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Turbulent Momentum and Passive 
Scalar Transport in Supersonic 
Channel Flow 
Direct numerical simulations of compressible turbulent channel flow including passive 
scalar transport have been performed at five Mach numbers, M, ranging from 0.3 to 3.5 
and Reynolds numbers, Reτ , ranging from 181 to 1030. The Prandtl and Schmidt numbers 
are 0.7 and 1.0, respectively, in all cases. The passive scalar is added to the flow through 
one channel wall and removed through the other, leading to an S-shaped mean scalar 
profile with non-zero gradient in the channel centre. The paper describes the set of 
compressible flow equations, which is integrated using high-order numerical schemes in 
space and time. Statistical equations are presented for fully developed flow, including 
budgets for the Reynolds stresses, the turbulent scalar fluxes and the scalar variance. 
Results are presented for second order moments and the terms in the mentioned balance 
equations. Outer scalings are found suitable to collapse incompressible and compressible 
data. The reduction in the near-wall pressure-strain and pressure-scalar gradient 
correlations due to compressibility is explained using a Green-function-based analysis of 
the fluctuating pressure field.  
Keywords: Direct numerical simulation, compressible channel flow, passive scalar 
transport, outer scaling, pressure-strain correlation, pressure-scalar gradient correlation 
 
 
 

Introduction 

Supersonic channel flow is a prototypical example of a high-
speed flow which allows for a systematic study of compressibility 
effects in wall-bounded turbulence without other important but 
distinct features such as streamwise development, shocks, and flow 
separation. Coleman et al. (1995) were the first to perform direct 
numerical simulations (DNS) of channel flow between cold 
isothermal walls with Mach numbers up to M = 3. They found that 
Morkovin’s hypothesis, “the flow follows an incompressible 
pattern”, holds for the most part, and that the Van-Driest log-law is 
valid. In a companion paper, Huang et al. (1995) observed that the 
turbulent stresses, ijRρ , scale with the wall shear stress, wτ , and 

semi-local scaling is useful. Lechner et al. (2001), in their study of 
M = 1.5 channel flow, reported that the anisotropy of the Reynolds 
stresses was changed relative to corresponding incompressible 
values, but no explanation was given. Morinishi et al. (2003) 
simulated supersonic channel flow at M = 1.5 with one wall 
isothermal and the other wall adiabatic, finding that the resulting 
differences of the flow between the two halves of the channel are 
significant.1 

The influence of compressibility on passive scalar transport has 
not yet been studied so far in wall-bounded turbulent flows. Kim et 
al. (1989) performed the first direct simulations of passive scalar 
transport in incompressible fully developed turbulent channel flow 
at a Reynolds number Reτ , based on friction velocity, uτ , and 
channel half width, h, of 180. They used two types of boundary 
conditions. In one case, the scalar (temperature) was internally 
generated and isothermal walls of the same temperature served as 
boundary conditions. In the other case, a different temperature was 
imposed at each of the isothermal walls. The Prandtl numbers were 
varied between 0.1 and 2. Recently, Johansson et al. (1999) 
performed a similar DNS of incompressible channel flow, imposing 
a mean scalar (temperature) gradient at a Reynolds number of Reτ  = 
265 and a Prandtl number of 0.7. 
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In which way compressibility affects passive scalar transport is 
important to know, before active scalar transport is investigated, the 
understanding of which is prerequisite to the understanding of 
combustion processes. Based on the above literature survey it 
appears that, although the behaviour of the mean velocity profile is 
well understood in supersonic channel flow, there are open issues 
regarding the behaviour of the turbulent stresses and turbulent scalar 
fluxes. In the case of incompressible channel flow, the fluctuating 
velocity scale is ρτ=τ /u w , while there are two length scales, the 

inner length scale, τν u/ , and the outer length scale, h (the channel 

half width), leading to well-established inner and outer scalings of 
the turbulence. Corresponding scalings apply to the turbulent scalar 
fluxes. The applicability of these scalings to the turbulent 
momentum and scalar fluxes and their transport equations in the 
context of compressible flow will be evaluated. At the same time an 
explanation will be given why the turbulence structure is modified 
due to compressibility. 

Nomenclature 

c = speed of sound, m/s 
cp, cv = specific heats at constant pressure and volume, J/(kg K) 
D = Diffusion coefficient, m2/s 
f i = component of body force in i-direction, kg/(m2 s2) 
h = channel half width, m 
H = total enthalpy, J/kg 
Lx1 = length of computational domain in x1-direction, m 
M = Mach number, dimensionless 
Nx1 = Number of grid points in x1-direction 
p = pressure, Pa 
Pr = Prandtl number, dimensionless 
qi = component of heat flux in i-direction, J/(m3 s) 
R = specific gas constant, J/(kg K) 
Re = Reynolds number, dimensionless 
s = specific entropy, J/(kg K) 
Sc = Schmidt number, dimensionless 
sij = deformation tensor, 1/s 
t = time, s 
T = temperature, K 
ui = component of velocity in i-direction, m/s 
uav = streamwise velocity, averaged over cross-section, m/s 
xi = Cartesian coordinate, m 
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X i
+ = wave component in positive i-direction 

Numerical Method and Computational Details 

In this section, we describe the basic equations for compressible 
flow of an ideal gas including passive scalar transport, how these 
equations are integrated numerically and which initial and boundary 
conditions are used to predict fully developed turbulent channel 
flow.  

