh velocity to be an 
analytic function based on the distance (r), of the domain point from 
the moving surface (Nomura, 1994, Azevedo, 1999 and Löhner, 
2001), as sketched in the Fig. 4.a. This function )(rf  assumes the 
value of unity for r = 0 and decays to zero as (r) increases. A linear 
function, as shown in Fig 4.b, is assumed, where given the distance 
r and the velocity point on the surface closest to domain 
point ( )

C
xw Γ , the mesh velocity is given by 

 
( ) ( )rfxww

cΓ
=   (36) 
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                          (a)                                                      (b) 

Figure 4. Mesh velocity using analytic function. 

 
This procedure is extremely fast and efficient if the distance is 

obtained easily. However, if several moving bodies are present in 
the flow field, this procedure can be complex and insufficient, espe-
cially considering 3-D simulations. There are others alternatives, 
such as smoothing the velocity field, by solving a Laplace equation 
(Löhner, 2001). The quality of the elements inside the deformable 
ALE subdomains are verified at each time-step iteration. Such veri-
fication will define the need of reconstructing the mesh, i.e., to 
realize a remeshing.  

Remeshing 

There are cases, however, where the distortion of the elements is 
too severe, and the smoothing procedure breaks down. There are 
particular configurations, for instance, that are prone to element 
collapse. When this happens, either the whole mesh is re-generated 
(global remeshing) or the compromised elements are removed from 
the mesh and the mesh is re-generated in the remaining “holes” 
(local remeshing). The same mesh generation algorithm that was 
used to create the original mesh is used inside each “hole” (Lyra and 
Carvalho, 2000). The remeshing procedure, either local or global, is 
very attractive as the size of the mesh does not tend to grow unnec-
essarily. The local remeshing is even more attractive when just local 
effects are present in the problem, as the mesh is just re-built locally 
reducing the cpu time used by the mesh generation and inter-mesh 
interpolation steps. Furthermore, it reduces the error associated with 
the interpolation process. 

The quality parameters of the computational elements refer to 
the change in area and the internal angles of the elements. An ele-
ment is considered extremely deformed when: 

 

1. The element has a area change which is greater than a prede-
fined tolerance “A”; 

2. The element has an internal angle (θ ) between  θref ≤ θ ≤ 
180°– θref. 

 

Once all distorted elements are determined by the previous pro-
cedure, a remeshing algorithm is applied if: 

 

1. At least one element have an internal angle so that θ ≤ θmin or 
θ > θmax;  

2. More than prescribed percentage B of the elements are dis-
torted.  

 

In this work, A = 20%, θref = 30°, θmin = 2°, θmax = 170° and B = 
2%.  

The implementation of the “advancing front method” (Peraire et 
al., 1999) adopted in our mesh generator requires the knowledge of 
the mesh parameters (mesh spacing and stretching factor) desired 
for the mesh to be built, which is provided through the use of a 
background mesh that covers the whole domain to be discretised. 
Here, the background mesh is the mesh obtained after the displace-
ment of the structure with the corresponding nodal movement pro-
cedure. 

Since we did not incorporate an error analysis in our system yet, 
which would provide the “optimal” mesh for each stage of the 
analysis, some alternatives to compute the mesh parameters have 
been devised (Antunes et al., 2002). However, only isotropic meshes 
were adopted in the present study, so only this particular situation 
will be described here, as the other alternatives have been devised to 
deal with anisotropic meshes. Let’s consider a node “p” in the mesh 
and the following definitions:  

epδ  - height of the triangle “e” corresponding to node “p”; 

eln    - number of triangles surrounding node “p”. 
 

1eδ

2eδ
3eδ

 
Figure 5. Patch of elements around node “p”. 

 
We loop through all the nodes of the background mesh, and 
1. Identify all the elements around node ‘p’; 
2. Compute for each element 

epδ  and for each node the ave-

rage value ∑=
=

nel

1e el

p
p n

δ
δ e . 

 

This strategy allows less mesh reconstructions, being computa-
tionally more efficient. An example of this procedure is shown in 
Fig. (6), where the circular cylinder suffers translation and rotation. 

 

 
Figure 6. Local remeshing sequence on problems involving moving 
boundaries. 

Applications 

The scheme described above has already been utilized for the 
simulation of a variety of applications (Antunes et al., 2002, An-
tunes and Lyra, 2002 and Antunes, 2002), involving different level 
of interaction between an external fluid flow and a rigid circular 
cylinder, including the study of the flow around a fixed cylinder, the 
flow around a cylinder with an imposed periodic displacement, the 
free vibration of the cylinder in a stationary fluid and the coupled 
fluid-structure problem of a rigid cylinder supported by elastic 
springs free to interact with the surrounding fluid flow.  

