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Neural Networks Assessment of 
Beam-to-Column Joints 
This paper proposes the use of artificial neural networks to predict the flexural resistance 
and initial stiffness of beam-to-column steel joints using the back propagation supervised 
learning algorithm. Three types of steel beam-to-column joints were investigated: welded, 
endplate and bolted with top, seat and double web angles, respectively. The neural 
networks results proved to be consistent with experimental and design code reference 
values. 
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Introduction 

Structural joints play a fundamental role in the steel structures 
global response. The real behaviour of a structural joint has been 
investigated through several experimental tests such as: Faella et al. 
(1999), Aggarwal (1994), Weynand and Sahl (1984), Zoetemeijer 
and Munter (1983), Simek and Wald (1991), Hummer and 
Tschemmernegg (), Cruz et al. (1998), Janss et al. (1987), Goverdan 
(1983), Nethercot et al. (1995), Bjorhovde et al. (1990), Chen et al. 
(1993), Kishi et al. (1987), Lima et al. (2002), Simões et al. (2001), 
Azizinamini et al. (1987), Azizinamini et al. (1989). The main 
objective of these tests was to determine the physical and geometric 
parameters that influence the joints structural behaviour.1 

From these test data, the joints can be classified according to 
their bending moment and associated rotation capacity. Generally, 
the joints are classified as rigid or flexible. However, this hypothesis 
is not accurate, since most of the steel structural joints do not match 
any of these two extremes. Despite this fact, the traditional non-
sway frame design usually adopts flexible joints. Unfortunately, 
when sway frame design is required, rigid stiffened joints have to be 
used. On the other hand, rigid joints have higher fabrication costs 
and give rise to a number of questions about their real structural 
behaviour. To overcome these difficulties, the semi-rigid joints fit as 
a natural solution, reducing the final cost and presenting a more 
realistic structural behaviour. 

Few investigations using artificial neural networks to predict 
joints behaviour were found in literature. Abdalla and Stavroulakis 
(1994) and Stavroulakis and Abdalla (1995) have used neural 
networks to predict the global moment versus rotation curve of 
single web angle beam-to-column joints. Anderson et al. (1997) 
described the use of neural networks to predict a bilinear 
approximation of the moment versus rotation curves of minor axis 
beam-to-column endplate joints. The joints presented in this work 
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were not previously used for predicting of the joints behaviour 
through neural networks. 

This work proposes the use of artificial neural networks to 
predict the flexural resistance (Mj,Rd,ANN) and initial stiffness 
(Sj,ini,ANN) of semi-rigid beam-to-column joints. This structural 
engineering problem is characterized by the influence of several 
physical and geometric parameters and for the great difficulty to 
generate new data based on experimental tests. This was the main 
motivation for using artificial neural networks. 

Nomenclature 

bep = endplate width 
bfb = beam flange width 
bfc = column flange width 
db = bolt diameter 
dh = horizontal distance between bolts 
fub = bolt ultimate stress 
fyb = beam yield stress 
fyc = column yield stress 
fyep = endplate yield stress 
h1 = first bolt row height 
h2 = second bolt row height 
h3 = third bolt row height 
hb = beam height 
hc = column height 
hep = endplate height 
i = number of epochs 
k = ratio between total data and subset data 
lep = distance from the beam top flange to the endplate free edge 
m = number of available data 
si = processing element input 
sj = processing element output 
tep = endplate thickness 
tfb = beam flange thickness 
tfc = column flange thickness 
twb = beam web thickness 
twc = column web thickness 
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Mj.Rd = joint flexural resistance 
Mj,Rd,ANN = joint flexural resistance predicted by neural 

networks 
Mj,Rd,exp = experimental joint flexural resistance  
Mj,Rd,EC3  = Eurocode 3 joint flexural resistance  
Si,ini = joint initial stiffness  
Sj,ini,ANN = joint initial stiffness predicted by neural networks 
Sj,in, exp = experimental joint initial stiffness  
Sj,ini,EC3 = Eurocode 3 joint initial stiffness 
Greek Symbols 
φCD = joint rotation capacity 
α = momentum factor 
η = learning rate  

The Beam-to-Column Joint Model 

In the present investigation three different types of joints were 
evaluated by the neural networks. From these studied joints it was 
possible to identify the bolted end-plate joints as one of the most 
adopted joints, see Fig. 1. They are widely used in constructional 
steel design because they can cover a wide range of structural 
solutions, from pinned to rigid joints, by performing minor 
geometrical modifications on the joint details. 

In general, the required initial stiffness (Sj,ini) and the bending 
moment resistance (Mj,Rd) of the joint can be obtained using an 
appropriate configuration of the joint elements, such as number of 
bolts, endplate thickness and its geometrical configuration. A third 
variable, the joint rotation capacity (φCD), can also influence the 
global joint behaviour. Unfortunately, this variable was not easily 
found in the literature, making difficult its adoption on the artificial 
neural network prediction model. 

The other joints investigated in this analysis were: welded joints 
and bolted joint with angles shown in Figs. 2 and 3, respectively. 
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Figure 1. Extended endplate joint layout. 
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Figure 2. Welded joint layout. 
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Figure 3. Bolted angle joint. 

