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Turbulent Momentum and Passive
Scalar Transport in Supersonic
Channel Flow

Direct numerical simulations of compressible turbulent channel flow including passive
scalar transport have been performed at five Mach numbers, M, ranging from 0.3 to 3.5
and Reynolds numbers, Rer, ranging from 181 to 1030. The Prandtl and Schmidt numbers
are 0.7 and 1.0, respectively, in all cases. The passive scalar is added to the flow through
one channel wall and removed through the other, leading to an Sshaped mean scalar
profile with non-zero gradient in the channel centre. The paper describes the set of
compressible flow equations, which is integrated using high-order numerical schemes in
space and time. Satistical equations are presented for fully developed flow, including
budgets for the Reynolds stresses, the turbulent scalar fluxes and the scalar variance.
Results are presented for second order moments and the terms in the mentioned balance
equations. Outer scalings are found suitable to collapse incompressible and compressible
data. The reduction in the near-wall pressure-strain and pressure-scalar gradient
correlations due to compressibility is explained using a Green-function-based analysis of
the fluctuating pressure field.
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In which way compressibility affects passive scatansport is
important to know, before active scalar transpwiibivestigated, the
understanding of which is prerequisite to the usi@eding of
combustion processes. Based on the above literaureey it

Introduction

Supersonic channel flow is a prototypical exampieacigh-

speed flow which allows for a systematic study ofnpressibility
effects in wall-bounded turbulence without otherpartant but
distinct features such as streamwise developmkotks, and flow

appears that, although the behaviour of the mebotite profile is
well understood in supersonic channel flow, them @en issues
regarding the behaviour of the turbulent stresgdstarbulent scalar

separation. Colemaet al. (1995) were the first to perform direct fluxes. In the case of incompressible channel fltve, fluctuating

numerical simulations (DNS) of channel flow betweeold
isothermal walls with Mach numbers up to M = 3. fieund that
Morkovin’s hypothesis, “the flow follows an incongssible
pattern”, holds for the most part, and that the \zaiest log-law is
valid. In a companion paper, Huaegal. (1995) observed that the

turbulent stressesp Rj; , scale with the wall shear stress, , and

semi-local scaling is useful. Lechretral. (2001), in their study of
M = 1.5 channel flow, reported that the anisotrgpyhe Reynolds
stresses was changed relative to correspondingmimassible
values, but no explanation was given. Morinighial. (2003)
simulated supersonic channel flow at M 1.5 withe owall
isothermal and the other wall adiabatic, findingttithe resulting
differences of the flow between the two halvesta thannel are
significant.

The influence of compressibility on passive scéansport has
not yet been studied so far in wall-bounded tunbiuflows. Kim et
al. (1989) performed the first direct simulations ofgige scalar
transport in incompressible fully developed turibptilehannel flow
at a Reynolds number Rebased on friction velocity, .uand
channel half width, h, of 180. They used two typésboundary
conditions. In one case, the scalar (temperatur@$ wternally
generated and isothermal walls of the same temperaerved as
boundary conditions. In the other case, a diffetentperature was
imposed at each of the isothermal walls. The Ptandhbers were
varied between 0.1 and 2. Recently, Johansgoral. (1999)
performed a similar DNS of incompressible chant@lf imposing
a mean scalar (temperature) gradient at a Reymolaiber of Re=
265 and a Prandtl number of 0.7.
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velocity scale isu, =,ft,, /p , While there are two length scales, the

inner length scaley /u;, and the outer length scale, h (the channel

half width), leading to well-established inner amater scalings of
the turbulence. Corresponding scalings apply tatuhieulent scalar
fluxes. The applicability of these scalings to tlerbulent
momentum and scalar fluxes and their transport tapsin the
context of compressible flow will be evaluated.thé same time an
explanation will be given why the turbulence stunetis modified
due to compressibility.

Nomenclature

¢ = speed of sound, m/s

Cy» G, = specific heats at constant pressure and voliftieg K)
D = Diffusion coefficient, /s

f,= component of body force in i-direction, kgi(s)

h = channel half width, m

H = total enthalpy, J/kg

L1 = length of computational domain ig-girection, m
M = Mach number, dimensionless

Ny1 = Number of grid points inpdirection

p = pressure, Pa

Pr = Prandtl number, dimensionless

g; = component of heat flux in i-direction, JAs)

R = specific gas constant, J/(kg K)

Re = Reynolds number, dimensionless

s = specific entropy, J/(kg K)

Sc = Schmidt number, dimensionless

s; = deformation tensor, 1/s

t=time, s

T = temperature, K

u; = component of velocity in i-direction, m/s

U, = Streamwise velocity, averaged over cross-sectigs
x; = Cartesian coordinate, m
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X;* = wave component in positive i-direction field equations. A 8-order compact upwind scheme of Adams and
Shariff (1996) is used to discretize the hyperbéfaler) terms in
Numerical Method and Computational Details the equations of motion. The molecular transpommse are

discretized with a compact"érder scheme of Lele (1992). The
In this section, we describe the basic equationsdmpressible solution is advanced in time with &-®rder ‘low-storage’ Runge-
flow of an ideal gas including passive scalar tpams how these Kutta scheme, proposed by Williamson (1980).
equations are integrated numerically and whichahénd boundary The body force termf;3;; in the momentum equation is
conditions are used to predict fully developed wlght channel ; +.0quced in order to replace the mean pressusgignt in

flow. streamwise direction. It is uniform in 3D space afidws to handle
fully developed turbulent flow using periodic boang conditions
Equations of Motion for all variables in stream- and spanwise directioh mean scalar

Turbulent flow of a compressible ideal gas (airglimling ?jsﬂfnnstslgr:nl%%z%? on the flow, using an initiesfe of the form

passive scalar transport is governed by the foligvget of transport
equations in Cartesian tensor notation:

_ Yo+X2 Yo+l
& (X1, X2, X3, 0) = bglo{ }/ bglo{ }
9ip=-u;0;p-ypOju; +(y-D(®-9q), ® Yo%z Yo-l ©

yo =1.007.