Vortex “Lock-in” Regime Under Forced Oscillating Cylin-
der 

The numerical procedures described is used to simulate the ex-
ternal flow over a moving cylinder with a prescribed forced cross-
flow oscillation, for several different Reynolds number. A detailed 
description of the computational domain with boundary and initial 
conditions can be seen in the Fig. 7. 
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The following boundary conditions are applied in this example: 
non-slip condition on the surface of the rigid body; uniform velocity 
field with 0

1 uu =  e 02 =u  is prescribed in the face AB; for the 
faces AC and BD the boundary condition are 02 =u  e 01 =t ; on 
the boundary CD, the pressure value is prescribed, with p = 0 and 
traction free condition, e.g., 021 == tt . The initial condition is the 

velocity field with the components 0
1 uu = , 02 =u  which are 

specified all over the domain in the initial time 0tt = , and a refer-
ence pressure 0=p . In this notation, the traction boundary condi-
tion is represented by “ it ”, where the subscript i, represents the 

direction of application, and the time is represented by “ nt ”, where 
the superscript n represents the level time. The vertex of the domain 
are A(-5,-5), B(-5,5), C(10,-5) e D(10,5), and the circular cylinder 
have a unitary diameter and is centered on the origin of the orthogo-
nal  coordinates.  

 

02

0
1

=
=

u
uu

0
0

1 =
=

t
p

0;0 12 == tu

0;0 12 == tu  
Figure 7. Description of domain for the lock-in applications. 

 
By computing the fluid flow considering a fixed cylinder we ob-

tain the variation of the frequency of the vortex shedding at different 
Reynolds numbers. The computed frequencies of the vortex shed-
ding, presented in the first column of Table 1, agree with the ex-
perimental data (Blevins, 1986). 

The “lock-in” phenomenon (Blevins, 1986) occurs when the re-
sponse frequency of the cylinder synchronises with the vortex shed-
ding frequency. By imposing an harmonic oscillation to the cylinder 
and by analysing the modification on the vortex shedding frequency 
such phenomena can be studied. Taking the vortex shedding fre-
quency obtained with the analysis of a fixed cylinder at Re=120 
(0,1795 Hz) as the forced frequency imposed to the cylinder, vary-
ing the Reynolds number from 100 to 160 and the amplitude ratio 
(Ay/D) from 0% to 8% we built the Table 1 and Figure 8. These 
show the influence of the amplitude of the forced displacement on 
the vortex shedding frequency. The flow regime are “locked-in”, i.e. 
the displacement and vortex shedding are in phase, for all values of 
Reynolds number and displacement amplitude ratio presented in the 
table with bold numbers. Whenever the vortex shedding frequency 
is different from the one obtained with a fixed cylinder we say that it 
is in a “perturbed” regime, and when the imposed movement does 
not change the vortex shedding frequency, the regime is unperturbed 
and out of  “lock-in”. Figure 8 is a graphic representation of Table 1 
showing the discussed behaviour. Our results are in good agreement 
with that presented in the literature (Blevins, 1986; Correia, 2001). 
By increasing the displacement ratio to 2% we get a perturbed re-
gime, and then a “lock-in” regime for all Reynolds number ana-
lysed, for 3,5% and 5%. If we increase the amplitude ratio to 8% the 
flow gets out of the “lock-in” regime for most Reynolds number 
studied except for Re=115.  

The harmonic function to displace the cylinder adopted is 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −=

n
ttfatY 02sin π  (37) 

 
where, a is the amplitude displacement, f is the frequency, and 

0t is the initial time. In this work 00 =t , 1=n , 1795,0=f  Hz and 
a  varying. 

Time histories of the drag and lift coefficients are plotted in Fig-
ure 9(a) for Reynolds number of 160 and forced transverse oscilla-
tion with displacement amplitude ratio of 5%. For such Reynolds 
number and amplitude of oscillation the flow is initially perturbed 
by the oscillation of the cylinder and latter the “lock-in” phenomena 
is established. This can be further observed in Figure 9(b), which 
shows the transversal velocity (Uy) and the relative displacement 
amplitude, being in phase after time around 40. 

 

 
 

Figure 8. “Lock-in” regime under forced transverse oscillation with fre-
quency 0.1795: Vortex shedding frequency times the amplitude of oscila-
tion for different Reynolds numbers. 

 

Table 1. Displacement ratio influence to obtain “lock-in” for differ-rent 
Reynolds numbers (Re). 

