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Introduction

Finite Volume Methods (FVM), are especially attreetfor the
solution of conservation laws problems. The comsion of FVM
methods capable to deal with unstructured meshedeaf utmost
importance in order to handle applications thatoime complex
geometries (AGARD Report 787, 1992). The node-cedté-VM
using an edge-based data structure, which wasrgessen Lyra et
al (2004a), is very flexible to deal with contralumes of different
shapes associated to generic unstructured meshes.

When studying complex problems, bi-dimensional n®deay
become quite limited when studying complex proble®@s the
other hand, a fully three dimensional model mayd l¢a heavy
computational requirements which may sometimes tiweranalysis
unfeasible. In many situations the tri-dimensiomaldeling may be
avoided due to the axisymmetric behavior of the bjmms.
Therefore, it is interesting to develop a FVM fotation suitable to
deal with axisymmetric models, where the plane réiszation is
rotated 2tradians around the axis of symmetry. In the priegaper
a vertex centered finite volume formulation usingdian dual
control volumes is developed and implemented fersiimulation of
axisymmetric heat conduction problems subjectedifterent types
of boundary conditions (Dirichlet, Neumann, and &80 and to
some non-conventional loads, considering also systeith multi-
materials. The temporal discretization is done Isjngple first order
Euler-forward finite difference method.

The use of an edge-based data structure is veectief in
terms of reducing: indirect addressing to retriea@al information
required by the solver; CPU time and memory requénats (Barth,
1992; Peraire et al., 1993; Sorensen et al., 200fra, 1994a, b),
particularly when three-dimensional models are &ethp

In the next section we briefly describe the physiead
mathematical models addressed. Then a detailedipse of the
finite volume formulation proposed for such clagsnodels is fully
developed and validated by considering the solutddnsimple
model problems which allow to illustrate the veilggt and
effectiveness of the whole procedure. Finally, saorclusions and
the present status of this research are presented.
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M athematical M odel

As mentioned previously, an axisymmetric heat catidn
model is adopted, where the z-axis is the axigypfrsetry. Then it
is convenient to formulate the problem using a roiical
coordinate system. Since all coefficients are irtelent ofo, the
temperature distribution is a function of (r, zheTheat conduction
equation is then written as (Osizik, 1980):

pcal:ii( ra—Tj+i[ng—Tj+Q in QxT 1)
z

where, p is the mass density; is the specific heatT is the
temperature, an@ represents the source (or sink) terms. The spatial
domain of the problem is represented &Y, with r being the radial
coordinate and, the axial one. The time interval of integratian i
represented by = |i¢'|, with ' andt', being the initial and the final
time stage. For simplicity, the medium is considevgthotropic.

The heat flux is a function of the temperature gmaf] and is
modeled by the Fourier's La\/\ﬁi = —k; OT/0x; » in whichk is the
thermal conductivity in the; direction, that represents the spatial
independent variable. In an axisymmetric model gisiglindrical
coordinatesy; represents the coordinateandz

The problem described by the Eq. (1) is subjeatedaundary
and initial conditions. The boundary conditionsraérest may be of
three different types:

a) Dirichlet boundary condition: prescribed tempam@ T over
a portion of the boundarfp:

T=T, in /pxT (2

b) Neumann boundary condition: prescribed normait Hieix
q, over/y:

-Qjnj =0y, in Iy xT 3)

in whichn; are the outward normal direction cosines.
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¢) Cauchy or Robin boundary condition: mixed bougda
condition, in other words, prescribed flux and cection heat
transfer over.:

-qjn; =0, +hg(T -T,), in TcxT (4)
with hs representing the convective heat transfer caefftcandTy,
being the environmental fluid temperature.

The initial distribution of temperatur€' is known for an initial
time stage', and the initial condition is expressed by:
©)

T=T" in Q for t=t

An Axisymmetric Finite Volume Formulation

Equation (1) can be re-written in terms of the @sxusing an
integral formulation over an axisymmetric volug?eas:

oT 10 dq
Cdo=-[22 (rq)da- [“Zda+[Qda
gJ}pc " gf)r 5 (ra) g{az (j)Q

(6)