4:—444—_14—...—f. 2
Ol =7U; 03U =P (0ip=0;T; ~h.80), @ At the walls the velocity components satisfy ng-sknd
impermeability boundary conditions. The passivdascia injected
at the lower wall &, = 0) with vanishing momentum and removed
through the upper wall. Its boundary conditions)des read:

3,5=-u; 95+ (R/p)(®-0,0]), 3)

0:&=-u0:E+p19,(pD0 %), 4
£=-U;0,;E+p"0;(pDO;E) @) E(x0xa ) =1 E(x.2h xo 1) = -1 (10)

where  p,u;,s,p.§ represent  pressure,  Cartesian - velocity For a solid isothermal and stationary wall the gues and
components, entropy, density and concentration pdissive scalar, entropy boundary conditions have the form:
respectively ando,,0; denote temporal and spatial derivatives.

This special set of variables has been chosemrier to a,p = - pl(2) (X3 +X3), (11)
compute the relevant modes of compressible turbalenamely
‘pressure, entropy and vorticity’ as ‘directly’ pessible. A vorticity

transport equation has been avoided here, sincettee vorticity 0;s=R /() (X3 +X3). (12)
boundary conditions cannot be formulated exactlye Body force
fidi1 in equation (2) will be specified later in suchway that it They follow from Gibbs’ fundamental relation and eth

replaces the mean streamwise pressure gradiertjuations (1-3) momentum balance in the wall normal direction, Wwhieads in
the components of the heat flux vectyr the viscous stress tensor characteristic form:

Tj, and the dissipation rat®, read:

X3 = X3+ (2/p)d1y;, (13)
Gj= AT, Tj= 2HS; ~ 2/3Usucdy, ®) using ‘waves’ defined by:
PIhS VRO © X5 = (up £.0)((pO) M0z £ 030) (14
The thermal equation of state 12

c=(yp/p) is the speed of sound. The boundary conditions
p=pRT, R=c,-¢, (7)  (11) and (12) show explicitely that pressure anttogy evolve in
time at the wall. A possible way of initializing mpressible

and the following laws for dynamic viscosity, heat conductivity turbulent channel flow, is as follows: A mean stredse velocity
A and diffusivityD close the set of equations: profile is specified according to a linear law beem the wall and

X5 =X, U /v, =10 and a log-law from there to the centreline.
W ke = (T/Te))", A =uCp/Pf, D=u/pS, n=07. (8) The mean temperature corresponds to its wall vaha the

mean density to its bulk-average, see equation. (Y@locity
The Prandtl numbePr, the Schmidt numbegc and the ratio of fluctuations are given as random fluctuations wiho mean values.

pn . _ i 0,
specific heaty are kept at constant values in the temperature ar;ré1e level of the rms-fluctuations may be of theeordf 5% of the

concentration ranges considered, nanfely 0.7, Sc= 1.0,y = ¢,/ bqu-avgraged velocity. ~ Temperature, . density a_ndtropy
c,= 1.4 fluctuations are zero. Pressure fluctuations arepgmtional to

velocity fluctuations times the mean density. Sifdl/-developed

shear-turbulence is independent of initial condsiothe choice of

Numerical Method and Computational Details these conditions is not critical. They will be swept of the flow

The equations of motion (1-4) are cast in a charistic non- QOmain during an initial tra_msient stage. Onct_aa_ﬂ_alet_t_urbglence

conservative form, following Sesterhenn (2001), ckhallows to f'.eld ha_s begn generated, it can be used as iciiadition in the
formulate wall and free boundary conditions comsiy with the ~Simulation with other flow parameters.

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright O 2006 by ABCM April-June 2006, Vol. XXVIII, No. 2 /175



The numerical algorithm has been previously vatidaby
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(. p.s) =0, .5 +(p.p.S)' (19)

Lechneret al. (2001) whose results for a Mach number M = 1.®cas

are in excellent agreement with those of Colemial. (1995). The
present paper reports on five direct numerical &trans for
different Reynolds and Mach numbers. The global Mand
Reynolds numbers for fully developed turbulent cte@rflow are
defined as
M =Uuay /Cy Re=pmUayh/Hy (15)

The speed of sound and the dynamic viscosity aakiated at a
wall temperature which has the constant valye500 K in all
cases. The bulk-averaged density and velocity read

1 1
o = I Bdx, /h, Uy = I Tydx, /h (16)
0 0

The overbar denotes Reynolds averaged quantities tiefined
below. Table 1 summarizes the flow parameters, biaes and
numbers of grid points used in the different dirsgnhulations.
Equidistant grids are chosen in txg X3)-, i.e. the streamwise and
spanwise directions of the channel. In the wallmedr x, —
direction, points are clustered using tanh-fundifdbechneret al.,
2001). The friction Reynolds numbBe, = p,, u, h/ u,, , with u, =
(zw ! pw)*? , is a result of the computation. Note, that fortigand
velocity coordinates the following notations aredislternately(x,,
X2, X3)<—>(X, Ys Z), (ull Uz, U3)<—>(U, \A W)

Table 1. Flow and computational parameters.