Displacement Ratio (Ay/D) Re 
0,0% 2,0% 3,5% 5,0% 8,0% 

100 0.1728 0.1791 0.1795 0.1795 0.1722 
115 0.1781 0.1784 0.1795 0.1795 0.1795 
120 0.1795 0.1795 0.1795 0.1795 0.1795 
140 0.1853 0.1800 0.1795 0.1795 0.1798 
160 0.2575 0.1796 0.1795 0.1795 0.1850 

 
 

   
 (a)  Lift and Drag.   (b) Velocity and Amplitude. 

Figure 9. “Lock-in” regime under forced transverse oscillation, Ay/D = 5% 
at Re=160. 
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A contour plot of the computed pressure can be seen in Figure 
10, where the Von Karman vortex street behind the cylinder is 
characterized, for the flow at Re=160 and Ay/D=5%. 

 

 
Figura 10. Pressure isolines. 

Suppressing Vortex Induced Vibration 

In the literature (Hiejima et al., 1997 and references therein) 
several experimental and numerical results are reported in which 
acoustic excitation is applied to an external flow to increase the 
momentum transfer from the outside flow to the boundary layer and 
eliminating (or delaying) separation and suppressing (or reducing) 
vortex induced vibrations in different solid configurations. In this 
article, our computational system is used to perform an initial study 
on the behavior of the fluid-structure problem described by Hiejima 
et al. (1997), in which an idealization of the acoustic excitation is 
obtained through the application of a periodic velocity excitation on 
two points at the cylinder surface (see Fig. (11)). The angle between 
the stagnation point and the excitation point is 080a =φ . The 
excitation velocity is given by 

 
( )tfUV aaa 2sin π=  (38)  

 
where, aU  and af  refer to the periodic velocity excitation ampli-
tude and frequency, respectively. The amplitude aU  is chosen to be 
equal to 10% of the free-stream velocity U, and the two excitation 
velocities are in phase. 

 

aφ

aφ

aV

aV

U

 
Figure 11. Description of the periodic velocity excitation on the surface of 
the cylinder. 

 
Figure (12) shows the full description of the numerical model, 

including the: computational domain, boundary conditions, fluid 
properties and structural parameters of the solid-spring system. The 
free stream velocity is U = 0.0264 m/s and the Reynolds number 
based on the cylinder diameter is 2000. Initially, we performed 
some numerical simulations considering a fixed cylinder and the 
vortex shedding frequency obtained at Re = 2000 was fS = 0.69 Hz.  
This value is higher than that reported by Hiejima et al. (1997), 
equals to 0.55Hz, but still in good agreement with the experimental 
curve presented by Blevins, 1986. The cylinder-spring parameters 
adopted here are that adopted by Hiejima et al. (1997), except the 
mass which is determined so that the natural frequency of the sys-
tem is equal to the vortex shedding frequency of 0.69Hz. Therefore, 

for the values we obtained for the vortex shedding frequency (fS = 
0.69 Hz), this corresponds to the resonance frequency. These differ-
ences from the Hiejima et al. (1997) values have to be taken into 
account when comparing our results with theirs. 
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Figure 12. Computational model: data and boundary conditions. 

 
The domain was subdivided in subdomains where the different 

descriptions are utilized in order to facilitate the treatment of prob-
lems involving multiple physics as shown in Fig. 2. The finite ele-
ment mesh adopted consists of a triangularization with 12076 ele-
ments and 6122 nodes. The circular cylinder is centered on the 
origin of the coordinates axes, and the portion of the ALE mesh is 
restricted to the circular region around the cylinder with diameter 1 
m. The domain consists in a rectangle whose geometric control 
nodes coordinates in meters are: (-0.65; -0.65), (1.80; -0.65), (1.80; 
0.65) e (-0.65; 0.65). 

The effect of the periodic velocity excitation was investigated 
considering different ratio between the values of the excitation 
frequency (fa) and the vortex shedding frequency (fS), i.e. fa / fS = 
3.78; 4.45 and 5.12. Accordingly to Hiejima et al. (1997), the value 
4.45 is close to the experimental value near the transition wave 
frequency, which is an effective value of frequency for an acoustic 
excitation to change the flow around a stationary circular cylinder. 
With such value of excitation they were able to get a considerable 
increase on the vortex shedding frequency that was quite effective in 
reducing the vortex induced vibration amplitude, as the experimen-
tal results suggests. We picked up two other values around 4.45 in 
order to study the influence of the excitation frequency on our re-
sults. Considering a fixed cylinder and the different ratio (fa/fs) 
mentioned previously, the frequency of the velocity transversal to 
the flow in a point located inside the vortex shedding region behind 
the cylinder was studied. The frequency of the transversal velocity 
with and without the periodic excitation are plotted in Fig. 13. It can 
be observed that the periodic excitation modify this frequency and 
consequently the vortex shedding frequency.  
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Figure 13. Frequency spectrum of the transversal velocity. 

