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Multimodal Vibration Damping 
through Piezoelectric Patches and 
Optimal Resonant Shunt Circuits 
Piezoelectric elements connected to shunt circuits and bonded to a mechanical structure 
form a dissipation device that can be designed to add damping to the mechanical system. 
Due to the piezoelectric effect, part of the vibration energy is transformed into electrical 
energy that can be conveniently dissipated. Therefore, by using appropriate electrical 
circuits, it is possible to dissipate strain energy and, as a consequence, vibration is 
suppressed through the added passive damping. From the electrical point of view, the 
piezoelectric element behaves like a capacitor in series with a controlled voltage source 
and the shunt circuit, commonly formed by an RL network, is tuned to dissipate the 
electrical energy, more efficiently in a given frequency band. It is important to know that 
large inductances are frequently required, leading to the necessity of using synthetic 
inductors (obtained from operational amplifiers). From the mechanical point of view, the 
vibration energy can be attenuated in a single mode, or in multiple modes, according to 
the design of the damping device and the frequency band of interest. This work is devoted 
to the study of passive damping systems for single modes or multiple modes, based on 
piezoelectric patches and resonant shunt circuits. The present contribution discusses the 
modeling of piezoelectric patches coupled to shunt circuits, where the basics of resonant 
shunt circuits (series and parallel topologies) are presented. Following, the devices used 
in passive control (piezoelectric patch and synthetic inductors) are analyzed from the 
electrical and experimental viewpoints. The modeling of multi-degree-of-freedom 
mechanical systems, including the effects of the passive damping devices is revisited, and, 
then a design methodology for the multi-modal case is defined. Also, it is briefly reviewed 
the optimization method used for design purposes, namely the LifeCycle Model. Finally, 
experimental results are reported, illustrating the success of using the methodology 
presented in passive damping applications applied to mechanical and mechatronic 
systems. 
Keywords: Multimodal damping, shunted piezoelectric, resonant shunt circuits 
 
 
 

Introduction 

Applications of smart materials are growing and nowadays they 
cover from military applications to the industry of consumption. 
Among other applications, the following can be mentioned: 

Vibration damping in sport items represents an important issue 
for a new generation of ski boards, tennis rackets and golf and 
baseball bats (Figure 1 ). The goal here is to reduce vibrations in these 
sport items, increasing the user's comfort and preventing damage.1 

A group composed by Boeing Company, the University of 
Maryland, the Massachusetts Institute of Technology, the University 
of California (Los Angeles) and the U.S. Army Research Office 
support projects for the development and application of smart 
materials. For example, the Smart Helicopter Rotor can be 
mentioned (Figure 2 ), in which fibers of composite materials and 
piezoelectric devices are used in the blades of the helicopter rotor to 
attenuate vibrations and noise and also to improve the aerodynamic 
performance. 
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Figure 1. Worth Copperhead ACX Adult Baseball Bat, first commercialized 
in 1998 (adapted from Akhras, 2000). 
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Figure 2. Smart Helicopter Rotor (http://www.boeing .com/news/releases/, 
July 2004). 

 
Applications related to vibration control may use either passive 

or active techniques, as well as a combination of both. Actuators, 
power supplies and control systems characterize the active 
techniques. In passive techniques, the power supplies and control 
systems are suppressed and the shape and physical characteristics of 
smart materials are explored for vibration reduction. 

Passive damping, according to Johnson (1995) can be divided 
into two classes: structural and embedded. The structural damping 
occurs due the friction of junctions, cable rubbing and material 
damping. The embedded damping is achieved by adding dissipation 
mechanisms to the structure, commonly based on one of the 
following damping techniques: viscoelastic materials, viscous 
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devices, magnetic devices and passive piezoelectrics. Table 1  shows 
a comparison of these approaches. 

Due to the piezoelectric effect, a portion of the mechanical 
energy associated with the vibration can be transformed into electric 
energy and dissipated conveniently, through a shunt circuit that 
compounds a mechanism of passive damping. Lesieutre (1998) 
discusses the four commonly used types of shunt circuits: resistive, 
resonant, capacitive and switched, as shown in Table 2 . The 
abbreviation PZT (lead-zirconate-titanate) refers to the piezoelectric 
element. This way, CPZT is the inherent capacitance of the 
piezoelectric patch. 

Among the shunt circuits, the resonant one deserves a special 
attention. Compound by an inductor and a resistor, this circuit 

allows the tuning to any desired frequency, which will have the 
corresponding vibration amplitudes attenuated. In addition, 
improvements in the topology of the circuit make possible the 
simultaneous reduction of more than one vibration mode. From the 
mechanical point of view, the system as a whole (PZT and resonant 
shunt circuit) is similar to the dynamic vibration absorber. 

A detailed description of the use of shunt circuit and 
piezoelectric devices is seen in the pioneer work of Hagood and von 
Flotow (1991). In that work, the expression for the mechanical 
impedance introduced by the piezoelectric element connected to any 
type of shunt circuit coupled to mechanical systems is obtained. 
Two study cases are presented, showing experiments with shunt 
circuits, both resistive and series resonant types. 