Case M Re Re; Lx/h Lx/h Lxa/h
MO0.3 0.3 2820 181 9.6 2 9.6
MO0.4 0.36 10121 550 6.4 2 2
M1.5 1.5 3000 221 b 2 /3
M3.0 3.0 6000 556 @ 2 /3
M3.5 35 11310 1030 6 2 /3
Nx1 Nx2 Nx3 AXqy+ AXomin+ AXomax+ AXz+
192 129 160 9.12 1.02 4.21 6.84
512 192 462 6.75 0.675 3.96 5.65
192 151 128 14.46 0.84 5.02 7.23
512 221 256 13.65 0.89 9.38 8.91
512 301 256 37.89 1.27 13.35 16.85

Statistical Equationsfor Fully Developed Channel Flow

In this section we define statistical and fluctngtguantities and
present the statistically averaged equations ofiamofor fully
developed channel flow as well as transport eqostifor the
Reynolds stresses and the turbulent scalar flukes common
practice to work with Reynolds- and Favre-averagesl, mass-
weighted averaged quantities simultaneously. Velobmponents
and temperature are decomposed in the following way
17

U =T+ U =0t =pu/p,

T=pT/p. (18)

Density, pressure, entropy (and the molecular pamscoeffi-
cients) follow Reynolds’ decomposition:
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The statistical operation, represented by the @reib achieved
by averaging in the streamwise and spanwise dirextii.e. over
512*256 mesh points (case M3.5) and in time. Adgbhumber of
statistically independent time samples is 16r basic quantities,
like mean velocity, pressure, density, and i@ correlations like
the Reynolds stresses.

Mean Balance Equations

Considering the above decompositions and the faatt fully
developed channel flow leads to the following bataequations for
mean streamwise momentum and scalar

-~ o~ -~ o~ 0 — 0 -~
Uy = U (X5), Uy=u3=0, —(.)=—1(.)=0, 20
1= U (Xp), Up=Ug dxl() 6x3() (20)

a [ —

0=——I(t, —pujus |+ fq, 21
ax2(12 912) 1 (21)
0 [ 0§ —(—

= - u . 22
6x2[Scax2 P 2) (22)

In equation (21) the mean body forcf_g,, replaces the mean

pressure gradient and is related to the wall stst@ss in the
following way:

(23)

Integrating equations (21-22) from the w@all = 0) to a position
in between the wall and the centreline, taking aHréhe fact that
the solid wall inhibits all turbulence fluctuationand that
correlations involving fluctuations of viscosity criffusivity are
negligibly small, provides the following balancesr fthe shear
stresses and scalar fluxes:

B dup puiu 1-%2 (24)

Hw dx3 Tw h

_1 W dE pEy =1 (25)
ScHy dx3 Xw

The ‘+' indicates normalization with wall units, mealy the
friction velocity, u, , the viscosity at the wall;, , and the scalar
fluctuation,¢,, defined via the scalar flux at the wall,, as

_ 08

= 26
Scoxa|, (26)

Xw =Py U &y -

From (24) we conclude that the sum of the viscond a
Reynolds shear stresses varies linearly in the reladecreasing
from its wall value to zero at the centreline. (2&ficates that the
sum of molecular and turbulent scalar fluxes isstamt. Unlike the
viscous stress, the molecular scalar flux is non-aéthe centreline,
which leads to considerable production of scalacttlations in the
channel core. The mean balance of the total enthaltb= pe+ p +
puu/2, takes the following form in fully developed chahfiew:

ABCM



Turbulent Momentum and Passive Scalar Transportin ...

0 0
2 puH + ——puyH = ——
alpl 6p2 3

d (Ui Tip = az)- (27)
X2

The first term on the |.h.s. is non-zero sinceoititains the mean
pressure gradient. Obviously,

0
—puH (28)

_ul
0%y

P
0%y
All the other streamwise gradients of mean quastitand
correlations vanish. Now, integrating equation (28jn the wall to

the centreline and using symmetry conditions fowflvariables and
correlations, provides the interesting relation

h oD
Ow :J.O ul_p dXp = =Ty Uay

0xq
which states that the work done by the mean presgradient in
one half of the channel corresponds to the hedt |daves the
channel through the isothermal wall. In other woriths order to
achieve supersonic velocities in a channel, thdswzdve to be
cooled. Adiabatic walls do not allow for supersofhaev and lead to
choking.

(29)

Budgets of the Reynolds Stresses, the Scalar Fluxes and the
Scalar Variance

In order to analyze effects of compressibility atand-order
moments of turbulent fluctuations, one has to sttidyr transport
equations. These equations contain higher-ordereledions and
are, hence, unclosed. It is a real challenge fidrutence modellers
to develop proper models which relate unknown higinder
correlations to known correlations and variableslSDhelps to test
these models and to improve them. The transporatems for the
streamwise and spanwise componefiR,,/2, pR33/2, and the

Reynolds shear strespR;, read:

— 0. dul
0=-puuy—=
dx,

+u i d_12
dx,

| P 12 i |
dX2
%),
0Xyq

d > —) —
0=- u3“u5 /2 — Uty | + UG
dxz(p 3 Uz 3132 3

_ 30
T (30)