 
There are several parameters related to the endplate beam-to-

column joint design. The most significant variables are: column 
flange thickness (tfc), column flange width (bfc), column web 
thickness (twc), column height (hc), column yield stress (fyc), beam 
flange thickness (tfb), beam flange width (bfb), beam web thickness 
(twb), beam height (hb), beam yield stress (fyb), endplate width (bep), 
endplate height (hep), endplate thickness (tep), distance from the 
beam top flange to the endplate free edge (lep), endplate yield stress 
(fyep), bolt diameter (db), bolt ultimate stress (fub), first bolt row 
height (h1), second bolt row height (h2), third bolt row height (h3) 
and horizontal distance between bolts (dh). All these variables are 
illustrated in Fig. 1. Additional variables utilized to characterize the 
other two investigated joints, Fig. 2 and 3, are: column flange yield 
stress (fyfc), column web yield stress (fywc), beam flange yield stress 
(fyfb), beam web yield stress (fywb), weld thickness (aw), top and seat 
angle length (Lta), top and seat angle height (Hta), angle thickness 
(tta), horizontal distance between bolts (pt), web angle thickness 
(twa), vertical distance between bolts (pwa) and web angle length 
(Lwa). 

The behaviour of beam-to-column joints can also be evaluated 
with the aid of the component method, largely adopted in research 
investigations and recently incorporated in European Committee for 
Standardization - Eurocode 3 (1997). Joint components have been 
introduced to a simple mechanical model to enable the prediction of 
beam-to-column moment versus rotation curves (Jaspart, 1997). Fig. 
4 depicts an endplate beam-to-column joint together with its 
associate mechanical model. The mechanical model is composed of 
rigid links and springs, created to represent each relevant joint 
component. A comprehensive description of the joint components is 
presented by Silva and Coelho (2001). 

The spring model presented in the Fig. 4 can be simplified by 
replacing each series of springs by an equivalent elasto-plastic 
spring, which retains all the relevant characteristics (Silva and 
Coelho, 2001). Using this procedure, a general non-linear equivalent 
model for the analysis of beam-to-column joints can also be 
obtained (Simões  et al., 2001). When the equivalent elastic model 
is defined, the design process continues with a post-buckling 
stability analysis using an energy-based formulation. Full details of 
the mathematical derivation can be found in Silva (Silva and 
Coelho, 2001). Since these procedures are still to be evaluated, the 
present work uses the bilinear approximation of the moment versus 
rotation curve related to the joint proposed in Eurocode 3, see Fig. 5. 
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Figure 4. Characterization of the beam-to-column joints components. 
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Figure 5. Bilinear approximation of the moment versus rotation curve. 

The Proposed Neural Network System 

Artificial neural networks (ANN) are computing systems that 
simulate the biological neural systems of the human brain (Bishop, 
1994 and Haykin, 1999). They are massively parallel systems that 
rely on simple non-linear processing elements (PE) and dense 
arrangements of interconnections (Treleavan et al. 1989). These 
interconnection patterns can range from single-layer, feed-forward 
networks, like the early Perceptron model, to more complex 
topologies, formed by multilayers with backward propagation of 
errors, as in the back propagation model (Rumelhart and McClellan, 
1986). These networks have demonstrated their ability to deliver 
simple and powerful solutions in areas that for many years have 
challenged conventional computing approaches. 

An artificial neural network is represented by weighted 
interconnection between processing elements (PE). These weights 
are the parameters that actually define the non-linear function 
performed by the neural network. The process of determining such 
parameters is called training or learning and relies on the 
presentation of many training patterns. 

The most widely used neural network learning algorithm is the 
Back Propagation. This is due to its relatively simplicity, together 
with its universal approximation capacity (Hornik et al., 1989 and 
Cybenko, 1989). The Back Propagation algorithm defines a 
systematic way to update the synaptic weights of multi-layer feed-
forward supervised networks composed of an input layer, that 
receives the input values, an output layer, which calculates the 
neural network output, and one or more intermediary layers, so 
called hidden layers. The back propagation supervised learning 
process is based on the gradient descent method that usually 

minimizes the sum of squared errors between the target value and 
the output of the neural network. 

In this work, the back propagation (BP) learning algorithm has 
been used, where the network is presented with a set of input vectors 
and their respective desired output vectors. Two neural networks 
were used for each joint type, see Fig. 5. The first was used to 
predict the bending moment resistance while the second was utilized 
to forecast the joint initial stiffness. The input parameters, 
represented by the geometric and mechanical characteristics of all 
the experimental tests, are presented in Tabs. 1, 2 and 3, 
respectively. 
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Figure 5. Neural network configurations. 

 
The NeuralWorks Modelling Software (QNet for Windows, 

2000) was used to train and test all neural networks. To avoid 
problems in the training process due to the reduced database, a 
methodology described by Mitchel (1997) was adopted. In this 
method, a k-fold cross-validation approach is used, where the m 
available examples are partitioned into k disjoint subsets, each of 
m/k size. The cross-validation procedure is performed k times, each 
time using one different subset as the validation set and the other k – 
1 subsets as training set. On each experiment the above cross-
validation approach is used to determine the number of iterations i 
(epochs) that yield the best performance on the validation set. The 
mean imean of these estimates for i is then calculated, and a final 
training of BP is performed with all m examples for imean 
iterations, with no validation set. 