Equations of Motion 

Turbulent flow of a compressible ideal gas (air) including 
passive scalar transport is governed by the following set of transport 
equations in Cartesian tensor notation: 

 
,)q()1(uppup jjjjjjt ∂−Φ−γ+∂γ−∂−=∂  (1) 
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where ξρ,,s,u,p i represent pressure, Cartesian velocity 

components, entropy, density and concentration of a passive scalar, 
respectively and it , ∂∂ denote temporal and spatial derivatives. 

 This special set of variables has been chosen, in order to 
compute the relevant modes of compressible turbulence, namely 
‘pressure, entropy and vorticity’ as ‘directly’ as possible. A vorticity 
transport equation has been avoided here, since two of the vorticity 
boundary conditions cannot be formulated exactly. The body force 
f1

δ
i1 in equation (2) will be specified later in such a way that it 

replaces the mean streamwise pressure gradient. In equations (1-3) 
the components of the heat flux vector ,q j  the viscous stress tensor 

,ijτ and the dissipation rate ,Φ read: 

 
,s3/2s2,Tq ijkkijijjj δµ−µ=τ∂λ−=  (5) 

 
   ).uu(2/1s,s jiijijijij ∂+∂=τ=Φ  (6) 

 
The thermal equation of state 
 

,ccR,TRp vp −=ρ=  (7) 

 
and the following laws for dynamic viscosity µ , heat conductivity 

λ  and diffusivity D close the set of equations: 
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The Prandtl number Pr, the Schmidt number Sc and the ratio of 

specific heats γ  are kept at constant values in the temperature and 
concentration ranges considered, namely Pr = 0.7, Sc = 1.0, γ  = cp / 
cv = 1.4.  

Numerical Method and Computational Details 

The equations of motion (1-4) are cast in a characteristic non-
conservative form, following Sesterhenn (2001), which allows to 
formulate wall and free boundary conditions consistently with the 

field equations. A 5th-order compact upwind scheme of Adams and 
Shariff (1996) is used to discretize the hyperbolic (Euler) terms in 
the equations of motion. The molecular transport terms are 
discretized with a compact 6th-order scheme of Lele (1992). The 
solution is advanced in time with a 3rd-order ‘low-storage’ Runge-
Kutta scheme, proposed by Williamson (1980). 

The body force term 1i1f δ  in the momentum equation is 

introduced in order to replace the mean pressure gradient in 
streamwise direction. It is uniform in 3D space and allows to handle 
fully developed turbulent flow using periodic boundary conditions 
for all variables in stream- and spanwise directions. A mean scalar 
gradient is imposed on the flow, using an initial profile of the form 
(Johansson, 1999):  
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At the walls the velocity components satisfy no-slip and 

impermeability boundary conditions. The passive scalar is injected 
at the lower wall ( x2 = 0 ) with vanishing momentum and removed 
through the upper wall. Its boundary conditions, hence, read: 

 
.1)t,x,h2,x(,1)t,x,0,x( 3131 −=ξ=ξ  (10) 

 
For a solid isothermal and stationary wall the pressure and 

entropy boundary conditions have the form: 
 

,)XX()c2(/pp 22t
−+ +−=∂  (11) 
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They follow from Gibbs’ fundamental relation and the 

momentum balance in the wall normal direction, which reads in 
characteristic form:  

 

 ,j2j22 )/2(XX τ∂ρ+= −+  (13) 

 
using ‘waves’ defined by: 

 

)up)c(()cu(X 222
1

22 ∂±∂ρ±= −±  (14) 
 

2/1)/p(c ργ= is the speed of sound. The boundary conditions 

(11) and (12) show explicitely that pressure and entropy evolve in 
time at the wall. A possible way of initializing compressible 
turbulent channel flow, is as follows: A mean streamwise velocity 
profile is specified according to a linear law between the wall and 

10/uxx w22 =ν= τ
+ and a log-law from there to the centreline. 

