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) effect. The carrier fluid is assumed viscous, mpoessible and
Introduction electrically conducting. The particle phase isuassd to be
incompressible pressureless and electrically navthgcting. The
flow in the pipe starts from rest through the agagion of a constant
axial pressure gradient. The governing nonlineasmentum
equations for both the fluid and particle-phaseg a@olved
numerically using the finite difference approxinoats. The effect
of the Hall current, the non-Newtonian fluid chaeistics and the
particle-phase viscosity on the velocity of theidland particle-
phases are reported.

The flow of a dusty and electrically conductingidldhrough a
circular pipe in the presence of a transverse ntagfield has
important applications such as MHD generators, mmp
accelerators, and flowmeters. The performance efficiency of
these devices are influenced by the presence qfeadsd solid
particles in the form of ash or soot as a resulthef corrosion and
wear activities and/or the combustion processédhiD generators
and plasma MHD accelerators. When the particleceotnation
becomes high, mutual particle interaction lead$igher particle-
phase viscous stresses and can be accounted fendowing the Governing Equations

particle phase by the so-called particle-phaseogise. There have . . . .
been many articles dealing with theoretical modglliand Consider the unsteady, laminar, and axisymmetrigzontal

experimental measurements of the particle-phaseosily in a flow of a dusty conducting non-Newtonian Binghamidl through

dusty fluid (Soo 1969, Gidaspoet al 1986, Grace 1982, and an infinitely long pipe of radiusd” driven by a constant pressure
Sinclairet al. 1989) ' ' ' gradient. A uniform magnetic field is applied pengdicular to the

The flow of a conducting fluid in a circular pipeas been flow direction. The Hall current is taken into sitheration and the

investigated by many authors (Gadirgual 1992, Dube et al. magnetic Reynol_ds number is_ a$5“”.‘ed to be very |.smal
1975, Rittoret al 1977,yand Charrskha 1?94). Gadirejual (1992) Cconsequently the induced magnetic field is neg¢8uttonet al
investigated steady two-phase vertical flow in pepi Dube et al. 1965). We assume that both phases behave as sifioils and

(1975) and Ritteet al (1977) reported solutions for unsteady dusty;hat the volume fraction of suspended particldsite and constant

gas flow in a circular pipe in the absence of a metig field and (Chatmkhg 1994). t.Tak”l% Into_account theset anc_ipﬂwmusg/
particle-phase viscous stresses. Chamkha (199&jned exact mentioned assumptions, the governing momentum exqsatan be

solutions which generalize the results reporte®une et al. 1975 written as
and Ritteret al. 1977 by the inclusion of the magnetic and pagticl
phase viscous effects. It should be noted thaihénabove studies a_V — _5_P+£i( a—VJ+MN(\/ ~V)- OB§V 1)
the Hall effect is ignored. ot 0z ror o) 1-¢ P 1+m?
A number of industrially important fluids such asolten
plastic_s, polymers, pulps and foods exhibit non-NEu'nn fluid . 19 v
behavior (Nakayamat al 1988). Due to the growing use of these p—p = ——[,upr—pJ +ppN(V =V)) 2
non-Newtonian materials, in various manufacturing arocessing ot ror or

industries, considerable efforts have been directedvards
understanding their flow characteristics. Manythaf inelastic non- where t is the time, r is the distance in the fadii@ction, V is the
Newtonian fluids, encountered in chemical engimaggprocesses, fluid-phase velocityy, is the particle-phase velocity,is the fluid-
are known to follow the so-called "power-law modigl"which the phase densityp, is the particle-phase densitgP/oz is the fluid
shear stress varies according to a power functicthe strain rate pressure gradientp is the particle-phase volume fraction, N is a
(Metzneret al 1965). It is of interest in this paper to stutheg momentum transfer coefficient (the reciprocal @ thlaxation time,
influence of the magnetic field as well as the hNewtonian fluid the time needed for the relative velocity betweka phases to
characteristics on the dusty fluid flow propertiesituations where reducee? of its original value (Chamkha 1994y, is the fluid
the particle-phase is considered dense enough dudie the electrical conductivitym=oyB, is the Hall parametey, is the Hall
particulate viscous stresses. factor (Suttonet al. 1965), B is the magnetic induction, is the
In the present study, a new element is added topthblem particle-phase viscosity which is assumed constand x is the
studied by Attia (2003) by taking the Hall effenta consideration. apparent viscosity of the fluid which is given by,
Therefore, the unsteady flow of a dusty non-NeweonBingham
fluid through a circular pipe is investigated caleing the Hall 7,

= +—
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wherey, is the plastic viscosity of a Bingham fluid amglis the
yield stress. In this workg, pp, 1p, ¢, andB, are all constant. It
should be pointed out that the particle-phase press assumed
negligible and that the particles are being draggletig with the
fluid-phase.