,0u;
Hax.
j

0%,

dta,
dX2

(1)

0=-puy"— (pu"zzu{ +upp -

‘0 dtyo _ T du, _
dx, 6x2 dx,
£ 92 _

00Xy

+ p’(%
0Xo

They state that there is no mean convective trahsgfothe

Reynolds stresses in fully developed flow. Thest.lof eq. (30)

contains production of the streamwise Reynoldsstby the action

of the shear stress (first term), turbulent andcais transport

rr r r
Uit = Ulezj

9p
0Xyq
I

(32)

oup

I

i 0X;
j
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(second term),
mass-flux,

intrinsic compressibility by streas®avturbulent

up=-pu/p=-pu/p, (33)
energy loss by redistribution (fourth term) andsgbation (last
term). The spanwise Reynolds stress (eq. (31)) aslified by
turbulent and viscous transport as well (first tesmthe r.h.s.), by
streamwise turbulent mass flux which is, howevegakv It is not
directly produced, but receives energy from theeastiwise
component by redistribution (third term) and loossergy by
dissipation (last term). The Reynolds shear stoedsnce (eq. (32))
contains corresponding terms. The most importanésomre
production, redistribution and turbulent transpdfiscous diffusion
and dissipation nearly balance in the wall layer.

The derivation of transport equations for the scéllaxes and
the scalar variance proceeds similarly to that e Reynolds
stresses. Again there is no mean convective transpofully
developed channel flow. The equations for the sir@iae and wall-
normal turbulent scalar fluxes are:

—— df  —— du d ——
0=-puju} —E—pi Uy —L — —pUjUSE"
dx 2 dX2 dx 2
d 0¢& 0 0{" U 0€ ouy 34
" "_ " p ' ul
| U+ 8T -1 £ =1
dxz[Sc Yax, £ 12) Ed X, Dox; Scdx ox;’
0=—pu ,.2 dE i ,,22.,+i —u" 0§ ‘T,
dx2 dxz dx, | Sc 6x2
(35)
. op 08" p 0% dup
L L L
0Xo Ox;  Scox;j 0x;

Both fluxes are primarily produced by mean scatadignts, the
streamwise scalar flux in addition by the mean eigjogradient.
Both balances contain turbulent and viscous tramgpoms, scalar
pressure-gradient correlations (the analogues lafcirg pressure-
gradient terms in the Reynolds stress transporatémns) and,
finally, destruction terms due to viscous and diffun effects. The

transport equation for the scalar varianpé’:2 /2 , reads:

o € d ——3
—-—0pu 12
“PE U dx dxzp 2t
- - - _ (36)
WoEI2 W dE | WOE o _wor or
dxp| Sc 9x,  Sc dxp | Scoxp dx;  Scox; 9x;

Scalar fluctuations are produced by the mean saatadient
alone. If the mean flow were accelerated or retirtteere would be
a production term by mean dilatation as well. Wehfer note that
turbulent transport of scalar fluctuations and @i diffusion as
well as dissipation contribute to the dynamicsaaflar fluctuations.
Diffusion and dissipation consist of two terms,pedively, where
the terms involving correlations between ‘viscdsignd scalar
fluctuations are generally small.

DNS Results

In this section we investigate effects of comptaEgr on the
Reynolds stresses, scalar fluxes and terms in thneesponding
balance equations. We also provide an explanatiothe structural
changes of correlations involving pressure fludars, like the
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pressure-strain and pressure-scalar-gradient atimes. Wherever
possible, we use comparisons with DNS data of ingessible
channel flow for a better understanding of the Fsgked physical
mechanisms.

Mean Flow Properties

Compressibility effects in fully developed channébw
originate mainly from the large changes in fluiperties,p and
|, caused by viscous heating. Figure 1 shows psofilethese
quantities for four Mach number cases listed in |&ab. The
increase in mean temperature in the channel coagesult of mean
and turbulent dissipation, leads to a steep risevisigosity and
entails a simular decrease in mean density. Gikenfdct that the
mean wall-normal pressure gradient is negligibly alm
corresponding density and temperature gradients eapgal in
magnitude, but opposite in sign. From the averddedl gas law,
we obtain, neglecting the contribution from the sigrtemperature
correlation:

- id_T Déd_p (37)
Tdx, pdxs
Equation (37) also contains the assumption thatvddenormal
mean pressure gradient resulting from the wall-brmomentum
balance

0 (— 2 =
0=——(p—pu22—T22)

i (38)

is small. In (38),To, = 4/3pdu, /dxs,.

2t —— T
. 18}
< 8 +, ——=M03 A, ——— M3.0
X 1.6 ’
= ®,------ M1.5 0O, —— M35
1.4
12} o--mooomTmmTm Tl
1 3;4—741114'4#4'41‘1'4?'+"+"+“+"+"+"I'1"#'4;'4"1"4;'4"?1"
5 p
Q 4
E 08% 0000000000000 000000000 0 0 0
0.6
0.4 Attt A dot bt A ot S i
0 0.2 0.4 0.6 0.8 1
l‘g/h

Figure 1. Variation of mean density (symbols) and mean viscosity (lines),
both normalized with wall values.