 The mean temperature corresponds to its wall value and the 
mean density to its bulk-average, see equation (16). Velocity 
fluctuations are given as random fluctuations with zero mean values. 
The level of the rms-fluctuations may be of the order of 5% of the 
bulk-averaged velocity. Temperature, density and entropy 
fluctuations are zero. Pressure fluctuations are proportional to 
velocity fluctuations times the mean density. Since fully-developed 
shear-turbulence is independent of initial conditions, the choice of 
these conditions is not critical. They will be swept out of the flow 
domain during an initial transient stage. Once a stable turbulence 
field has been generated, it can be used as initial condition in the 
simulation with other flow parameters. 
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The numerical algorithm has been previously validated by 
Lechner et al. (2001) whose results for a Mach number M = 1.5 case 
are in excellent agreement with those of Coleman et al. (1995). The 
present paper reports on five direct numerical simulations for 
different Reynolds and Mach numbers. The global Mach and 
Reynolds numbers for fully developed turbulent channel flow are 
defined as 

 

wavmwav /huRe,c/uM µρ==  (15) 
 
The speed of sound and the dynamic viscosity are evaluated at a 

wall temperature which has the constant value Tw = 500 K in all 
cases. The bulk-averaged density and velocity read 

 

  h/dxuu,h/dx 2
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0
m ∫∫ =ρ=ρ  (16) 

 
The overbar denotes Reynolds averaged quantities to be defined 

below. Table 1 summarizes the flow parameters, box sizes and 
numbers of grid points used in the different direct simulations. 
Equidistant grids  are chosen in the (x1, x3)-, i.e. the streamwise and 
spanwise directions of the channel. In the wall-normal x2 – 
direction, points are clustered using tanh-functions (Lechner et al., 
2001). The friction Reynolds number Reτ  = ρ

w uτ  h / � w , with uτ  = 
(τ

w / ρ
w)1/2 , is a result of the computation. Note, that for spatial and 

velocity coordinates the following notations are used alternately, (x1, 
x2, x3) ↔ (x, y, z), (u1, u2, u3) ↔ (u, v, w). 

 

Table 1. Flow and computational parameters. 

       
Case M Re Reτ  Lx1/h Lx2/h Lx3/h 

       
M0.3 0.3 2820 181 9.6 2 9.6 
M0.4 0.36 10121 550 6.4 2 2 
M1.5 1.5 3000 221 4π  2 4π /3 
M3.0 3.0 6000 556 4π  2 4π /3 
M3.5 3.5 11310 1030 6π  2 4π /3 

       
       

Nx1 Nx2 Nx3 � x1+ � x2min+ � x2max+ � x3+ 

       
192 129 160 9.12 1.02 4.21 6.84 
512 192 462 6.75 0.675 3.96 5.65 
192 151 128 14.46 0.84 5.02 7.23 
512 221 256 13.65 0.89 9.38 8.91 
512 301 256 37.89 1.27 13.35 16.85 

       

Statistical Equations for Fully Developed Channel Flow 

In this section we define statistical and fluctuating quantities and 
present the statistically averaged equations of motion for fully 
developed channel flow as well as transport equations for the 
Reynolds stresses and the turbulent scalar fluxes. It is common 
practice to work with Reynolds- and Favre-averaged, i.e. mass-
weighted averaged quantities simultaneously. Velocity components 
and temperature are decomposed in the following way: 

 

,/uu~,uu~uuu iiiiiii ρρ=′′+=′+=  (17) 
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Density, pressure, entropy (and the molecular transport coeffi-

cients) follow Reynolds’ decomposition: 
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The statistical operation, represented by the overbar, is achieved 

by averaging in the streamwise and spanwise directions, i.e. over 
512*256 mesh points (case M3.5) and in time. A typical number of 
statistically independent time samples is 103 for basic quantities, 
like mean velocity, pressure, density, and 104 for correlations like 
the Reynolds stresses. 

Mean Balance Equations 

Considering the above decompositions and the fact that fully 
developed channel flow leads to the following balance equations for 
mean streamwise momentum and scalar  
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In equation (21) the mean body force,1f , replaces the mean 

pressure gradient and is related to the wall shear stress in the 
following way: 
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Integrating equations (21-22) from the wall (x2 = 0) to a position 

in between the wall and the centreline, taking care of the fact that 
the solid wall inhibits all turbulence fluctuations and that 
correlations involving fluctuations of viscosity and diffusivity are 
negligibly small, provides the following balances for the shear 
stresses and scalar fluxes:   
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The ‘+’ indicates normalization with wall units, namely the 

friction velocity, uτ  , the viscosity at the wall, ν w , and the scalar 
fluctuation, ξ τ  , defined via the scalar flux at the wall, χ w , as 

 

.u
xSc w

w2
w ττ ξρ−=

∂
ξ∂µ=χ  (26) 

 
From (24) we conclude that the sum of the viscous and 

Reynolds shear stresses varies linearly in the channel, decreasing 
from its wall value to zero at the centreline. (25) indicates that the 
sum of molecular and turbulent scalar fluxes is constant. Unlike the 
viscous stress, the molecular scalar flux is non-zero at the centreline, 
which leads to considerable production of scalar fluctuations in the 
channel core. The mean balance of the total enthalpy, ρ H = ρ e + p + ρ uiui/2,  takes the following form in fully developed channel flow: 
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The first term on the l.h.s. is non-zero since it contains the mean 

pressure gradient. Obviously,  
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All the other streamwise gradients of mean quantities and 

correlations vanish. Now, integrating equation (27) from the wall to 
the centreline and using symmetry conditions for flow variables and 
correlations, provides the interesting relation 
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which states that the work done by the mean pressure gradient in 
one half of the channel corresponds to the heat that leaves the 
channel through the isothermal wall. In other words, in order to 
achieve supersonic velocities in a channel, the walls have to be 
cooled. Adiabatic walls do not allow for supersonic flow and lead to 
choking.  