 

Table 1. Primary passive damping mechanisms and cor related information (adapted from Johnson, 1995). 

 Type of damping mechanism 
 Viscoelastic materials Viscous devices Magnetic devices Passive piezoelectrics 

Type of treatment All Struts and DVAs* Struts and DVAs Strut dampers 
Temperature sensitivity High Moderate Low Low 
Temperature range Moderate Moderate Wide Wide 
Loss factor Moderate High Low Low 
Frequency range Wide Moderate Moderate Moderate 
Weight Low Moderate High Moderate 

(*)DVA: Dynamic Vibration Absorber. 
 

Table 2. Shunt circuits (adapted from Lesiutre, 199 8). 
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This circuit results a behavior that 
is similar to viscoelastically-
damped systems. 

This circuit behaves similarly to 
the classical dynamic vibration 
absorber. 

This circuit changes the stiffness 
of the piezoelectric element. 

The most important feature of this 
circuit is to adjust the behavior of 
the circuit in response to any 
change in the system. 

 
A series of papers have been reported about the present topic.  

Wu (1996) makes considerations about the behavior of the resonant 
shunt circuit in the parallel topology. Steffen and Inman (1999) use 
control techniques and optimization strategies in the design of both 
active and passive vibration reduction devices, using piezoelectric 
materials. Steffen et al. (2000) examine the use of passive 
techniques for vibration reduction combining dynamic vibration 
absorbers (DVAs) and piezoelectric patches coupled to resonant 
shunt circuits. In that work, natural optimization techniques were 
used in the design of the damping system. Park and Inman (2003) 
discuss the non-idealities of the synthetic inductor used in the shunt 
circuits and propose an improvement by adding capacitors in 
parallel to the piezo, aiming at reducing the values required for the 
inductance. 

This work is devoted to the study of passive damping systems 
for single modes or multiple modes. As compared to previous 
contributions, this paper presents a complete study concerning 
resonant shunted piezoelectric, including the analytical and 
experimental aspects together with the synthetic inductor design. 
Besides, the study devoted to the multimode case represents a more 
realistic approach. Previous works considered the multimode case a 
simple extension of the single mode case. Also, the use of 
optimization techniques is considered a valuable contribution 
because no closed solution can be derived for the multimode case. 
The optimization results were validated experimentally. The present 

contribution is organized as follows: first, the modeling of 
piezoelectric patches coupled to shunt circuits, where the basics of 
resonant shunt circuits (series and parallel) are presented together 
with a literature review about this topic; following, the devices used 
in passive control (piezoelectric patch and synthetic inductors – 
Riordan and Antoniou types) are analyzed from both the electrical 
and experimental viewpoints; then the modeling of multi-degree-of-
freedom mechanical systems, including the effects of the passive 
damping mechanism is presented; in the sequence, a new design 
methodology for the multi-modal case is proposed. Also, the 
optimization method used for design purposes, namely the 
LifeCycle Model, is briefly reviewed. Finally, experimental results 
are reported, illustrating the success of using the methodology 
presented as applied to passive damping applications of mechanical 
and mechatronic structures.  

Nomenclature 

A = the matrix of surfaces, perpendicular to the electric field 
A i  and A j  = the transversal section areas according to the 

vectors i  and j  [m2] 

B  =  the diagonal matrix of the lengths of the piezoelectric 
patch 
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Bi  and B j  = the initial patch lengths according to vectors i  

and j  [m] 
T
PZTC  = the inherent capacitance of the piezoelectric patch taken 

at constant stress (free) 
D  = the vector of electrical displacement [C/m2] 
E  = vector of electric field [V/m] 
I  =  the electric current 
K = the stiffness of the mechanical system 

EK jj is the stiffness of the piezoelectric patch taken in open 

circuit 
L  = the inductance 
PZT = piezoelectric patch 
R = the resistance 
S  = the vector of material engineering strains (non-

dimensional) 
S j  = the strain (non-dimensional) 

T  = vector of material stresses [N/m2] 
Tj  = the stress [N/m2] 

V = the electric voltage 
Y  = the electric admittance 

( )ZSHUNT si  = the electrical impedance of the shunt circuit [Ω] 

( )SHUNTZ sjj = the mechanical impedance of the passive damping 

device with the shunt circuit shunt 
d  = the piezoelectric material constant relating strain to voltage 

[m/V] 
dij  = the piezoelectric material constant relating voltage in ith 

direction to strain in the j th direction  
i  and j  = coordinate axes that indicate the direction for 

electrical and mechanical vectors 
k  = electromechanical coupling coefficient 

rk = the modal stiffness related to the mode r 

rm  = the modal mass related to the mode r 

s  = the matrix of compliance for the material [m2/N] 
s = the Laplace variable 

Greek Symbols ε  = the matrix of dielectric constants for the material 
[C2/(N.m2)] 