In this investigation, m was divided into k = 3 parts (I, II and 
III), enabling three different validations to be performed. In the first 
phase, groups I and II are used for training while the validation is 
made with group III. In the second stage, the training is made with 
groups I and III and validation is performed with group II. In the last 
stage, the training is accomplished with groups II and III and the 
validation is made with group I. Fig. 6 summarizes this procedure. 

Several network configurations were tested varying the number 
of hidden processors (2, 3, 4, 5 and 6). The learning rate was 
considered adaptive, with an initial value equal to 0.2 while the 
momentum factor was changed between 0.4 and 0.8. The optimum 
Neural Network was obtained through a comparison of the 
generalization error obtained with the validation set. 

The best network configuration for each joint type is presented 
in Tab. 4, where the number of input patterns, hidden processors, 
initial and final learning rates (η) and the momentum factor (α) are 
specified for each neural network. 
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Table 1. Geometrical characteristics (in mm) and mechanical properties (in MPa) for experiments with endplate joints. 
ID Test bfc tfc hc fyc bfb tfb hb fyb tep lep fyep db fub h1 h2 dh 
1 T110001 300 13.5 296 475 220.0 15.5 543.0 300 25 105.0 416.0 24 1323 580.3 474.8 30 
2 T110002 300 13.5 296 482 220.0 15.5 543.0 309 25 105.0 410.0 24 1323 580.3 474.8 30 
3 T110005 300 12.5 296 532 220.0 15.5 547.0 290 25 105.0 404.0 24 1323 584.2 478.8 30 
4 T109003 180 14.1 179 300 151.0 11.2 300.0 323 30 70.0 273.0 20 1000 334.4 244.4 46 
5 T109004 180 14.0 180 306 192.0 14.0 454.0 285 41 84.0 323.0 24 1000 496.0 381.0 65 
6 T109006 240 17.0 240 275 220.0 18.6 597.0 288 41 82.0 325.0 24 1000 634.7 514.7 62 
7 T101007 163 12.6 160 280 99.7 8.4 198.8 351 15 60.0 315.5 16 1000 229.6 149.6 25 
8 T101010 160 12.6 163 280 150.9 10.8 298.9 303 20 70.0 291.5 20 1000 333.5 243.5 30 
9 T101013 120 9.7 241 310 99.7 8.4 198.8 351 18 60.0 330.5 16 1000 229.6 149.6 24 

10 T101014 151 10.8 299 303 99.7 8.4 198.8 351 15 60.0 327.0 16 1000 229.6 149.6 25 
11 T839 240 12.0 230 256 180.0 13.5 400.0 235 12 80.0 214.0 20 785 433.3 343.3 35 
12 T8310 200 15.0 200 243 180.0 13.5 400.0 235 14 80.0 312.0 20 980 433.3 343.3 35 
13 T8311 300 14.0 290 417 300.0 23.0 490.0 235 14 113.0 312.0 24 785 546.5 426.5 60 
14 T911 301 14.4 302 317 181.0 14.6 401.0 323 30 90.0 266.0 24 980 443.7 338.7 61 
15 T913 301 14.5 301 279 181.0 14.4 401.0 279 30 90.0 239.5 24 980 443.8 338.8 61 
16 TC5 204 10.9 206 283 133.3 7.6 205.4 283 16 111.2 250.0 16 633 268.8 138.8 30 
17 TC6 204 10.9 206 283 133.3 7.6 205.4 283 16 111.2 250.0 20 980 268.8 138.8 30 
18 TC7 204 10.9 206 283 133.3 7.6 205.4 283 20 111.2 250.0 16 633 268.8 138.8 30 
19 TC8 204 10.9 206 283 133.3 7.6 205.4 283 20 111.2 250.0 20 980 268.8 138.8 30 
20 TC9 204 10.9 206 283 133.3 7.6 205.4 283 16 111.2 250.0 16 633 268.8 138.8 30 
21 TC11 204 10.9 206 283 133.3 7.6 205.4 283 20 111.2 250.0 16 633 268.8 138.8 30 
22 T109005 240 16.4 240 276 192.0 14.0 454.0 285 41 84.0 323.0 24 1000 496.0 381.0 65 
23 T101004 160 12.6 163 280 99.7 8.4 198.8 351 15 60.0 315.5 16 1000 229.6 149.6 25 
24 T912 301 14.3 302 317 181.0 14.4 401.0 317 30 90.0 261.0 24 980 443.8 338.8 61 
25 TC10 204 10.9 206 283 133.3 7.6 205.4 283 16 111.2 250.0 20 980 268.8 138.8 30 
26 TC12 204 10.9 206 283 133.3 7.6 205.4 283 20 111.2 250.0 20 980 268.8 138.8 30 

 

Table 2. Geometrical characteristics (in mm) and mechanical properties (in MPa) for the experiments with welded joints. 