The infinitesimal volume in a tri-dimensional modasing
cylindrical coordinates is given byiQ =rA@drdz=rA&dA, where
dAis the infinitesimal cross-section area. For tkisyanmetric case
A 8= 275 and the axisymmetric volume results in:

dQ=2nrdA (7

Substitutingd®2 given by Eq. (7) in Eq. (6), excepted for the

source term which will be considered in detail i@ hext session,
we have:

oT 10
—21rdA=—| = — 2rrdA -
,{pcat v ,{r ar (rar )2 (8)
~ (% 5rrga+ Qo
A 02 Q
The previous equation can also be written as:
TocT 2myan= (A2 o A2 4y
Aot A or A 0z 9)

+[{QdQ
Q

Equation (9) can be re-written adopting an indiciatation,
after the use of the divergence theorem, as:

jpc%—ZmdA: ~[(2rwq);n; dS+ [QdQ (10)
A S Q

in which S is the cross-sectional boundary of the volumdSee
Figure 1).

To obtain the FV numerical formulation of Eq. (1Ghe
computational domain is discretized into an ungtmetl assembly
of elements. The first integral in Eq. (10) cancbenputed over the
axisymmetric control volume associated to nbdehe integral over
the boundary present in the same equation is cadpater the
boundary face of the control volume associatedaerh using an
edge-based representation of the mesh. The last itex the source
(or sink) thermal loads, will be detailed laterthe next section.
Following the approaches presented in Lyra et28l04a), the semi-
discrete formulation of Eq. (10), for a nobecan be conveniently
expressed as:
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aT, o o
pC(Ttlzch‘ = _(ZCGT(J)C‘IJJ(LA) + z D|/:]\>L<(J)q|JJ(LS)j +
L L

+ _[QdQ
Q

11)

in which A, is the cross-sectional area of the control volume
associated to noderc is the centroid radius of that control volume
andTAI represents the numerically calculated temperatunedd.

The centroid of the control volume is given by:

e =2rA /XA (12)

with r; being the centroid of each sub-element that fdrencontrol
volume andA is the area of the corresponding sub-elemens It i
important to observe that the control volume cedtooordinates do
not necessarily coincide with the coordinates afelo

Coefficients C* and DX in Eq. (11) represent the

components irj direction of the area vector normal to the control
volume surface. They must multiply the flux asstemato edgeJd,

in order to obtain the heat flux contribution ofstledge to the node
I. The first summation in Eqg. (11) extends over etlges in the
domain which are connected to nddevhile the second summation
corresponds to the flux contributions over a boupdedge L

connected to nodd. Coefficients C;*? and D;*", which
correspond to the axisymmetric model proposedérptiesent work,
are computed as:

CG\)L((”:ZAKn& and DG‘T(“:ALnﬂ (13)
k

in which, A = 27r,L, , with r, =(r,,» +1.)/2. In other wordsry

represents the mid point radial coordinate of fatrK and Ly is

the length of each interfad€ associated to eddéd,. Each interface
connects the element centroid (C) to the mid p@u#f) of one of
the edges that belong to such element (for deteilFsgure 1b). For

each boundary edge, coefficie®;*!” must be calculated with

A =2mr L, in whichL_ is the half-length of the boundary edge
under consideration, and :(BrI +ry )/4 for node I, and

r. :(SrJL +r, )/4 for node J.. The outward normal direction

cosines components, jiirection, are given byl,j( and nﬂ .

Figure 1 represents an example of a typical axisgimm
control volume and the coordinate system adoptdds Tigure
shows the cross-section of an inner control voluara the
geometrical parameters required for computing theighting

coefficients C ;" and D/*(). For the two-dimensional case, a

detailed description of these geometrical pararaetan be found in
Lyra et al. (2004a).
The approximation of the flux valueg® and gl (Eq. 11), for

the interior contribution of all edges and for imundary edges
contributions, are, respectively, given by the artional FVM
expressions asj¥ =(¢/ +q] J/2 and q.‘j(f )=q

In order to compute the edges fluxes, it is requtceknow the
nodal fluxes values and, consequently, the valfiekeogradient of
the nodal temperature. Using the divergence theoamm the
approximation used to compute volume integrals avecontrol
volume surrounding nodewe have,
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oT _ Using the same approximations adopted for the talon of
J ax; ffzm dA= edges fluxes, we have:
J
=21 j |: ( ) bT:ldA— (14) TIST) = (TI +TJL )/2 and TISSL) =TI (17)
Xj

As stated in Lyra et al. (2004 a, b), the use of B®f) to
compute the gradients implies that the discretimatif the diffusion
term in Eq. (11) involves information from two lageof points
surrounding the poirtunder consideration. Furthermore, if uniform
structured quadrilateral (or hexahedral) meshes aai@pted, the
o values computed at a given node are uncoupled fhenvalues of
b:{l for x; =r (radial direction those nodes directly connected to it. This fact mayse “checker-