Budgets of the Reynolds Stresses, the Scalar Fluxes and the 

Scalar Variance 

In order to analyze effects of compressibility on second-order 
moments of turbulent fluctuations, one has to study their transport 
equations. These equations contain higher-order correlations and 
are, hence, unclosed. It is a real challenge for turbulence modellers 
to develop proper models which relate unknown higher-order 
correlations to known correlations and variables. DNS helps to test 
these models and to improve them. The transport equations for the 
streamwise and spanwise components, 2/R11ρ , 2/R33ρ , and the 

Reynolds shear stress,  12Rρ  read: 
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They state that there is no mean convective transport of the 

Reynolds stresses in fully developed flow. The r.h.s. of eq. (30) 
contains production of the streamwise Reynolds stress by the action 
of the shear stress (first term), turbulent and viscous transport 

(second term), intrinsic compressibility by streamwise turbulent 
mass-flux, 

 

,/u/uu 111 ρ′ρ′−=ρ′ρ−=′′  (33) 
 

energy loss by redistribution (fourth term) and dissipation (last 
term). The spanwise Reynolds stress (eq. (31)) is modified by 
turbulent and viscous transport as well (first term on the r.h.s.), by 
streamwise turbulent mass flux which is, however, weak. It is not 
directly produced, but receives energy from the streamwise 
component by redistribution (third term) and looses energy by 
dissipation (last term). The Reynolds shear stress balance (eq. (32)) 
contains corresponding terms. The most important ones are 
production, redistribution and turbulent transport. Viscous diffusion 
and dissipation nearly balance in the wall layer.  

The derivation of transport equations for the scalar fluxes and 
the scalar variance proceeds similarly to that of the Reynolds 
stresses. Again there is no mean convective transport in fully 
developed channel flow. The equations for the streamwise and wall-
normal turbulent scalar fluxes are: 
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Both fluxes are primarily produced by mean scalar gradients, the 

streamwise scalar flux in addition by the mean velocity gradient. 
Both balances contain turbulent and viscous transport terms, scalar 
pressure-gradient correlations (the analogues of velocity pressure-
gradient terms in the Reynolds stress transport equations) and, 
finally, destruction terms due to viscous and diffusion effects. The 

transport equation for the scalar variance, 2/2ξ ′′ρ , reads: 
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Scalar fluctuations are produced by the mean scalar gradient 

alone. If the mean flow were accelerated or retarded, there would be 
a production term by mean dilatation as well. We further note that 
turbulent transport of scalar fluctuations and viscous diffusion as 
well as dissipation contribute to the dynamics of scalar fluctuations. 
Diffusion and dissipation consist of two terms, respectively, where 
the terms involving correlations between ‘viscosity’ and scalar 
fluctuations are generally small.  

DNS Results 

In this section we investigate effects of compressibility on the 
Reynolds stresses, scalar fluxes and terms in the corresponding 
balance equations. We also provide an explanation for the structural 
changes of correlations involving pressure fluctuations, like the 
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pressure-strain and pressure-scalar-gradient correlations. Wherever 
possible, we use comparisons with DNS data of incompressible 
channel flow for a better understanding of the high-speed physical 
mechanisms. 

Mean Flow Properties 

Compressibility effects in fully developed channel flow 
originate mainly from the large changes in fluid properties, ρ  and 

µ , caused by viscous heating. Figure 1 shows profiles of these 
quantities for four Mach number cases listed in Table 1. The 
increase in mean temperature in the channel core as a result of mean 
and turbulent dissipation, leads to a steep rise in viscosity and 
entails a simular decrease in mean density. Given the fact that the 
mean wall-normal pressure gradient is negligibly small, 
corresponding density and temperature gradients are equal in 
magnitude, but opposite in sign. From the averaged ideal gas law, 
we obtain, neglecting the contribution from the density-temperature 
correlation: 
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Equation (37) also contains the assumption that the wall-normal 

mean pressure gradient resulting from the wall-normal momentum 
balance  
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Figure 1. Variation of mean density (symbols) and mean viscosity (lines), 
both normalized with wall values. 