ID Test bfc tfc twc hc fyfc bfb tfb hb fyfb aw 
1 T107001 178 8.9 6.2 173 334.6 119 10.2 238 389.8 6.8 
2 T107002 179 8.8 6.2 175 342.5 149 10.0 300 306.2 5.8 
3 T107003 242 10.7 9.4 233 354.2 149 10.0 300 304.8 9.1 
4 T105002 160 13.3 7.6 159 260.0 162 11.4 328 286.0 7.5 
5 T105003 179 13.5 9.0 183 288.0 149 10.0 298 334.0 7.0 
6 T105005 200 13.9 8.4 202 273.0 171 10.7 361 271.0 7.2 
7 T105006 239 16.0 9.7 239 276.0 223 18.1 604 306.0 10.3 
8 T105008 301 19.3 12.4 297 292.0 300 17.8 301 357.0 13.0 
9 T105009 139 11.5 7.7 139 300.0 110 10.0 218 312.0 6.2 
10 T105010 138 11.6 7.8 146 281.0 111 9.1 221 361.0 6.2 
11 T105011 140 12.0 7.5 142 298.0 151 11.1 302 304.0 6.4 
12 T105014 178 13.7 8.1 177 292.0 170 12.3 359 290.0 7.5 
13 T105015 179 13.5 9.4 178 275.0 180 12.5 397 290.0 10.2 
14 T105016 200 14.6 9.4 200 279.0 171 12.0 361 273.0 8.9 
15 T105019 239 16.3 10.1 240 274.0 224 18.7 605 322.0 8.6 
16 T105020 299 18.3 10.8 298 301.0 210 17.2 551 268.0 11.9 
17 T105021 299 18.9 12.3 303 266.0 220 19.4 600 268.0 11.6 
18 T105023 301 18.7 12.0 302 276.0 299 22.9 402 281.0 12.1 
19 T105025 301 21.3 11.9 361 276.0 224 18.2 604 316.0 11.4 
20 T106001 145 21.4 13.2 159 283.0 149 11.0 295 358.0 11.8 
21 T106003 204 25.4 15.9 221 268.0 180 12.6 401 265.0 11.0 
22 T106004 204 25.6 15.9 222 267.0 199 15.1 498 248.0 14.0 
23 T106005 204 24.5 16.0 222 280.0 224 18.7 600 277.0 12.7 
24 T106006 222 25.0 16.5 241 278.0 209 18.0 552 361.0 13.5 
25 T106007 308 37.0 21.2 340 237.0 300 28.0 603 262.0 14.2 
26 T108032 199 15.0 9.0 199 370.0 186 13.1 450 386.0 4.0 
27 T108038 202 12.0 8.7 209 291.0 168 12.5 361 307.0 5.5 
28 T107004 242 10.8 11.3 233 343.9 190 13.2 452 287.0 11.3 
29 T105004 179 13.4 8.2 183 277.0 180 12.3 398 284.0 9.3 
30 T105007 299 18.6 11.7 300 296.0 181 13.2 400 309.0 9.1 
31 T105018 240 16.1 9.7 239 269.0 189 14.1 451 284.0 10.1 
32 T105024 300 18.0 10.6 298 271.0 301 27.6 500 271.0 12.7 
33 T106002 186 22.8 14.5 200 265.0 177 13.5 398 358.0 12.1 
34 T108042 255 18.5 12.2 265 267.0 200 15.5 498 288.0 5.7 
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The NeuralWorks Modelling Software (QNet for Windows, 
2000) was used to train and test all neural networks. To avoid 
problems in the training process due to the reduced database, a 
methodology described by Mitchel (1997) was adopted. In this 
method, a k-fold cross-validation approach is used, where the m 
available examples are partitioned into k disjoint subsets, each of 
m/k size. The cross-validation procedure is performed k times, each 
time using one different subset as the validation set and the other k – 
1 subsets as training set. On each experiment the above cross-
validation approach is used to determine the number of iterations i 
(epochs) that yield the best performance on the validation set. The 
mean imean of these estimates for i is then calculated, and a final 
training of BP is performed with all m examples for imean iterations, 
with no validation set. 

In this investigation, m was divided into k = 3 parts (I, II and 
III), enabling three different validations to be performed. In the first 

phase, groups I and II are used for training while the validation is 
made with group III. In the second stage, the training is made with 
groups I and III and validation is performed with group II. In the last 
stage, the training is accomplished with groups II and III and the 
validation is made with group I. Fig. 6 summarizes this procedure. 

Several network configurations were tested varying the number 
of hidden processors (2, 3, 4, 5 and 6). The learning rate was 
considered adaptive, with an initial value equal to 0.2 while the 
momentum factor was changed between 0.4 and 0.8. The optimum 
Neural Network was obtained through a comparison of the 
generalization error obtained with the validation set. 

The best network configuration for each joint type is presented 
in Tab. 4, where the number of input patterns, hidden processors, 
initial and final learning rates (η) and the momentum factor (α) are 
specified for each neural network. 

 

Table 3. Geometrical characteristics (in mm) for the experiments with bolted joint with angles. 