0 for x;=z (axial directior) boarding” or “odd-even” oscillations (Lyra, 199%yhen computing
the diffusive term in non-uniform unstructured meshthe adoption
of an extended stencil and a weak coupling with tirectly
connected nodes may lead to some loss of robusanesseduction
of convergence rate of the resulting scheme. &, fia can be
proved that this scheme is formally only first arde general
triangular meshes (Svard and Nordstrom, 2003). tdero to
overcome such weaknesses, the gradients must bgutethnin an
alternative way. Following the procedure suggesteithe literature
(Crumpton et al., 1997 and Sorensen, 2001) a teg@oach can be
developed. Summing up, the procedure consistsnenaevaluation
of the domain edges fluxes, considering the fluxtgbutions in the
parallel and normal directions to the edge. Thealpr gradient
contribution is computed by a new approximatiomgsa second
order central difference (Lyra et al., 2004a), atthé normal
component is obtained as follows,

=-2n[(rT)n;dS-2n[bTdA
A

S

where, 2r[bTdA=2rbT, A and
A

oty _of, _oTf

axj ax,. 6)3

(18)

where each nodal gradient is calculated in a findkime fashion
(Eqg. 16) and the edge gradiea"ﬂfUL/axK is given by the average

between the gradients of nodds and J.. With the new
approximation of the parallel componemjt/axK and the normal

component given in Eq. (18) we have the gradiepr@pmation
and the corresponding quxqﬁJ(A’), which is obtained using the

J3

Fourier's conductivity law.

-1 With the new edge flux approximatiogi(*)), Eq. (11) can be
C = centroid it ) -
MP = middle re-written as:
Ui noin ot ( )
ah AX(D) g (A AX(]) qi(S)
= PC 21 A = [ZL:CIJL N +§DIJL A, j*’ (19)

Figure 1. (a) Axisymmetric solid with a typical control volume in detail; (b) +§J;QdQ

Cross-section of control volume and its geometrical parameters.

It is important to emphasize that, for each boupdadge, it

On the other hand, must be calculated a different coefficieptx( for each node,
andl, as described just after Eq. (13).
j—dQ j—ZTrrdADZT[ A (15) : a-(13)
9,0 A OX; ax;
Thermal Loads Discretization
Using the same kind of approximation adopted to mat the The term Q represents the thermal sources that can act in
boundary integral in Eq. (10) and considering Efj8) and (15), we gjtferent portions of the domain. The integral foofthe thermal
can express the nodal approximation of the gradisnt sourceQ, described in Eq. (19), can be approximated by:
T — P C R 20
o, 21T A DZCAX(J)T +ZDAX(J)TISL) 16) gf)QdQ 2mQ +§L)Q| 2 Ly +Q2me A (20)
i
- 21T, A, where the superscrip8, C, R account for thermal sources (or

“sinks”) acting on a point, a curve or a regionspectively. In
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Equation (20), the summation is over the two edgeghat

P.R. M. Lyra et al

During each summation the coefficients and matepiaperties

approximate the curv@ in the pointl in which the source acts. The used are those correspondents to each region.

term QF considers the total value of heat source for ayurgtume

associated to a given nobleThe term containing),” considers the
heat source value for a strip of unity width owee plane and along

As the 21 constant appears in all equation terms, expliatly
implicitly as in the case of coefficientg/ X and DA*¥, in
practice it is removed from the computational impéatation.

This procedure represents a good approximationof@rration

the surfacel ., which represents the transversal section alorg thy yifferent material properties. For high raticm, more robust
line heat source. SQF gives the heat source per unit of area oveRPproximation is under development, see Carvalbogpfor futher

the surfacel’. for a given nodé. The termQF® represents the heat
source per unit of volume.

It is important to emphasize that the expressiapased in Eq.
(20) is of course only valid in the case of thers@lirces acting on
axisymmetric curve or region, or point sources igoblover the
symmetry axis.

Boundary Conditions Discretization

For the portion of the boundary subjected to Digtiboundary
condition, the nodal value of temperature is knoweijng the

prescribed temperature valtﬁg .

For the imposition of Neumann boundary conditidre hormal
component of the flux (coming from FVM calculatiomust be
substituted by the prescribed flu, .