 
Figure 2 contains profiles of the Van Driest transformed mean 

velocity 
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in a semi-logarithmic plot. This transformation provides a 

reasonable collapse of the various cases in the outer region alone 
and there seems to be no way of finding a single transformation 
which does a good job in the inner as well as the outer layer. 
Neglecting the turbulent fluxes in equations (24) and (25), we get 
for the viscous sublayer: 

 

µ
µ=

µ
µ=ξ− +

+

+

+
w

2

1w

2 xd

ud
,Sc

xd

d
 (40) 

 
and after integration 

 

.uSc 1w
+++ =ξ−ξ  (41) 

 
Equation (40) suggests the following transformed velocity and 

scalar in the viscous sublayer: 
 

.d
Sc

1
xudu v

w
21

u

0 w
v,1

w

1 ++
ξ

ξ

+++ ξ=ξ
µ
µ−==

µ
µ= ∫∫

+

+

+

 (42) 

 
Figure 3 shows both, the Van Driest- and the viscosity-

transformed mean velocities. 
Figures 4 and 5 present profiles of the local Mach number, 

w1 c/uM = , and the mean scalar, normalized by ξ w. From 

equation (41) we conclude that ξ varies linearly in the viscous 
sublayer, when plotted against the variable 

 

.dxx 2

x

0

w
2

2 ++
µ ∫

+

µ
µ=  (43) 

 

In the core region, where wµµ and w2u χ′′ξ ′′ρ both reach a 

plateau, i.e. nearly constant values, we note that  
 

( ) ( )hx1hu1Sc 2w2
w −χ′′ξ ′′ρ+

µ
µ≈ξ ++  (44) 

 
varies linearly with x2. 

The Turbulent Stress Tensor 

At sufficiently large distances from the wall, where the viscous 
stress is small at high Reynolds numbers, the shear stress balance, 
eq. (24), allows to conclude that the quantity w12R τρ is  

 

 
Figure 2. Profiles of the Van Driest-transformed mean velocity, eq. (39). 
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Figure 3. Profiles of the Van Driest- and viscosity-transformed mean 
velocity, eq. (42). 

 

 

Figure 4. Profiles of the local Mach number w/c1uM = . 

 
a linear function of hx2 , independent of Mach and Reynolds 

number. In other words, wτ , is the proper outer scaling parameter 

which collapses compressible and incompressible cases on to a 
universal profile, see Figure 6. Incompressible channel flow data of 
Moser et al. (1999) at 590and,395,180Re =τ , denoted by cases I1, 

I2, and I3, respectively, have been used for comparison. Note that the 
Reτ  values are similar between cases M0.3, M1.5 and I1, and 
between cases M3.0 and I3.  

 

 

Figure 5. Profile of the mean scalar 
ξ

normalized by w
ξ

. □  shows data of 

Johansson et al. (1999). 

 
In Figure 6, cases M0.3 and I1 are practically indistinguishable. 

Given the fact that cases M3.0 and I3 have similar Reynolds 
numbers, τRe , the differences between their  

 

 

Figure 6. Outer scaling of the Reynolds shear stress, 12Rρ . 

 

 

Figure 7. Outer scaling of the turbulent streamwise stress, 11Rρ . 

 
profiles in the wall layer are due to mean property variations. The 
linear behaviour of ( )0.3MR12ρ  starts at 3.0hx2 〉  only, while  

that of ( )3IR12ρ  starts at 1.0hx2 〉  already, because temperature 

and hence viscosity µ  increase with increasing x2, extending the 
importance of the viscous stress to larger distances x2. Another 
observation which is not demonstrated here, is the independence of 

the correlation coefficient of 21uu ′′′′ρ from Mach and Reynolds 

numbers for 3.0hx2 〉 . From this additional fact we are allowed to 

conclude that w11R τρ and w22R τρ , finally all Reynolds 

stresses, tend to a universal dependence on hx2  sufficiently far 

from the wall, see Figure 7.  

The Turbulent Scalar Fluxes and the Scalar Variance 

The molecular scalar flux, being non-zero everywhere in the 
channel, makes χ w not an ideal, but a reasonable outer scale of the 
turbulent scalar flux in wall-normal direction. Figures 8 and 9 
demonstrate that this is true in the range of 6.0hx2 〉  for the 

streamwise scalar flux as well, irrespective of Mach and Reynolds 
numbers.  
There is a striking similarity in the behaviour of the streamwise 

scalar flux, w1u χ′′ξ ′′ρ , and the streamwise Reynolds stress, 21u ′′ρ . 

This is seen by comparing Figures 7 and 9, but also by comparing 
the structure of the transport equations for 1u ′′  and ξ ′′ . Introducing 

mean and fluctuating quantities into the momentum equation (2) for 
u1 and the scalar transport equation (4), we obtain: 
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( ) ( )
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x

p

uu
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2
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 (45) 

 

( ) ( )
term.diff

u
xd

d
u

xxd

~
d

u
Dt

D
2

2
j

j2
2 =′′ξ ′′ρ−′′ξ′′ρ

∂
∂+ξ′′ρ+ξ′′ρ

 (46) 

 

where xu~tDtD 1 ∂∂+∂∂=  denotes the substantial derivative 

based on mean convective transport. The viscous and diffusion 
terms have not been written out, because we intend to discuss the 
large scale turbulent effects.  

 

 

Figure 8. Profiles of the wall-normal scalar flux ξ2uρ ′′′′ , normalized by 

w
χ . 