ID Test tfc hb tta Lta Lwa db 
1 8S1 16.3 209.6 9.5 88.9 139.7 16.0 
2 8S2 16.3 209.6 9.5 88.9 139.7 16.0 
3 8S3 16.3 209.6 7.9 88.9 139.7 16.0 
4 8S4 16.3 209.6 9.5 152.4 139.7 16.0 
5 8S5 16.3 209.6 9.5 101.6 139.7 16.0 
6 8S6 16.3 209.6 7.9 101.6 139.7 16.0 
7 8S7 16.3 209.6 9.5 101.6 139.7 16.0 
8 8S10 16.3 209.6 12.7 88.9 139.7 22.2 
9 14S1 22.9 358.8 9.5 101.6 215.9 16.0 
10 14S2 22.9 358.8 12.7 101.6 215.9 16.0 
11 14S4 22.9 358.8 9.5 101.6 215.9 16.0 
12 14S5 22.9 358.8 9.5 101.6 215.9 22.2 
13 14S6 22.9 358.8 12.7 101.6 215.9 22.2 
14 14S8 22.9 358.8 15.9 101.6 215.9 22.2 
15 8S8 16.3 209.6 7.9 88.9 139.7 22.2 
16 8S9 16.3 209.6 9.5 88.9 139.7 22.2 
17 14S3 22.9 358.8 9.5 101.6 139.7 16.0 
18 14S9 22.9 358.8 12.7 101.6 215.9 22.2 
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Figure 6. Cross-validation methodology used due to the reduced training 
database. 

 
 
 
 
 

Table 4. Neural networks configurations. 

Joint type Endplate Welded Angles 
Number of 
patterns 26 33 18 

Training data 21 26 14 
Test data 5 7 4 
 Mj,Rd Sj,inii Mj,Rd Sj,ini Mj,Rd Sj,ini 
Hidden layers 1 1 1 1 1 1 
Processors in 
each hidden 
layer 

3 4 6 3 5 5 

Initial learning 
rate (η) 0.3 0.3 0.3 0.3 0.3 0.3 

Final learning 
rate (η) 0.28 0.25 0.27 0.28 0.28 0.28 

Momentum (α) 0.6 0.6 0.6 0.6 0.6 0.6 
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Neural Network Results 

Bolted Endplate Joints Results 

For this type of joint, the results of 26 experimental tests (21 for 
training and 5 for testing) were used, producing satisfactory results 
for the prediction of the flexural resistance where the mean absolute 
percent error (MAPE) was 8.4%. The minimum and maximum 
percentile errors were –15.5% and 18%. For the prediction of the 
initial stiffness, the obtained values weren’t so good. The mean error 
was 23.5% while –33.8% and 38.3% represent the minimum and 
maximum percentile errors. 

Figure 7 illustrates a comparison of the ratio between the values 
predicted by the neural networks, the Eurocode 3 formulae, and the 
experimental values. In the sequence, a similar comparison for the 
joint initial stiffness is presented in the Figure 8. 

It can be observed that the performance obtained in the 
prediction of flexural resistance was significantly better than the 
initial stiffness prediction. The initial stiffness prediction pointed out 
for the significant importance of obtaining new experimental data. 
Both results are summarized in Tabs. 5 and 6, respectively. 
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Figure 7. Flexural resistance relative comparison for endplate joints. 
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Figure 8. Initial stiffness relative comparison for endplate joints. 

Welded Joints Results 

Figure 9 depicts the comparison of the results obtained with NN 
and Eurocode 3 formulae for the welded joint flexural resistance. 
From this graph it is possible to conclude that the neural network 
results reached a good agreement with the joints experimental 
values, while the Eurocode 3 prediction values conducted to 
misleading results. The mean neural network error was 8.9% with   

–5.4% and 12.4% of minimum and maximum percentile error 
values, respectively. 
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Figure 9. Flexural resistance relative comparison for welded joints. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15 20 25 30 35
Test ID

S j
,in

i /
 S

j,i
ni

 E
X

P

Neural Network
Eurocode 3

training data test data

 
Figure 10. Initial stiffness relative comparison for welded joints. 

 
Figure 10 depicts the welded joint initial stiffness results. The 

mean error was 28% with -58.4% and 30% of minimum and 
maximum percentile error values respectively. Again, the obtained 
initial stiffness results were not as good as the moment prediction 
values but it is fair to mention that the values from Eurocode 3 
formulae also did not present a good agreement with the 
experimental data. The summary of the obtained results is presented 
in Tabs. 7 and 8. 

Bolted Joints with Angles Results 

Figure 11 presents the results obtained for bolted joints with 
angles. For flexural resistance results, the mean error was 11.6% 
with –18.3% and 4.7% of minimum and maximum percentile error 
values, respectively. The results for the initial stiffness prediction 
presented in Figure 12 led to the conclusion that neural network 
results were more accurate than the values obtained from the 
theoretical analysis evaluated by Kishi & Chen formulation, [12] 
and [13]. 

The potential of the neural networks to predict the joints 
ultimate moment and initial stiffness was confirmed by these 
graphs. Although some of the neural network initial stiffness values 
differ up to 59% from the experiments, this can be explained by the 
difficulties in the laboratory measuring devices and associated 
experimental errors, which can produce misleading values for the 
experimental test results. The summary of the obtained results is 
presented in Tabs. 9 and 10. 
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Figure 11. Flexural resistance relative comparison for bolted joints with 
angles. 
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Figure 12. Initial stiffness relative comparison for bolted joints with 
angles. 

 
 

Table 5. Flexural resistance comparison for endplate joints. 