 
The same analyses were performed considering the cylinder free 

to vibrate in the direction transversal to the flow. The numerical 
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simulation set up consists of starting with a fixed cylinder and after 
the vortex shedding becomes periodic we allow the transverse 
movement, and after the vibration amplitude stabilizes on a constant 
value we start applying the periodic excitation. In all three cases the 
cylinder is set free when the time is around 80 seconds and the 
excitation starts when the time is around 180 seconds. In Fig. (14), 
(15) and (16) the displacement histories are plotted for fa / fS = 3.78; 
4.45 and 5.12, respectively. In Fig. (14), fa / fS = 3.78, the transversal 
displacement amplitude reduces and we notice the presence of the 
pulse phenomena. In Fig. (15), with fa / fS = 4.45, we have the most 
effective (for the three values analysed) reduction on the oscillation 
amplitude. The modification on amplitudes is according to the 
Bloor’s curve, described in Hiejima et al. 1997. This results can be 
observed in Tab. 2. 

For fa / fS = 5.12, Fig. (16), there is no reduction but a small in-
crease on the oscillatory amplitude, and the adopted excitation 
frequency has an adverse effect. For  fa / fS = 4.45 the vortex shed-
ding frequency differs more from the cylinder natural frequency (or 
resonance frequency) then the other ratio (see Tab. 2) and the results 
suggest that an even bigger variation on the vortex shedding fre-
quency might reduce more or even suppress the vibration on the 
cylinder. 

 
Figure 14. Time history of transversal displacement for s/faf =3.78. 

 
Figure 15. Time history of transversal displacement for s/faf =4.45. 

 
Figure 16. Time history of transversal displacement for s/faf =5.12. 

The table below shows the results for the different values of the 
excitation frequency. 

 

Table 2. Results for the vortex shedding frequency with different excita-
tion frequency. 

fa/fs 
Frequency 

(Uy) 
1,00 0,687 Hz 

3,51 0,691 Hz 

3,78 0,696 Hz 

4,45 0,631 Hz 

5,12 0,693 Hz 
 
It should be observed that the amplitude of the oscillations were 

small with the cylinder vibrating under the influence of the vortex 
formation and shedding behind the cylinder, and that the character-
istic of the vortex induced vibrations were directly affected by the 
change on the frequency of  such vortex formation and shedding. 
Qualitatively we were able to reproduce the expected results, but 
further investigation on the disagreement with Hiejima et al. 1997 
on the vortex shedding frequency for the fixed cylinder must be 
pursued. Also, further investigation considering different ration 
between the values of the excitation frequency (fa) and the vortex 
shedding value (fS), and also considering different application points 
and amplitude of excitation must be pursued in order to gain a better 
insight on the behaviour of this application. 

Conclusions 

A general description of a computational system for fluid-
structure interaction analysis was presented. The system incorpo-
rates several important tools (different mesh movement algorithms; 
possibility of decomposing the domain into several subdomains with 
different reference frame descriptions and of using global or local 
adaptive remeshing strategies) which renders it very flexible and 
capable of dealing with a large class of two dimensional applica-
tions. Some of these tools and strategies were not fully exploited in 
the present applications and must also be tested with more complex 
problems to stress their real importance. It was demonstrated 
through the numerical results and model problems presented that the 
ALE finite element formulation developed can be used to simulate 
correctly fluid-structure problems involving cylinder in cross flow, 
where the results for the important phenomenon of ‘lock-in” are 
consistent with the literature. The results obtained through the study 
of using periodic acoustic excitation to suppress the vortex induced 
vibration on a circular cylinder are qualitatively consistent with the 
literature, however they are just preliminary and requires further 
investigation. The fluid dynamics solver using the adopted formula-
tion has severe limitation in terms of the time step size leading to a 
large number of iterations and improvements on this feature or an 
alternative formulation without such a strong constraint must be 
investigated. Finally, other improvements are required in terms of 
efficiency to allow the analysis of large-scale problems within an 
acceptable time. This improvements would involve, for instance, the 
incorporation of an error estimator to control the adaptive proce-
dure, a parallel or parallel/vector implementation and others ele-
ments of high performance computation. Some of this aspects are 
already under investigation. 
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