 
In both equations there are very similar production and turbulent 

transport terms (2nd and 3rd terms on the l.h.s.) and effects by mean 
turbulent transport. The only difference between both equations is 
the fluctuating streamwise pressure gradient. As will be shown later, 
the importance of this term is substantially reduced due to 
compressibility. The same is true for the production terms in the 
wall layer. Hence, the higher the Mach number, the stronger is the 
similarity between  1u ′′  and ξ ′′ . 

 

 

Figure 9. Profiles of the streamwise scalar flux ξ1uρ ′′′′ , normalized by 

w
χ . 

 

 

Figure 10. Profiles of the r.m.s. scalar fluctuations 
2ξ

′′ , normalized by 

w
ξ

= 
ξ
d. 

 
In Figure 10 we present profiles of the r.m.s. scalar fluctuations, 

normalized by wξ . These profiles reveal peaks in the wall layer and 

maxima at the channel centreline which are due to non-zero 
gradients of the mean scalar, cf. Figure 5. Effects similar to those for 
the streamwise Reynolds stress (and the turbulent kinetic energy, 
not shown here) can be observed, namely: an increase in Reynolds 
number intensifies the near-wall peak. A simultaneous increase in 
Mach number lowers it again, so that eventually these effects 
compensate each other.  

Budgets of Second-Order Moments 

Reynolds stresses: Terms in the transport equations for the 

Reynolds stresses, ijRρ , when normalized with w
4

w u νρ τ and 

plotted as functions of +
2x , which is customary for incompressible 

flow, do not show a tendency to collapse incompressible and 
compressible data. Hence, an alternate inner scaling is required. 
This is obtained by considering the kinetic energy production term, 
P11 of the 11Rρ -balance. Away from the viscous layer, the 

Reynolds shear stress scales as ( )hx1R 2w12 −τ=ρ− , while the 

mean shear is ( )221 xuxdu~d κ≅ ∗
τ  (where ρτ=∗

τ wu ), so that 

 

.uxx,
h

1

x

1
P 22

2

2
w ν=














−

κµ
τ= ∗

τ
∗

∗∗  (47) 

 
Equation (47) implies that the Reynolds stress budgets should be 

normalized with µτ2
w and plotted against the semi-local 

coordinate, 
∗
2x .  Figure 11 shows profiles of the terms in the 

11Rρ -balance, normalized accordingly. The dominant terms in the 

near-wall region, namely, production, dissipation and viscous 
diffusion do not change significantly between cases M3.0 and I3. 
However, as shown in Figure 11 (bottom), the pressure-strain 
correlation, 

 

 ),uu(psp2 jiijijij ′∂+′∂′=′′=Π  (48) 

 
changes significantly between cases. Compressible flow, obviously, 
reduces the pressure-strain correlations in a remarkable way. A 
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quantitative explanation of this behaviour is given below, based on 
an analysis of the Poisson equation for the pressure fluctuations. 

 

 

 

 

Figure 11. Budget of the 11Rρ -stress, normalized by �2
w

τ and plotted 

against the semi-local coordinate ∗
2x . Symbols represent the 

incompressible case I3 and lines the compressible case M3.0. Top: 
Production, dissipation and diffusion. Bottom: Pressure-strain, turbulent 
diffusion and mass flux variation. 

 
In Figure 12 we demonstrate for 3311 andΠΠ that huavwτ  

are outer scaling parameters, which collapse compressible onto 
incompressible pressure-strain correlation data. 

 

 
Figure 12. Pressure-strain correlation: Streamwise 11-component (top), 
Spanwise 33-component (bottom). 

 

 
Figure 12. (Continued). 

 
Scalar fluxes and scalar variance: A suitable normalization of 

the streamwise and spanwise scalar flux balances must be found. 
The streamwise scalar flux balance e.g. has two production terms, 
see eq. (34). They scale outside the viscous layer as: 
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As long as the Schmidt number is 1 or O(1), the streamwise 

scalar flux budget has to be normalized with ( )ττξµτ u2
w . This 

scaling again underlines the similarity between u1- and ξ -
fluctuations. The production term for the wall-normal scalar flux in 
eq. (35) scales as shown in eq. (49). Finally, we obtain for the scalar 
variance production: 
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Obviously, the scaling parameters differ from those for the wall-

normal scalar flux only by the factor ττξ u . 