Test  Author Mj,Rd EXP (kN.m) Mj,Rd ANN  (kN.m) Mj,Rd ANN /      
Mj,Rd EXP 

MjRd EC3         
(kN.m) 

MjRd EC3  /      
Mj,Rd EXP 

T110001 Faella et al. (1999) 785.0 731.4 0.93 558.84 0.71 
T110002 Faella et al. (1999) 488.7 523.8 1.07 547.27 1.12 
T110005 Faella et al. (1999) 535.0 539.5 1.01 581.20 1.09 
T109003 Hummer and Tschemmernegg 155.1 151.4 0.98 116.12 0.75 
T109004 Hummer and Tschemmernegg 188.1 190.9 1.01 188.90 1.00 
T109006 Hummer and Tschemmernegg 354.7 353.6 1.00 330.62 0.93 
T101007 Janss et al. (1987) 52.6 58.5 1.11 56.25 1.07 
T101010 Janss et al. (1987) 96.4 78.2 0.81 85.95 0.89 
T101013 Janss et al. (1987) 51.0 53.9 1.06 53.19 1.04 
T101014 Janss et al. (1987) 50.6 44.0 0.87 56.86 1.12 
T839 Zoetemeijer and Hunter (1983) 99.2 90.1 0.91 91.71 0.92 
T8310 Zoetemeijer and Hunter (1983) 127.8 137.5 1.08 166.01 1.30 
T8311 Zoetemeijer and Hunter (1983) 231.3 231.8 1.00 222.70 0.96 
T911 Simek and Wald (1991) 196.9 192.3 0.98 214.57 1.09 
T913 Simek and Wald (1991) 392.0 393.3 1.00 288.72 0.74 
TC5 Aggarwal (1994) 70.5 51.5 0.73 47.21 0.67 
TC6 Aggarwal (1994) 63.1 55.2 0.88 54.68 0.87 
TC7 Aggarwal (1994) 61.5 72.4 1.18 47.21 0.77 
TC9 Aggarwal (1994) 55.9 51.5 0.92 47.21 0.84 
TC11 Aggarwal (1994) 57.5 72.4 1.26 47.21 0.82 
TC12 

Tr
ai

ni
ng

 d
at

a 

Aggarwal (1994) 62.8 77.0 1.23 67.68 1.08 
T109005 Hummer and Tschemmernegg 311.7 312.2 1.00 270.60 0.87 
T101004 Janss et al. (1987) 54.1 58.2 1.08 46.07 0.85 
T912 Simek and Wald (1991) 200.0 197.8 0.99 223.46 1.12 
TC8 Aggarwal (1994) 63.2 77.0 1.22 67.22 1.06 
TC10 

Te
st

 d
at

a 

Aggarwal (1994) 63.8 55.2 0.87 54.68 0.86 
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Table 6. Initial stiffness comparison for endplate joints. 

Test  Author Sj,ini EXP 
(kN.m) 

Sj,ini ANN 
(kN.m/rad) 

Sj,ini ANN  /        
Sj,ini EXP 

Sj,ini EC3          
(kN.m/rad) 

Sj,ini EC3   /          
Sj,ini EXP 

T110001 Faella et al. (1999) 490385 490355 1.00 388345 0.79 
T110002 Faella et al. (1999) 137937 137933 1.00 124638 0.90 
T110005 Faella et al. (1999) 135149 135166 1.00 131893 0.98 
T109003 Hummer and Tschemmernegg 18746 18450 0.98 32573 1.74 
T109004 Hummer and Tschemmernegg 74135 74279 1.00 62759 0.85 
T109006 Hummer and Tschemmernegg 115704 115461 1.00 127783 1.10 
T101007 Janss et al. (1987) 21276 21668 1.02 12198 0.57 
T101010 Janss et al. (1987) 25316 25371 1.00 23471 0.93 
T101013 Janss et al. (1987) 12739 12533 0.98 8569 0.67 
T101014 Janss et al. (1987) 16161 16284 1.01 8627 0.53 
T839 Zoetemeijer and Hunter (1983) 33098 33249 1.00 57428 1.74 
T8310 Zoetemeijer and Hunter (1983) 52222 52240 1.00 81296 1.56 
T8311 Zoetemeijer and Hunter (1983) 29375 29461 1.00 63079 2.15 
T911 Simek and Wald (1991) 55294 55293 1.00 63578 1.15 
T913 Simek and Wald (1991) 85454 85555 1.00 129702 1.52 
TC5 Aggarwal (1994) 6183 6455 1.04 8848 1.43 
TC6 Aggarwal (1994) 6680 4704 0.70 9069 1.36 
TC7 Aggarwal (1994) 8600 7470 0.87 9729 1.13 
TC9 Aggarwal (1994) 7125 6455 0.91 12264 1.72 
TC11 Aggarwal (1994) 6150 7470 1.21 13983 2.27 
TC12 

Tr
ai

ni
ng

 d
at

a 

Aggarwal (1994) 4730 6533 1.38 14607 3.09 
T109005 Hummer and Tschemmernegg 67915 97192 1.43 84194 1.24 
T101004 Janss et al. (1987) 13289 21528 1.62 12321 0.93 
T912 Simek and Wald (1991) 72308 54025 0.75 65353 0.90 
TC8 Aggarwal (1994) 7330 6533 0.89 10026 1.37 
TC10 

Te
st

 d
at

a 

Aggarwal (1994) 4565 4704 1.03 12694 2.78 
 

Table 7. Flexural resistance comparison for welded joints. 