Figure 2 contains profiles of the Van Driest tramsfed mean
velocity

(39)

_ [P _
UIVD :J.o vp/pw du,

in a semi-logarithmic plot. This transformation yides a
reasonable collapse of the various cases in ther oagion alone
and there seems to be no way of finding a singlasformation
which does a good job in the inner as well as th&erolayer.
Neglecting the turbulent fluxes in equations (24) §25), we get
for the viscous sublayer:
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—+

T+
S _Mwge, M _Mw (40)
dx; H dx; M
and after integration

&y — & =Scy . (41)
Equation (40) suggests the following transformetbaity and
scalar in the viscous sublayer:

[T [T
[ :J’ 1Ldﬁl+=x§=-ij.,+LdE+:E\7- (42)
0 Hw Scd g, Hw
Figure 3 shows both, the Van Driest- and the visgos
transformed mean velocities.
Figures 4 and 5 present profiles of the local Macimber,

M=u;/c, , and the mean scalar, normalized By. From

equation (41) we conclude thaf varies linearly in the viscous
sublayer, when plotted against the variable

Hw gy | (43)

X2
+
X2 :I —
H 0

In the core region, wherg/y,, and pg u2/)(W both reach a
plateau, i.e. nearly constant values, we note that

£+ :sa%w@pz"ua/xw)w(l—xZ/h) (44)

varies linearly with x

The Turbulent Stress Tensor

At sufficiently large distances from the wall, whahe viscous
stress is small at high Reynolds numbers, the siteass balance,
eq. (24), allows to conclude that the quanfitR,,/1,, is

25
...... log(;L';)/O.éll + 5.2
20 _._._no03
______ M1.5
151 ___ wmso
.8 — M35
=10t
5 L
ot ' : '
1 10 100 1000
xy

Figure 2. Profiles of the Van Driest-transformed mean velocity, eq. (39).
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O, ——— M3.0
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10

Figure 3. Profiles of the Van Driest- and viscosity-transformed mean
velocity, eq. (42).
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151

Figure 4. Profiles of the local Mach number M = Uy/cy, -
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Figure 6. Outer scaling of the Reynolds shear stress, pRyo .

—_

", n
Uiy [T

O = N W h o o® N ®O©O

Figure 7. Outer scaling of the turbulent streamwise stress, pRq7 .

a linear function ofx,/h, independent of Mach and Reynolds

number. In other wordst,, , is the proper outer scaling paramete

which collapses compressible and incompressiblescas to a
universal profile, see Figure 6. Incompressiblencieh flow data of
Moser et al. (1999) aRe; =180,395 and590, denoted by casesg |
I, and b, respectively, have been used for comparison. Meatethe
Re values are similar between cases MO0.3, M1.5 andarnd
between cases M3.0 angd |

€/

O Johansson et al.

1 15

Tg/h

0.5

Figure 5. Profile of the mean scalar E normalized by §, . o shows data of
Johansson et al. (1999).

In Figure 6, cases M0.3 anddre practically indistinguishable.
Given the fact that cases M3.0 ang Have similar Reynolds
numbers,Re; , the differences between their

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright O 2

'brofiles in the wall layer are due to mean propemyiations. The
linear behaviour ofp Ry (M 3.0) starts atx,/h ) 0.3 only, while

that of pRy,(I3) starts atx,/h) 0.1 already, because temperature

and hence viscosityl increase with increasing,xextending the

importance of the viscous stress to larger distange Another
observation which is not demonstrated here, idrilependence of

the correlation coefficient ofp ujus from Mach and Reynolds
numbers forx,/h) 0.3. From this additional fact we are allowed to
conclude thatp Ry4/T,, and p Ryy/1,, , finally all Reynolds
stresses, tend to a universal dependencexpfh sufficiently far
from the wall, see Figure 7.

The Turbulent Scalar Fluxesand the Scalar Variance

The molecular scalar flux, being non-zero everywhier the
channel, makeg, not an ideal, but a reasonable outer scale of the
turbulent scalar flux in wall-normal direction. kiggs 8 and 9
demonstrate that this is true in the rangexgf/h) 06 for the
streamwise scalar flux as well, irrespective of Mand Reynolds
numbers.

There is a striking similarity in the behaviour thfe streamwise

scalar flux, pE"u}/xW , and the streamwise Reynolds strgms;? .
This is seen by comparing Figures 7 and 9, but lysoomparing
the structure of the transport equations igr and &" . Introducing

mean and fluctuating quantities into the momentugeéon (2) for
u; and the scalar transport equation (4), we obtain:

006 by ABCM April-June 2006, Vol. XXVIII, No. 2 /179
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—_ _ 0.16
D " " dul a ] d A
—(puy) + puy—= + —|puju’ )| - ——puju5 =
Dt(p i)+p 2dx2 axj(P 1 1) dxzp 1U2 014 |
(45)
op 012}
p
——— + viscousterm !
ox 3 04 He
>
D dg . 9 d S oo
Bl En roul— 2 E”u"’ __4 E"un - \‘::5
S k&) +e Yot ax (perur) o ) 0.06
diff . term 0.04
0.02
where D/Dt =9/dt + 1,0/0x denotes the substantial derivative 0
based on mean convective transport. The viscous diffision 0 02 04 06 08 !
terms have not been written out, because we interdiscuss the za/h
large scale turbulent effects. =
) Figure 10. Profiles of the r.m.s. scalar fluctuations {§"~ , normalized by
L T e SRR g, = &d.
09 // w
08 if S
0T I/f',." 1 In Figure 10 we present profiles of the r.m.s. ac#lctuations,
\>3 06 i I(,.","' 1 normalized byZ,, . These profiles reveal peaks in the wall layer and
S 05t B ——=M03 1 maxima at the channel centreline which are due d¢o-zero
g o4l K =emem MOA gradients of the mean scalar, cf. Figure 5. Effsitslar to those for
oz by T ML.5 | the streamwise Reynolds stress (and the turbulieeti& energy,
oo W ——=M30 ] not shown here) can be observed, namely: an ireiieaReynolds
< — M35 number intensifies the near-wall peak. A simultarsetcrease in
0.1 fk 1 Mach number lowers it again, so that eventuallys¢heffects
0% : : : : : : : compensate each other.
0 01 02 03 04 05 06 07 08