Upper bounds of production rates: It is interesting to compute 
the high Reynolds number limits of the peak production rates of the 
streamwise Reynolds stress (respectively the turbulent kinetic 
energy) and the scalar flux and to compare them with their 
incompressible counterparts. In the limit of high Reynolds number, 

τ
+ = Reh , the shear stress balance (24) takes the form: 
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The spatial extremum of P11 is obtained from 
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which becomes, using (52): 
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For channel flow with wall-cooling, the term in the bracket again 
adds to a quantitiy larger than 1, since the derivative of ,µ is 

positive and the second derivative of +
1u is negative. Hence,  
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The corresponding relations for incompressible channel flow are: 
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We therefore conclude that in compressible (isothermal) channel 

flow between cooled walls, the Reynolds shear stress, 12Rρ , and 

the peak production of , 11Rρ , are reduced with respect to 

incompressible isothermal flow as a result of viscous heating. The 
upper bound ( ∞→τRe ) for the peak production rate of 11Rρ  is: 
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The equal sign is valid for incompressible flow. In a similar 

way, we obtain the upper bound for the production rate of the scalar 
variance from: 

 

   ,0
xd

du

xd

d

2w

2

2

=












 ξ
χ

′′ξ′′ρ
− +

+

+  (58) 

 

using the approximation, .
~

ξ≅ξ  Substituting eq. (25) into condition 

(58), we get: 
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Obviously, the molecular scalar flux is increased due to viscous 

heating in compressible flow, as compared to incompressible flow. 
Since the term in the brackets is greater than one, we have 
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while in incompressible isothermal flow 
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The upper bound ( ∞→τRe ) for the peak production rate of the 

scalar variance therefore reads: 
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Again, the equal sign holds for incompressible isothermal flow. 

Viscous heating in compressible flow consequently reduces the 
production rate of the scalar variance in a similar way as it reduces 
the streamwise Reynolds stress production. 

Figures 13-15 show budgets of 21 u,u ′′ξ ′′ρ′′ξ ′′ρ and 22ξ ′′ρ  as 

functions of hx2  for case M3.0. It is obvious that production and 

dissipation play an important role in the budgets of 1u ′′ξ ′′ρ and 

22ξ ′′ρ . Dissipation is less important in the wall-normal scalar flux 

budget. Instead, the pressure-scalar gradient correlation balances the 
production term there. It also plays a remarkable role in the 
streamwise scalar flux. As we will see, it is strongly damped in 
compressible flow, very much like the pressure-strain correlation or 
velocity-pressure-gradient correlation. Figures 16-18 demonstrate 
the effect of Mach number on the production rates of 

21 u,u ′′ξ ′′ρ′′ξ ′′ρ and 22ξ ′′ρ . There is a clear decrease of the peak 

values as M increases and an increase with Reτ .  
Finally, we demonstrate the outer scaling of the scalar-pressure 

gradient correlations 21 xp,xp ∂∂ξ ′′∂∂ξ ′′  in Figures 19, 20, using 

hu wav χ  for normalization.  

 

 

Figure 13. 1u
ξρ ′′′′ -budget, normalized by  hw

χ
avu . Case M3.0. 

 

 

Figure 14. 2u
ξρ ′′′′ -budget, normalized by  hw

χ
avu . Case M3.0. 
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Figure 15. Scalar variance budget, normalized by hw
χ

w
ξ

. Case M3.0. 

 

 

Figure 16. Production of 1u
ξρ ′′′′ , normalized by  hw

χ
avu . Case M3.0. 

 

 

Figure 17. Production of 2u
ξρ ′′′′ , normalized by  hw

χ
avu . Case M3.0. 

Correlations Involving Pressure Fluctuations 

A quantitative explanation for the reduction of pressure-strain 
correlations and scalar pressure-gradient correlations due to 
compressibility starts from an equation for the pressure fluctuations. 
It is derived from the momentum equation, by taking its divergence 
and incorporating mass conservation. Splitting flow variables into 
mean and fluctuating variables, we get the following relation (see 
Foysi et al. (2004)), valid for fully developed channel flow: 

 

 

Figure 18. Production of 22ξρ ′′ , normalized by hw
χ

w
ξ

. 
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 (63) 

 
Note that the operator ijjijtjtttt u~u~u~2D ∂+∂+∂= is Galilean 

invariant. In incompressible isothermal flow, the first term on the 
r.h.s. of eq. (63), labelled A1 (nonlinear fluctuation), and the second, 
A2 (mean shear), survive. In compressible flow, there are additional 
terms, A3 (viscous stress, third term), B1 (density gradient), B2 
(density second-gradient), and the last three terms involving density 
fluctuations, C1, C2 and C3. From the DNS data base we  conclude 
that all terms involving density fluctuations can be neglected in the 
above equation. This allows us to interpret eq. (63) as a Poisson 
equation for the pressure fluctuation. 
A Green’s-function based analysis of the Poisson equation for p′  
will now be performed. In incompressible flow the exact wall 

boundary condition for p′  is 2
22

2
2 xuxp ∂′∂µ=∂′∂ . In 

compressible channel flow the dilatation fluctuation is small and, 
hence, the wall boundary condition is given by 

2
22

2
w2 xuxp ∂′∂µ≅∂′∂ . Let us denote the r.h.s. of eq. (63) by 

f ′ρ  and Fourier-transform the whole equation in the homo-geneous 

−31 x,x directions, e.g. ( ) ( )321321 k,x,kp̂x,x,xp →′ . Then, the 

transformed Poisson equation, after normalizing length scales with 
the channel half width, becomes, 
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∂
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∂
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 (64) 

 