The initial and boundary conditions of the problara given as

V(r0)=0V,(r0)=0, (3a)

VO _, oV, (O1)

, 3b
or or (3b)

=0V(d,t) =0V,(d,t) =0

where "d" is the pipe radius.

Equations (1)-(3) constitute a nonlinear initialue problem
which can be made dimensionless by introducing fthlewing
dimensionless variables and parameters

F:L’t—: t'L{(Jz’(_‘-,O_—a_P7 = pp¢ ’ﬁzﬂ
d Jou 0z pPL-9 Ho
_ V (1t
V(=200 G ¢ gy = 22500,
G,d G,d

a =Nd?’p/ y, is the inverse Stokes’ number,
B =, 4, is the viscosity ratio,

the nonlinear terms at a linear stage, with thereotions
incorporated in subsequent iterative steps untilvemgence is
reached. The computational domain is divided meshes each of
dimensionAt and Ar in time and space, respectively. Then the
Crank-Nicolson implicit method is used at two swsiee time
levels (Mitchell et al, 1980; Evanset al, 2000). An iterative
scheme is used to solve the linearized system &ereince
equations. The solution at a certain time stegh@sen as an initial
guess for next time step and the iterations aretiraoed till
convergence, within a prescribed accuracy. Findhg resulting
block tri-diagonal system is solved using the gelimed Thomas-
algorithm (Mitchellet al, 1980; Evansgt al, 2000). Computations
have been made far=1 andk=10. Grid-independence studies show
that the computational domain &< and 0%<1 can be divided into
intervals with step sizest=0.0001 and\r=0.005 for time and space
respectively. Smaller step sizes do not show amnjficant change

in the results. Convergence of the scheme is asbwhen all of the
unknowns V, V , dV/or , and oV, /dr for the last two

approximations differ from unity by less than®fr all values of r

in 0<r<1 at every time step. It should be mentioned tiatresults
obtained herein reduce to those reported by Datla (1975) and
Chamkha (1994) for the cases of non-magnetic, ditviparticle-
phase B=0), and Newtonian fluid. These comparisons lend
confidence in the accuracy and correctness ofdghaisns.

Imposing of a magnetic field normal to the flowatition gives
rise to a drag-like or resistive force and it Has tendency to slow
down or suppress the movement of the fluid in thee,pwhich in
turn, reduces the motion of the suspended paipictse. This is

r, =1,/ G,d is the Bingham number (dimensionless yield stress) translated into reductions in the average velaitieboth the fluid-

H, =B,d\o/ u, isthe Hartmann number (Suttehal 1965).

By
parameters as well as the expression of the flisdogity defined
above, Egs. (1)-(3) can be written as (the barsliemeped),

v _. oV I, |loV oy HA

E—1+F+ +E ??+ka(\/p V) m (4)
or
v, [0%V, 14V,

2% = == ny; 5
at '8[ or? +r ar raty ~Vp) ®)
V(r0)=0V,(r0)=0, (6a)
VO _ o VeOY _ oy = 0V, @) =0 (6b)

or or

The volumetric flow rates and skin-friction coefénts for both
the fluid and particle phases are defined, respalgtias (Chamkha
1994)

)
a

()

C, = —

N, @)
or

Q=277%rV(r,t)dr,Qp =2n%rvp(r,t)dr,C=—
0 0

Results and Discussion

Equations (6) and (7) represent coupled systemooflinear
partial differential equations which are solved ruicelly under the
initial and boundary conditions (8) using the fnidifference
approximations. A linearization technique is fiapplied to replace

J. of the Braz. Soc. of Mech. Sci. & Eng.

introducing the above dimensionless variablesd ancauses lower velocity gradients at the wall.
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and the particle-phases and, consequently, in fleir rates. In
addition, the reduced motion of the particulatepsusion in the
pipe as a result of increasing the strength of tfegnetic field
Thés the direct
effect of reducing the skin-friction coefficient§ both phases.
Including the Hall parameter decreases the resistwce imposed
by the magnetic field due to its effect in reduciing effective
conductivity. Therefore, the Hall parameter letmlan increase in
the average velocities of both the fluid- and thetiple-phases and,
consequently, in their flow rates and the velogtadients at the
wall.