Test  Author Mj,Rd EXP      (kN.m) Mj,Rd ANN            (kN.m) Mj,Rd ANN /      
Mj,Rd EXP MjRd EC3           (kN.m) MjRd EC3  /            Mj,Rd 

EXP 
T107001 71.2 74.3 1.04 71.2 1.00 
T107002 97.3 104.6 1.08 86.0 0.88 
T107003 161.2 156.7 0.97 111.6 0.69 
T105003 102.4 93.7 0.92 128.4 1.25 
T105004 190.8 176.0 0.92 177.9 0.93 
T105005 185.6 191.6 1.03 143.9 0.78 
T105006 445.4 419.3 0.94 394.6 0.89 
T105008 244.8 246.5 1.01 335.1 1.37 
T105009 60.6 56.9 0.94 53.9 0.89 
T105011 82.4 88.2 1.07 85.7 1.04 
T105014 119.8 120.2 1.00 139.3 1.16 
T105015 153.0 149.0 0.97 173.0 1.13 
T105016 131.4 150.3 1.14 168.8 1.28 
T105019 323.6 349.0 1.08 366.7 1.13 
T105020 512.4 518.0 1.01 474.7 0.93 
T105021 488.4 496.1 1.02 548.7 1.12 
T105023 355.3 355.2 1.00 384.3 1.08 
T105025 741.4 741.3 1.00 617.8 0.83 
T106001 186.1 184.2 0.99 161.1 0.87 
T106002 187.4 203.1 1.08 248.9 1.33 
T106004 302.5 299.6 0.99 417.9 1.38 
T106005 427.5 436.4 1.02 601.7 1.41 
T106006 515.5 507.4 0.98 610.6 1.18 
T106007 604.1 597.6 0.99 916.6 1.52 
T108038 136.1 127.5 0.94 118.6 0.87 
T108042 

Tr
ai

ni
ng

 d
at

a 

Not 
available 

377.4 370.5 0.98 279.8 0.74 
T107004 309.0 348.4 1.13 211.8 0.69 
T105002 119.9 109.3 0.91 111.4 0.93 
T105007 345.3 326.9 0.95 309.1 0.90 
T105018 255.7 242.4 0.95 276.0 1.08 
T105024 362.9 371.1 1.02 376.2 1.04 
T106003 266.1 230.6 0.87 297.9 1.12 
T108032 

Te
st

 d
at

a 

Not 
available 

218.5 249.3 1.14 234.3 1.07 
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Table 8. Initial stiffness comparison for welded joints. 

Test  Author Sj,ini EXP            
(kN.m) 

Sj,ini ANN             
(kN.m/rad) 

Sj,ini ANN  /      
Sj,ini EXP 

Sj,ini EC3            
(kN.m/rad) 

Sj,ini EC3   /          
Sj,ini EXP 

T107001 20123 30649 1.52 26844 1.33 
T107002 29090 13197 0.45 41773 1.44 
T107003 44366 15503 0.35 63405 1.43 
T105003 69707 45252 0.65 71618 1.03 
T105004 94903 71426 0.75 122489 1.29 
T105005 81278 48644 0.60 99294 1.22 
T105006 250565 155032 0.62 327779 1.31 
T105008 83115 80520 0.97 97168 1.17 
T105009 9555 17052 1.78 14985 1.57 
T105011 16331 31522 1.93 25924 1.59 
T105014 46663 47279 1.01 41686 0.89 
T105015 38442 77620 2.02 56351 1.47 
T105016 46415 53074 1.14 52876 1.14 
T105019 113997 155418 1.36 146575 1.29 
T105020 95555 109471 1.15 142192 1.49 
T105021 165577 149758 0.90 200717 1.21 
T105023 73928 91871 1.24 91818 1.24 
T105025 125306 160598 1.28 178057 1.42 
T106001 70526 72473 1.03 49086 0.70 
T106002 120454 119081 0.99 94700 0.79 
T106004 103710 107656 1.04 151362 1.46 
T106005 97945 139544 1.42 198496 2.03 
T106006 182755 166204 0.91 192871 1.06 
T106007 207268 176463 0.85 341795 1.65 
T108038 30591 45472 1.49 31632 1.03 
T108042 

Tr
ai

ni
ng

 d
at

a 

Not 
available 

72616 90133 1.24 90032 1.24 
T107004 72594 49965 0.69 183629 2.53 
T105002 49837 56773 1.14 89934 1.80 
T105007 106281 67078 0.63 156396 1.47 
T105018 73919 98026 1.33 85526 1.16 
T105024 93851 133223 1.42 118421 1.26 
T106003 64634 67974 1.05 107983 1.67 
T108032 

Te
st

 d
at

a 

Not 
available 

34948 43781 1.25 57033 1.63 
 

Table 9. Flexural resistance comparison for bolted joints with angles. 