’EQ/h
Budgets of Second-Order M oments
Figure 8. Profiles of the wall-normal scalar flux pu5g", normalized b . .
g pu2t y Reynolds stresses: Terms in the transport equations for the

|XW|' Reynolds stressespR;, when normalized withp,, uf/vw and

j ’
. . . lotted as functions ok , which is customary for incompressible
In both equations there are very similar productiad turbulent P 2 y P

transport terms (% and ¥ terms on the L.h.s.) and effects by mearfloW. do not show a tendency to collapse incompbéssand
turbulent transport. The only difference betweethbequations is COMPressible data. Hence, an alternate inner scatinrequired.
the fluctuating streamwise pressure gradient. Alsheishown later, 1hiS i obtained by considering the kinetic enepgyduction term,
the importance of this term is substantially reducgue to Pu Of the PRy;-balance. Away from the viscous layer, the
compressibility. The same is true for the produttierms in the Reynolds shear stress scales-88Rj, = Ty, (1— x2/h), while the

wall layer. Hence, the higher the Mach number,dtienger is the . —
similarity between u; and " . mean shear islu;/ dx, DuTD/(sz) (whereut'=/t,,/p ), so that

2 : : : : 2
:T—W[i 1], X5 = XU/ (47)

K x5 P

Equation (47) implies that the Reynolds stress btelghould be
normalized with T\%,/H and plotted against the semi-local

PUYE" [ Xow

coordinate,XE. Figure 11 shows profiles of the terms in the
PR11-balance, normalized accordingly. The dominant seimthe
near-wall region, namely, production, dissipationd aviscous
diffusion do not change significantly between cast%0 and 4.

0 02 oa 06 08 | However, as shown in Figure 11 (bottom), the pmesstrain
22/h correlation,

Figure 9. Profiles of the streamwise scalar flux pu%§", normalized by [‘|ij = vaﬁj = p’(dju} +aiu’j), (48)

|XW|'
changes significantly between cases. Compresdibie dbviously,
reduces the pressure-strain correlations in a tabdr way. A

180 / Vol. XXVIII, No. 2, April-June 2006 ABCM



Turbulent Momentum and Passive Scalar Transportin ...

guantitative explanation of this behaviour is ginedow, based on
an analysis of the Poisson equation for the predhuctuations.
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Figure 11. Budget of the pRqq-stress, normalized by 13\, /ﬁ and plotted

against the semi-local coordinate xg. Symbols represent the

incompressible case 13 and lines the compressible case M3.0. Top:
Production, dissipation and diffusion. Bottom: Pressure-strain, turbulent
diffusion and mass flux variation.

In Figure 12 we demonstrate fdi,; andM 3 that T, Us,/h

are outer scaling parameters, which collapse cossjirie onto
incompressible pressure-strain correlation data.

41/ (Tt /R)

0.8 1

0.6

0.4
Tg/h

Figure 12. Pressure-strain correlation: Streamwise 11-component (top),
Spanwise 33-component (bottom).
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Figure 12. (Continued).

Scalar fluxes and scalar variance: A suitable normalization of
the streamwise and spanwise scalar flux balancest bwi found.
The streamwise scalar flux balance e.g. has twdymtion terms,
see eq. (34). They scale outside the viscous kger

— dE — dE
- puUiu—— O-pujus,—— =
Plde2 plde2

2 o — (49)
—TT""E 1—X—é 14+ P2 ,
K Ug h Xw
———du ud — 12 1 1 "u’
—pTup I - U o ST i L L P, g
dx, KXo P Ur SCkx5 Xw

As long as the Schmidt number is 1 or O(1), theastwise

scalar flux budget has to be normalized W'rlﬁ/H(ET/uT) . This

scaling again underlines the similarity betweep @&nd &-
fluctuations. The production term for the wall-n@inscalar flux in
eq. (35) scales as shown in eq. (49). Finally, btaia for the scalar
variance production:

T 2 2 T
_pénunzi D_TTw[z_TJ 1 pz uz 1+ pE ) . (51)
dx, Hur) Sc Xw W

Obviously, the scaling parameters differ from thfisethe wall-
normal scalar flux only by the factdy, /u; .