If we replace f̂ρ  in this equation by the point source, ( )22 xx ′−δ , 

then the Green function, ( )22 x;x,kĜ ′  with 2
3

2
1 kkk += is the 

solution of eq. (64). ( )22 x;x,kĜ ′   can be derived for the homo-

geneous boundary condition, ( ) ,0xp̂ w2 =∂∂  using standard 

methods and it turns out that it is as given by eq. (7) of Kim (1989): 
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The solution of eq. (64) including the non-homogeneous boundary 
condition is: 
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with B̂  given by 
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The inverse Fourier transform of (66) provides the pressure fluctu-
ation in physical space, 
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where the convolution fG ′∗ is the inverse Fourier transform of 

f̂Ĝ . From eq. (68) all correlations involving pressure fluctuations 

can be constructed. The pressure-strain correlation, e.g., is given by  
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and the pressure-scalar-gradient correlation reads 
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The upper parts of Figures 21 and 22 show a comparison of the 
analytical solutions, eqs.(69) and (70), and the DNS data for cases 
M0.3 and M1.5. On the lower parts of these figures we use the 
various source terms in the pressure Poisson equation and 
investigate their contributions to the convolution terms in (69, 70). 
The proof that the changes in the correlations are mainly due to the 
variation in the mean density is given by replacing ρ  by wρ  and 

taking the DNS velocity field of case M1.5 to compute the r.h.s. of 
equations (69) and (70). The fact that the results (squares in the 
figures) compare well with the quasi-incompressible case (triangles) 

in the region 30x2 〉
+ , confirms the hypothesis that the variable-

density extension of the Poisson equation is sufficient for obtaining 
the pressure-strain and pressure-scalar-gradient term. 

The main result of the Green function analysis, hence, is to 
underline the non-local effect of ρ  on correlations involving 
pressure fluctuations and to explain the observed reduction of these 
correlations compared to their incompressible counterparts. The 
fluid in the interior of a supersonic channel is hotter than that at the 
cooled isothermal walls so that ( )2x′ρ  is smaller than the wall 

value and, according to equations (69, 70) are the correlations 
smaller than the corresponding incompressible ones.  

 

 

 
Figure 21. Comparison between DNS data and equation (69) for the 
pressure-strain correlation (top). In the figure below, symbols illustrate 

the effect of mean density on 11
Π

. Contributions of different source 

terms, ,fρ ′  to equation (69) are shown by lines for case M1.5. 

 

 

 
Figure 22. Comparison between DNS data and equation (70) for the 
pressure-scalar-gradient correlation (top). In the figure below, symbols 

illustrate the effect of mean density on 
ξ
1

Π
. Contributions of different 

source terms, ,fρ ′  to equation (70) are shown by lines for case M1.5. 
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Conclusions 

Direct numerical simulations of compressible turbulent channel 
flow including passive scalar transport have been performed in order 
to investigate in which way compressibility affects the mean flow 
quantities and the turbulence structure in wall-bounded flows. The 
following findings are reported: 

- Supersonic, turbulent channel flow exists only when the heat 
generated by dissipation within the flow field is removed 
through the walls. This needs wall cooling and entails strong 
near-wall mean temperature, viscosity and density gradients. 

- There is no similarity transformation which collapses velocity 
profiles for various Mach and Reynolds numbers onto one 
profile in the whole domain. It is observed that viscosity-
transformed mean velocities work well in the near-wall region 
and density-transformed ‘Van Driest’ velocities are suited for 
the log layer. 

- All the Reynolds stress components scale with the wall shear 
stress, τ w, in the channel core region, independent of Mach 
and Reynolds number. In the wall layer, semi-local coordinate 
scaling at least provides a proper collapse of the positions 
where most of the turbulence is produced, but not of the 
amplitudes themselves.  

- Other than the mean streamwise velocity, the mean scalar 
(introduced on one side and removed from the other) has a 
non-zero gradient on the channel centreline, which leads to a 
non-zero mean molecular flux and destroys the analogy 
between the Reynolds shear stress and the wall-normal scalar 
flux. The mean scalar gradient in turn produces a peak in the 
scalar fluctuations on the channel centreline. 

- The streamwise scalar flux on the other hand scales properly 
in the core region of the channel with the molecular scalar flux 
at the wall, χ w. 

- The ratio of the wall shear stress squared and the local mean 

viscosity ( µτ2
w ) provides a proper scaling for all terms in 

the Reynolds stress budgets, except the pressure-strain 
correlation terms. Similarly, the ratio, huavwχ , is unsuited 

to properly collapse all scalar pressure-gradient correlations. 
- The reduction in pressure fluctuations observed in the wall 

layer of compressible turbulent channel flow that is 
responsible for the dramatic reduction of pressure-strain and 
scalar pressure-gradient correlations could be related to the 

variation of the mean density normal to the wall. This is 
demonstrated by a Green’s function approach of the Poisson 
equation for the pressure fluctuations. These findings should 
have an impact on the modeling of correlations involving 
pressure fluctuations. 
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