Figures 1 and 2 present the time evolution of ttudilps of the
velocity of the fluidV and dust particle¥,, respectively, for various
values of the Bingham numbes and form=0, Ha=0.5 andB=0.5.
Both V andV, increase with time and V reaches the steady-state
faster tharV, for all values ofrp. It is clear from Figs. 1 and 2 that
increasingrp, which increases the driving force fgr increases/
and, consequently, increaséswhile its effect on their steady-state
times can be neglected.
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Figure 1. Time development of V for various values of Tp (m=0).
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Figure 1. (Continued).
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Figure 2. Time development of V, for various values of 15 (m=0).
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Figure 2. (Continued).

Figures 3 and 4 present the time evolution of ttodilps of the
velocity of the fluidV and dust particle¥), respectively, for various
values of the Bingham numbes and form=1, Ha=0.5 andB=0.5.
It is indicated in the figures that increasing meremsesV and, in
turn,V, due to the decrease in the effective conductitgl +mf))
which reduces the damping magnetic forceVonlt is shown that
the influence of the Hall parametar on V is more apparent for
higher values ofp.
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Figure 3. Time development of V for various values of 1o (m=1).
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Figure 4. Time development of V, for various values of 15 (m=1).

Table 1 presents the steady state values of thd-ghase
volumetric flow rateQ, the particle-phase volumetric flow ra,
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the fluid-phase skin friction coefficier, and the particle-phase
skin friction coefficientC, for various values of the parametess
and m and forHa=0.5 andB=0.5. It is clear that increasing the
parameter m increas€y Q,, C, andC, for all values ofrp. This
comes from the fact that increasing m increases/éhecities and
their gradients which increases the average véscitf both the
fluid- and the particle-phases and, consequemttyreases their flow
rates and skin-friction coefficients of both phaséisis also shown
that increasingp increase®), Q,, C, andC, for all values of m as a
result of increasing the velocities of both phases.

Table 1. The steady state values of Q, Q,, C, C, for various values of m
and Tp.

75=0 m=0 m=1 m=2
Q 0.1764 0.1779 0.1789
Q 0.0426 0.0430 0.0433
C 0.2818 0.2834 0.2844
G 0.2111 0.2129 0.2140

75=0.025 m=0 m=1 m=2
Q 0.1649 0.1663 0.1673
Q 0.0396 0.0400 0.0402
C 0.2704 0.2719 0.2729
G 0.1975 0.1995 0.2005

75=0.05 m=0 m=1 m=2
Q 0.1525 0.1535 0.1564
Q 0.0364 0.0369 0.0372
C 0.2583 0.2598 0.2612
G 0.1834 0.1859 0.1868

Table 2 presents the steady state values of thid-ghase
volumetric flow rateQ, the particle-phase volumetric flow ra,
the fluid-phase skin friction coefficier@, and the particle-phase
skin friction coefficientC, for various values of the parameters m
and

B and forHa=0.5 andzp=0. It is clear that, increasing m
increase®, Q,, C, andC, for all values oB and its effect becomes
more pronounced for smaller valuesBf Increasing the parameter
B decreases the quantiti€s Q,, and C, but increases, for all
values of m. This can be attributed to the faett tihcreasing®
increases viscosity and therefore the flow ratebaih phases as
well as the fluid-phase wall friction decreases siderably.
However, sinceC, in defined as directly proportional tB, it
increases aB increases at all times.

Table 2. The steady state values of Q, Q,, C, C, for various values of m
and B.

p=0 m=0 m=1 m=2
Q 0.3032 0.3075 0.3101
Q 0.2582 0.2615 0.2635
C 0.4125 0.4167 0.4193
G 0 0 0
$=0.5 m=0 m=1 m=2
Q 0.1764 0.1779 0.1789
Q 0.0426 0.0430 0.0433
C 0.2818 0.2834 0.2844
G 0.2111 0.2129 0.2140
=1 m=0 m=1 m=2
Q 0.1640 0.1654 0.1662
Q 0.0226 0.0228 0.0229
C 0.2702 0.2716 0.2724
G 0.2231 0.2249 0.2260
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Conclusion

The unsteady MHD flow of a particulate suspensianan
electrically conducting non-Newtonian Bingham fluida circular
pipe is studied considering the Hall effect. Tl@arning nonlinear
partial differential equations are solved numehcalsing finite
differences. The effect of the magnetic field paeger Ha, the Hall
parameter, the non-Newtonian fluid characteristi@ngham
number zp), and the particle-phase viscosify on the transient
behavior of the velocity, volumetric flow rates,daskin friction
coefficients of both fluid and particle-phasestigdged. It is shown
that increasing the magnetic field decreases thid tind particle
velocities, while increasing the Hall parameter réases both
velocities. It is found that increasing the partenen increase®),
Qp C, andC,, for all values ofrp. The effect of the Hall parameter
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