Upper bounds of production rates: It is interesting to compute
the high Reynolds number limits of the peak proiuctates of the
streamwise Reynolds stress (respectively the tarbbukinetic
energy) and the scalar flux and to compare thenh titeir
incompressible counterparts. In the limit of higayRolds number,

h* = Re; , the shear stress balance (24) takes the form:

"o -_— —+
- pulu2 =1- Mt du]-;- ) (52)
Tw Hw dX2
The spatial extremum of; Pis obtained from
d un un da+ d un un dU+
+_p12 ]; 0 +_pl ]; :0’ (53)
dx; Ty dx; ) dx3 Ty dX5
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which becomes, using (52):

2
Bodug 1) [dT | dijuy /d?U (54)
Hy dx; 2 dxy ) dxj [/ dx3?

For channel flow with wall-cooling, the term in theacket again
adds to a quantitiy larger than 1, since the dévigaf [, is

positive and the second derivative®f is negative. Hence,

— =t
L_dui (55)
“W dX2

The corresponding relations for incompressible oeafiow are:

duy _ uju

56
dx; °8)

We therefore conclude that in compressible (isaotia#r channel
flow between cooled walls, the Reynolds shear strpR,,, and

the peak production of p,Ryq, are reduced with respect to

incompressible isothermal flow as a result of vischeating. The
upper bound Re; - =) for the peak production rate @R, is:

UL

The equal sign is valid for incompressible flow. dnsimilar
way, we obtain the upper bound for the productate of the scalar
variance from:

J ) Ol

using the approximatiorﬁ OZ. Substituting eq. (25) into condition
_ L dE

(58), we get:
2 -
_E 1+i d27€+
Scpy dx; 2| Sc dx3?

Obviously, the molecular scalar flux is increasee tb viscous
heating in compressible flow, as compared to inaesgible flow.
Since the term in the brackets is greater thanwadyave

"mon

puuz dUl
dx;

<

(57)

NI

Tw

d [ p&upatt
deL Xw dx3

(58)

az

T
dx,

di/py

59
dx; 9

1 [ dE* (60)
SC uW dX2
while in incompressible isothermal flow
T+
_1 d5+ =1 (61)
Sc dx; 2

The upper boundRe; — «) for the peak production rate of the
scalar variance therefore reads:
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PE" U oE
Xw

<

1
—Sc. 62
2 (62)

dX2

el

Again, the equal sign holds for incompressiblehisanal flow.
Viscous heating in compressible flow consequen#igluces the
production rate of the scalar variance in a similay as it reduces
the streamwise Reynolds stress production.

Figures 13-15 show budgets oE"u{ pE"u’é and p&"2/2 as
functions of x,/h for case M3.0. It is obvious that production and

[ n

dissipation play an important role in the budgetspri and

pE”2/2. Dissipation is less important in the wall-norreaélar flux

budget. Instead, the pressure-scalar gradientlatiore balances the
production term there. It also plays a remarkaldée rin the
streamwise scalar flux. As we will see, it is sgiyndamped in
compressible flow, very much like the pressurehstcarrelation or
velocity-pressure-gradient correlation. Figures 186-demonstrate
the effect of Mach number on the production rateE o

E" uq pE" u’5 and pE”2/2 There is a clear decrease of the peak

values as M increases and an increase Rath
Finally, we demonstrate the outer scaling of thedasepressure

gradient correlationg"dp/dx,, §'0p/0x, in Figures 19, 20, using

Uay[Xw| /h for normalization.
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gain

0.2 0.4 0.8 1
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0.4
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Figure 14. pg§"u% -budget, normalized by ugy, |xW| /h . Case M3.0.

ABCM



Turbulent Momentum and Passive Scalar Transportin ...

3

) ===+ Residual
=
s ' N
>

0
§ 1 - ———T§

i

T ool "

3 + + ! ’

0 02 04 06 08 I

[IfQ/’I,

Figure 15. Scalar variance budget, normalized by &, |xW| /h . Case M3.0.
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Figure 16. Production of p§"u? , normalized by ug,, |Xw| /h . Case M3.0.
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Figure 17. Production of p§"u% , normalized by ug, |xW| /h . Case M3.0.

Correlations Involving Pressure Fluctuations

A quantitative explanation for the reduction of gmare-strain
correlations and scalar pressure-gradient corogigti due to

compressibility starts from an equation for thesptee fluctuations.

It is derived from the momentum equation, by takitsgdivergence
and incorporating mass conservation. Splitting fleaviables into
mean and fluctuating variables, we get the follgvmelation (see
Foysiet al. (2004)), valid for fully developed channel flow:
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Figure 18. Production of p§"2/2 ,normalized by §,, |XW| /h .

8,0 = - p oy uul - UuT) - 250, T 0,5 + 9y T
- 0 Ve
Al A2 A3
T —( w2 _ a2
—262p6j(u2uj —U2Uj)—622p(U2 —Uz) (63)
N S
Bl =

~20,0;0:(p'u3) - 9 (P'Ui'u'j' - PU_uul) —Dyp =pf’
0271 01\P H2) P,
Cl c2 C3

Note that the operatoDy =dy + 2U;0j +UjU;0; is Galilean
invariant. In incompressible isothermal flow, thestf term on the
r.h.s. of eq. (63), labelled A1 (nonlinear flucioa), and the second,
A2 (mean shear), survive. In compressible flowretere additional
terms, A3 (viscous stress, third term), B1 (dengtgdient), B2
(density second-gradient), and the last three témuaving density
fluctuations, C1, C2 and C3. From the DNS data kaseconclude
that all terms involving density fluctuations caa teglected in the
above equation. This allows us to interpret eq) @S a Poisson
equation for the pressure fluctuation.