Test Author Mj,Rd EXP     
(kN.m) 

Mj,Rd ANN    
(kN.m) 

Mj,Rd ANN /     
Mj,Rd EXP 

MjRd EC3         
(kN.m) 

MjRd EC3  /      
Mj,Rd EXP 

8S1 37.2 43.7 1.17 29.2 0.78 
8S2 43.4 43.7 1.01 39.6 0.91 
8S3 47.7 40.1 0.84 36.4 0.76 
8S4 18.6 18.4 0.99 15.3 0.83 
8S5 38.1 37.5 0.98 33.6 0.88 
8S6 27.6 34.6 1.25 29.2 1.06 
8S7 43.0 37.5 0.87 27.1 0.63 
8S10 71.6 71.6 1.00 64.5 0.90 
14S1 77.7 85.6 1.10 61.3 0.79 
14S2 107.0 106.5 1.00 129.2 1.21 
14S4 92.9 85.6 0.92 87.1 0.94 
14S5 86.2 84.8 0.98 64.5 0.75 
14S6 119.0 121.4 1.02 103.8 0.87 
14S8 

Azizinamini et al. (1987) and 
Azizinamini et al. (1989) 

 
 

(Training data) 

176.4 174.5 0.99 150.6 0.85 
8S8 42.9 36.3 0.85 31.6 0.74 
8S9 47.8 42.3 0.89 42.2 0.88 
14S3 73.9 66.9 0.90 52.0 0.70 
14S9 

Azizinamini et al. (1987) and 
Azizinamini et al. (1989) 

 
(Test data) 115.7 121.4 1.05 103.8 0.90 
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Table 10. Initial stiffness comparison for bolted joints with angles. 

Test Author Sj,ini EXP      
(kN.m) 

Sj,ini ANN       
(kN.m) 

Sj,ini ANN /      
Sj,ini EXP 

Sj,ini CHEN   
(kN.m) 

Sj,ini CHEN /       
Sj,ini EXP 

8S1 7540 12026.16 1.59 5611 0.74 
8S2 13940 12026.16 0.86 10368 0.74 
8S3 11830 8245.749 0.70 7481 0.63 
8S4 1730 746.042 0.43 385 0.22 
8S5 8670 7717.94 0.89 5082 0.59 
8S6 4460 5455.3 1.22 2084 0.47 
8S7 5420 7717.94 1.42 3812 0.70 
8S10 48200 47576.94 0.99 35564 0.74 
14S1 22030 24203.53 1.10 14365 0.65 
14S2 33330 31692.2 0.95 37491 1.12 
14S4 25070 24203.53 0.97 14365 0.57 
14S5 27900 27337.21 0.98 17128 0.61 
14S6 32300 32826.89 1.02 44826 1.39 
14S8 

Azizinamini et al. (1987) and 
Azizinamini et al. (1989) 

 
 

(Training data) 

65400 66235.6 1.01 79953 1.22 
8S8 7900 9995.946 1.27 7154 0.91 
8S9 11800 12944.25 1.10 13250 1.12 
14S3 13090 15159.87 1.16 14365 1.10 
14S9 

Azizinamini et al. (1987) and 
Azizinamini et al. (1989) 

 
(Test data) 29200 32826.81 1.12 44826 1.54 

       

Conclusions 

This paper proposes the use of artificial neural networks to 
predict the flexural resistance and initial stiffness of beam-to-
column joints. The neural network results for the prediction of the 
flexural resistance for all joints types conducted to satisfactory 
results. However, the results obtained for the initial stiffness showed 
the necessity to incorporate new experimental data. These results are 
summarized in Tab. 11. 

The authors would like to emphasize that the initial stiffness 
experimental values are strongly influenced by the measurement 
system. Recent investigations (Neves et al., 2003), pointed out to 
the use of the elastic unload stiffness value instead of the initial 
stiffness values found in the first loading stages. The main reason 

for that procedure is related to the various accommodation 
displacements/slip found in these joints in early loading phases. The 
elastic stiffness found in the unloading phase does not present these 
accommodations, which provides a better representation of the joint 
initial stiffness. Since all the joints data do not use the above 
mentioned procedure, scattered results can be expected in the 
experimental initial stiffness joint values. 

The mean errors obtained in this investigation were 8.4%, 8.9% 
and 11.6% for the prediction of the flexural resistance, 
demonstrating a reasonable agreement between the neural networks 
and the experimental test values. These errors are acceptable when 
compared to the level of safety factors used in structural engineering 
and the intrinsic errors associated with the used experimental data. 

 

Table 11. Error summary. 

Joint Type MAPE training (%) MAPE test (%) Minimum percentile 
training error (%) 

Maximum percentile  
training error (%) 

Mj,Rd ANN 9.8 8.4 -15.5 18.0 Endplate Sj,ini ANN 5.9 23.5 -33.8 38.3 
Mj,Rd ANN 4.0 8.9 -15.4 12.4 Welded Sj,ini ANN 35.6 28.0 -58.4 30.0 
Mj,Rd ANN 6.8 11.6 -18.3 4.7 Bolted with 

angles Sj,ini ANN 22.3 13.6 -131.9 37.3 
 
It is also fair to mention that the small number of experimental 

data can be one of the factors associated to the relative large Neural 
Networks errors. The incorporation of new data, acquired in 
laboratory tests, will surely improve the quality of the Neural 
Networks predictions. 

The present investigation confirmed the possibility of using this 
technique to generate trustworthy data. The use of artificial neural 
networks coupled with experimental data will enable the execution 
of a parametric analyses. These numerical analyses will surely help 
the calibration of the design code formulations like the Eurocode 3. 
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