The Robin boundary condition is implemented sinjlato

Neumann boundary condition, since in the explioitet formulation
adopted the right hand side of Eq. (4) is known whe take the

details.

Time Discretization

The time discretization is done through a simplepliek
formulation (“Euler forward”), where the temperasrof nodé are
computed as functions of the neighborhood temperatealculated
in the previous time step (Maliska, 1995):
At

PC(ZWC A )

where RHS refers to the right hand side of Eq. (21), is the

T =T" + RHS (22)

known temperature at timg" and T,"** the unknown temperature

attimet™?.

Numerical Results

In this section some simple, though representativademic

temperature valug of the previous time step. Further details ar@xamples are presented in order to validate and stomne of the

presented in Lyra et al. (2004a).

Multi-M aterials Domain

When heat transfer problems involve different mater
properties, the discretization of the governing atiuns should
guarantee the correct solution through the sulBnsginterfaces.
The mesh generator used (Lyra & Carvalho, 2000}Hedexibility
to generate consistent meshes over multi-regioragtsn

For each edge at the interface of two regions, ¢dge
coefficient is computed independently for each aegivith the
identification of the region also kept in memoryhefefore, each
interface edge has two weighting coefficients, medi in Eq. (13)
(Lyra et al., 2004a).

In case of multi-materials, the discrete Equatid®) (including
the thermal loads terms, is then replaced by:

Pl
dt

2 *
AX(]) wi(S) AX(I)(Rk) yi(S1)
+ Y DY G + 3 Y CmIg ]
L k=1 L

+2mQ"+ ¥ Q 2/m, S + QF 27 A

i(a
ame ={ T+

(21)

It is worthy to emphasize that the third summatdrihe right
side is different of zero only when the nddis on an interface of
two or more regions with different properties. Tihéerface edge
fluxes qIJJ(LS‘) are computed in the same fashio >

The gradient values and respective fluxes are médain three
stages. At first, the summation over the boundalyee with the
Neumman and Robin boundary conditions, already cpiteed
(second term of right hand sideRHS— of Eq. (21)). The second
stage involves the summation over all domain edgeser and
boundary) (first term o0RHSEQ. (21)). Finally a double summation
over the interface edges is performed (third tefrRHSEq. (21)).
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capabilities of the numerical scheme previouslyppsed. All

steady-state solutions were obtained using theidixgtansient

algorithm, which is stopped when the time derivatiof the

temperature is not changing, i.e. the residuatleve a pre-assigned
tolerance, with the arbitrarily adopted value of10

1% Example: Steady-State Heat Transfer in a Solid
Cylinder

The first example consists in the calculation &f steady state
temperature profile in a stainless steel (AIST 383)d cylinder of
dimension <sr b e0 <z <a The heat is generated inside the
cylinder at a constant rate @ = 2.4 W/m3 The surfaces & = 0
andz = aare insulated. The surfacerat b is under convection to
an ambient temperature df, = 4.0°C, and the convective heat
transfer coefficient i&1 = 10.0 W/m2°CThe thermal conductivity of
the cylinder isk = 15.1 W/m°G its mass density jg= 8055.0 kg/m
and its specific heat is= 480.0 J/kg K(Incropera & DeWitt, 1998).
The cylinder dimensions ate = 5.0 manda = 5.0 m Figure 2
shows the boundary conditions of the problem. Tingat one-
dimensional analytical solution that satisfies thmundary
conditions of this problem can be found in Ozisll9g0). For the
numerical solution of the problem, three uniformotispic
unstructured triangular meshes were used, the dingt with 52
elements and 37 nodes, the second one, with 102ets and 66
nodes; and the third one with 1368 elements andnd8®s. In Fig.
3, the radial temperature distributions for= 0.0 using the three
meshes, are plotted together with the analytickitiom and Figure
4 shows the temperature contours for the differaeshes. The
maximum relative errors are 0.45%, 0.33% and 0.06f4he £,
2" and ¥ meshes, respectively. Even for the very coarsehmes
get good results and this simple mesh study wasepted just to
show the proper convergence of the solution.
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Figure 2. Boundary conditions for the solid cylinder of 1° example.
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Figure 3. Radial temperature distribution in the cylinder for the three
different meshes and the analytical solution of 1% example.
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Figure 4. Temperature contours for: (a) 1 mesh; (b) 2"* mesh; (c) 3 mesh

in 1°' example.