A Green’'s-function based analysis of the Poissamaggn for p'
will now be performed. In incompressible flow theaet wall

boundary condition for p' is 9p'/dx, =po%uy/dx5 . In

compressible channel flow the dilatation fluctuatis small and,
hence, the wall boundary condition is given by

ap'/ax2 Oy azu’z/axg. Let us denote the r.h.s. of eq. (63) by
pf' and Fourier-transform the whole equation in thenbaeneous
X1, X3 — directions, e.g.p'( Xy, X5, X3) — P(Ky,x2,k3). Then, the

transformed Poisson equation, after normalizingytlerscales with
the channel half width, becomes,

% (2, 2} _~¢
— —|kf +k3Jp=pf
dxg ( ! 3)
. R (64)
with 9P = W62u2
2
. Xy =%1 0x3 X, =%1

If we replacepf in this equation by the point souras{x, - x,),

then the Green functionG(k, X»; x,) with k=4/k? +k3 is the
solution of eq. (64).é(k, Xo; x’z) can be derived for the homo-

geneous boundary condition(af)/axz)w =0, using standard
methods and it turns out that it is as given by(@pof Kim (1989):
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_ cosh k(x, =1)] cosH k(x, +1)]

&(kxzixs)= ksinh2k  X2(X2,
. ) (65)
Blicxziny) = - ootk eostlclx 1)

The solution of eq. (64) including the non-homogereboundary
condition is:

1. .
plky, X2, k3)—j G(k,x2, X3) B(x2) f (K, X5, k3) dX; (66)
+ é( k, X2) y
with B given by
ap ap
1 cosHk(1+x,)) - —— cosHk(L-x5))
g = X2hen il (67)
ksinh2k '

The inverse Fourier transform of (66) provides pinessure fluctu-
ation in physical space,

1
P (xq, X2, X3) = I_P(XE) GLF'(Xq, X2, X3;X5) dXy (68)

+ B'(xg, X2, X3),

Rainer Friedrich et al

value and, according to equations (69, 70) are dbeelations
smaller than the corresponding incompressible ones.
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Figure 21. Comparison between DNS data and equation (69) for the
pressure-strain correlation (top). In the figure below, symbols illustrate

where the convolutionG [f' is the inverse Fourier transform of the effect of mean density on My,. Contributions of different source

Gf . From eq. (68) all correlations involving presstitetuations
can be constructed. The pressure-strain correlatign is given by

1 -
My (x2) = 2.[_15(x'2)c-; OF (kg X2 X0 X )5 Ay + 2B';,  (69)

and the pressure-scalar-gradient correlation reads

1
Né(x,)= J._P(X'z)G 0" (x1, X2, X3; X )0E" /0 dX,

+ B'OE"/ox; .

(70)

The upper parts of Figures 21 and 22 show a cosgarof the

analytical solutions, egs.(69) and (70), and theSDiéita for cases

M0.3 and M1.5. On the lower parts of these figunes use the
various source terms in the pressure Poisson equatnd

investigate their contributions to the convolutienms in (69, 70).
The proof that the changes in the correlationsnzaimly due to the
variation in the mean density is given by replacpgby p,, and

taking the DNS velocity field of case M1.5 to cortgthe r.h.s. of
equations (69) and (70). The fact that the residtgiares in the
figures) compare well with the quasi-incompressidse (triangles)

in the region x3 ) 30 confirms the hypothesis that the variable-

density extension of the Poisson equation is gefficfor obtaining
the pressure-strain and pressure-scalar-gradient te
The main result of the Green function analysis,ceeris to

underline the non-local effect op on correlations involving
pressure fluctuations and to explain the obsereddation of these
correlations compared to their incompressible cenpatrts. The
fluid in the interior of a supersonic channel igtBothan that at the
cooled isothermal walls so thgd(x5) is smaller than the wall
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terms, pf', to equation (69) are shown by lines for case M1.5.

08 |
SIS ——— M0.3,DNS
— AN
= 065 4 N M15,DNS
: ] A
2 04
-
= o2}
AMO0.3, Greens fct. sol.
OM1.5, Greens fct. sol.
0 0.2 0.4 0.6 0.8 1
x9/h
1
A MO0.3, Greens fet. sol. Opf — puwf’
0s M1.5, Greens fet. sol. ———?j: = Brl _
s -ememepff = A3
~
S e i T
g
2
3
>
o

Figure 22. Comparison between DNS data and equation (70) for the
pressure-scalar-gradient correlation (top). In the figure below, symbols

illustrate the effect of mean density on I'Ii. Contributions of different

source terms, pf', to equation (70) are shown by lines for case M1.5.
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Conclusions

Direct numerical simulations of compressible tudmtilchannel
flow including passive scalar transport have bearfiopmed in order
to investigate in which way compressibility affett® mean flow
quantities and the turbulence structure in walldzad flows. The
following findings are reported:

- Supersonic, turbulent channel flow exists only whies heat
generated by dissipation within the flow field isnmoved
through the walls. This needs wall cooling and énstrong
near-wall mean temperature, viscosity and densagignts.
There is no similarity transformation which collepsvelocity
profiles for various Mach and Reynolds numbers oote
profile in the whole domain. It is observed thascasity-
transformed mean velocities work well in the neathregion
and density-transformed ‘Van Driest’ velocities ateted for
the log layer.

All the Reynolds stress components scale with ta# shear

stress,t,, in the channel core region, independent of Mac

and Reynolds number. In the wall layer, semi-lazairdinate
scaling at least provides a proper collapse of ghsitions
where most of the turbulence is produced, but rfothe
amplitudes themselves.

Other than the mean streamwise velocity, the meatars
(introduced on one side and removed from the othas) a
non-zero gradient on the channel centreline, whegldls to a

variation of the mean density normal to the walhisTis

demonstrated by a Green'’s function approach ofPthisson
equation for the pressure fluctuations. These figslishould
have an impact on the modeling of correlations lving

pressure fluctuations.
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