J. of the Braz. Soc. of Mech. Sci. & Eng.

Copyright O 2005 by ABCM

2nd Example: Transient Heat Transfer in a Solid

Cylinder

The second example presents the transient tempegatfile in
a cylinder of5.0 mhigh and5.0 mradius without heat generation
and initially atT, = 30.0°C The physical properties are identical to
the previous example. The surfages 0.0andz = 5.0 mare kept
insulated, and the surface iirr 5.0 mis kept atT =0. Figure 5
presents the boundary conditions of the problene @&halytical
solution that satisfies the boundary conditionghi$ problem can
be found in Ozisik (1980). An uniform isotropic tmgtured
triangular mesh with 37 nodes and 52 elements wad.UFigure 6
shows the temperature distribution versus time obde atr = 3.0
mandz = 0.Q Figure (7) shows the temperature distributiomszfe
0.0att =110 h, t = 345 h and t = 555.fComparing analytical and
numerical solutions, the maximum relative error fbis coarse
mesh was 4.9%.

z

5m

S ————
Lo, r
0z

Figure 5. Boundary conditions for the solid cylinder of 2nd example.
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Figure 6. Temperature distribution in the cylinder at r =3.0 m and z = 0.0.
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Figure 7. Radial temperature distribution in the cylinder of 2" example, for
z=0.0att=110h, t =345 h and t = 555 h, respectively.

October-December 2005, Vol. XXVII, No. 4 / 411



39 Example: Steady State Heat Conduction in Nuclear
Reactor Element

A solid cylindrical fuel element witl6 mmradius is made of
UO, (uranium oxide). A 3-mm-thick cladding surrounds The

cylinder is6 mmhigh and the surfaces at z = 0.0 and z = 6 mm are

kept insulated. The volumetric heat generation iatehe fuel
element isq = 2.1¢ W/m3 The coolant temperature Ts, = 27°C
and the heat transfer coefficientis= 2000 W/m2°CThe thermal
conductivity of UQ is ks = 2 W/m°G its mass density ig = 10500
kg/nt and its specific heat is; = 1033 J/kg K The thermal
conductivity of the cladding ik, = 25 W/m°G its mass density ig.
= 6504 kg/m and its specific heat is. = 1422 J/kg K Figure 8
shows a cross-section of the fuel element withctadding and the
boundary conditions associated to the problem. Example is
taken from Incropera & DeWitt (1998). The analytisalution that
satisfies the boundary conditions of this problem be found in El-
Wakil (1971). We have used an uniform isotropic truetured
triangular mesh with 273 nodes and 484 elemente mddial
temperature distribution is presented in Fig. 9. &&e observe that
the numerical solution presents the expected profibrO <r <
6mmthe profile is hyperbolic due to the heat generatn the fuel
element, and the temperature in the cladding ptesanlinear
profile. Table 1 shows the temperatures at theeceoft the fuel
element, at the interface fuel-cladding, and at sheface of the
cladding. We can see the good agreement achievesh wie
compare the numerical solution with the analyticale. The
maximum relative error obtained was 0.08%. Suchmgta
validates the multi-materials problem approximatiomhile it
extends the applicability of the presented formatat

z
A
cladding
L fuel
1
1
i q —ka—T=h(T—Tm)
' ar
: 6 mm 3mm

W r
Figure 8. Cross-section of a solid cylindrical nuclear reactor element and

the boundary conditions associated.

Table 1. Temperatures at different positions.

Numerical solution| Analytical solution
Center of the fuel 1185.160°C 1185.387°C
element
Interface fuel-cladding 285.152°C 285.387°C
Cladding surface 227.000°C 227.000°C
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Figure 9.
cladding.

Temperature distribution along the nuclear reactor element with

4" Example: Steady-State Heat Conduction in a Radial
Fin of Hyperbolic Profile

A stainless steel (AIST 302pdial fin is fixed on a circular
vessel. The base width,) of the fin is4.0 mmand the innerr() and
outer f,) radii are 25.0 mmand 40.0 mm respectively. The

hyperbolic profile is given byfz(r) = Zbrb/2r . The surrounding

fluid is at T,, = 20.0°C and the coefficient of heat transferhis=
40.0 W/m?°C The temperature of the base of the finTis=
200.0°C A negligible amount of heat is transferred outhaf end of
the fin. The thermal conductivity of stainless stee15.1 W/m°C

its mass density i = 8055.0 kg/m and its specific heat is =
480.0 J/kg K Figure 10 presents a sketch of a radial fin with
hyperbolic profile. Due to the symmetric nature thé problem
around the central axiz (= 0), a symmetric model was adopted
where it is necessary to analyze only a half ofdbmain. After a
study of convergence, an uniform isotropic unstreeai triangular
mesh with 134 nodes and 199 elements was chosen.

The analytical solution of an one-dimensional modeht
approximates this problem can be obtained from géeeralized
differential equation (Kraus et al, 2000),

fz(r)di?*fzi(r)@‘fidfz“)@—he:o (23)
dr r dr dr dr k

with 8 =T -T,, and the following boundary conditions:

0=T,-T, =6, at r=ry
@:0 at r=r,
dr

The resulting solution is:

w{% M rﬁzj |y3[§ M r”j - |_%[§ M rf/z) I —vz[g M r”j (24)

;
9=8, |—
b\ﬁ‘w 2032 1o 2Med? =1 2Med? |1 22
2/3 3 o 3 3 b -2/3 3 o -13 3 b

where M = (2h/kzy,)Y? andl,(x) are the modified Bessel function of

the first kind and order “n”.

Figure 11 presents the steady state temperatutewrosnd the
mesh utilized. As expected, the temperature profilges along the
z-axis, because the actual problem is axisymmeD&spite this
fact, excellent concordance of the axisymmetric atical solution
and the analytical solution of the approximate ImbDdel problem
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is obtained along the central axis< 0) of the radial fin. Figure 12
shows the numerical solution of the temperaturéridigion. The

maximum relative error obtained when the numergltion is

compared with the 1-D analytical one (Eq. (24)D.891%. It must
be said that the most correct solution (i.e. cldsethe physical
solution) in this case is the axisymmetric numérgzdution. For a
different configuration of the radial fin, such a#en it becomes
smaller (increasing Biot number), the 1-D analytwalution does
not represent anymore a good approximation to thgsipal

problem. These conclusions can be confirmed bydkelts shown
in Fig. 13. The maximum relative error in this cés#&.5%.

Figure 10. Radial fin with hyperbolic profile (Mokheimer, 2002).

+32 00EHI0Z
-1 9REHIOZ
-+1 9FEHI0Z
-+1 95EHI0Z
-1 S4EHIOZ
-+1 9ZEHI02
-+1 S0EHIOZ
-+1 8PEHI0Z
-+1 SFEHI0Z
-+1 B6EHI0Z

+1 Z4EHIOZ (a)

+1 82EHI02

+1 21E-HI02 'A"“Y‘"v‘v

+ 7IEHID2 NN T

+1 7REHI02 MVAVAYAVAVAYAVAVAYAVA“"W‘WAWAWAWAVAWE'
: AYAYLY AAAAAPARAA AR
e N AR
+1 TIEHIOZ

+1 F1EHI02 (b)

+1 FOEHIO2

+1 GEEHI02

Figure 11. (a) Temperature contour in the radial fin; (b) Triangular mesh.

200
temp.ana
T2 T = temp.num
L O s
~
e
o 185 g
®
2
g 7. 116 [RNSSONOIE SNV S RTINS NN S
Q.
£
B - NI S
1116 [RNSSSOURPOOR SNV SIS NN S
165 : :
0,025 0030 0035 0040

r(m)

Figure 12. Temperature distribution along the radial fin.
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Figure 13. (a) Temperature contour in a radial fin which inner and outer
radii are 25 mm and 32.5 mm, respectively; (b) Triangular mesh.

Conclusions

An axisymmetric finite volume formulation, usingsiructured
meshes is presented in this paper. This formulatkas used to
solve some simple, though representative heat feramsoblems.
The axisymmetric finite volume formulation allowsettreatment of
certain three-dimensional problems at low cost higth accuracy.
This formulation also allows for the utilization afeveral two-
dimensional mesh adaptation tools developed inresgarch group
with little effort (Aradjo, et al, 2004) (work undelevelopment).
Furthermore, the formulation can be extended td déeer classes
of problems governed by conservation laws followwith similar
procedures as presented here.

In the near future, this formulation will be usedsblve bioheat
transfer applications such as the study of the eeatpre
distribution in human eye with retinal implants Hfgetinal or
epiretinal). These two kinds of implants are beirsgd in humans
who have retinitis pigmentosa or age-related maalggeneration,
which are some of the leading causes of blindnesise population
(Margalit et al., 2002). Lima et al. (2004) havafpened a two-
dimensional study of the temperature distributionhuman eyes,
both with and without retinal implants.
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