δ = the non-dimensional tuning ratio 

0ω  = the electrical resonance frequency [rad/s] 

nω  = the resonance frequency of the mechanical system 

[rad/s] 
ξ  = the damping factor 
γ  = the non-dimensional frequency 

Subscripts 

PZT   relative to the piezoelectric patch 

Superscripts 

E             value taken at constant field (short circuit) 
ELECT    relative to an electrical parameter 
D             value taken at constant electrical displacement (open  

circuit) 
MEC        relative to a mechanical parameter 
RSP          pertaining to resonant circuit shunting 
S              value taken at constant strain (clamped) 
OPTM     relative to the optimal condition 
PARALLEL    relative to the parallel circuit topology 

SERIES     relative to the series circuit topology 
SHUNT    relative to the shunt circuit 
T               value taken at constant stress (free) 
t                 transpose of the vector or matrix 

Modeling Piezoelectric Patches coupled to Shunt Circuits 

Figure 3  illustrates the case in which a piezoelectric patch  is 
coupled to a shunt circuit and bonded to a flexible structure. Figure 
3-(a) shows the complete system and Figure 3 -(b) depicts the 
simplified model for the passive damping device. 
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Figure 3. Model for a piezoelectric patch bounded t o a shunt circuit. 

 
where: 
• PZT is the piezoelectric patch, 

• ( )ZSHUNT si  is the electrical impedance of the shunt circuit [Ω], 

• i  and j  give the coordinate axes that indicate the direction for 
electrical and mechanical vectors, 

• Tj  is the stress [N/m2], 

• A i  and A j  are the transversal section areas according to the 

vectors i  and j  [m2], 

• Bi  and Bj  are the initial patch lengths according to vectors i  

and j  [m], 

• S j  is the strain (non-dimensional), and 

• s is the Laplace variable. 
As in Hagood and von Flotow (1991), the general expression 

that describes the behavior of piezoelectric materials, such as the 
one shown in Figure 3 , is written as: 

 
T

t E

    
=     
     

D ε d E

S Td s
 (1) 

 
where: 
• D  is the vector of electrical displacement [C/m2], 



Felipe Antonio C. Viana and Valder Steffen, Jr 

296 / Vol. XXVIII, No. 3, July-September 2006   ABCM  

• E  is vector of electric field [V/m], 
• S  is the vector of material engineering strains (non-dimensional), 
• T  is vector of material stresses [N/m2], 
• ε  is the matrix of dielectric constants for the material [C2/(N.m2)], 
• s  is the matrix of compliance for the material [m2/N], and 
• d  is the piezoelectric material constant relating strain to voltage 

[m/V]. 
Hagood and von Flotow (1991) also shows how to use Eq. (1) 

together with the basic equations of voltage and current from the 
electricity in order to obtain the following expression: 

 

1

( )
 ;

ELECT

t E

ELECT D SHUNT
PZT

s s
−

    
=     
     

= +

I Y Ad V

S Td B s

Y Y Y

 (2) 

 
where: 
• V is the electric voltage,  
• I  is the electric current, 
• B  is the diagonal matrix of the lengths of the piezoelectric patch, 
• A is the matrix of surfaces, perpendicular to the electric field, 
• Y  is the electric admittance, and 

• D T
PZT PZTsC=Y . 

At this time, it is important to define the piezoelectric constant 
known as electromechanical coupling coefficient, k . Hagood and 
von Flotow (1991) define this constant as being the relationship 
between the peak energy stored in the capacitor and the peak energy 
stored in the deformation of the material taking into account open 
electrodes for the piezoelectric patch. Physically, the square of this 

coefficient, 2k , represents the percentage of energy of mechanical 
deformation that can be turned into electric energy and vice-versa.   

Mathematically, the electromechanical coupling coefficient is 
defined as: 

 

E T

d
k

s ε
= ij

ij

jj i

 (3) 

 
where dij  is the piezoelectric material constant relating voltage in 

the ith direction to strain in the j th direction. 
To close the modeling, Hagood and von Flotow (1991) show the 

mechanical impedance, in the non-dimensional form, for the 
piezoelectric patch with a shunt circuit as defined by the equation: 
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where ( )SHUNTZ sjj is the mechanical impedance of the passive 

damping piezo device with the shunt circuit. 
Finally, Hagood and von Flotow (1991) show that the frequency 

response function (FRF) that relates the acceleration and the 
external force of a resonant shunted piezoelectric in the Laplace 
domain is: 

 

( )
2

2
( )H

MEC
r r

s
s

k sZ s s m
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+ +jj

 (5) 

 

This equation is valid for a single mode system, thus rm  and rk  

are the modal mass and modal stiffness related to the mode r. 

Resonant Shunted Piezoelectrics - RSPs 

According to what has been seen up to now, the piezoelectric 
patches can be modeled as a capacitor in series with a controlled 
voltage source. Therefore, in order to obtain a resonant shunt circuit, 
the circuit shown in Figure 3 can be compound of an inductor and a 
resistor. The RL shunt circuit forms an RLC resonant network with 
the piezoelectric patch. This approach allows the dissipation of the 
energy associated with a given vibration mode. In this case, the 
strain energy (associated with the vibration) is converted into 
electric energy and dissipated in the form of heat, through the Joule 
effect. From the mechanical point of view, damping is introduced by 
appropriate tuning the resonance frequency of the RLC network to a 
given frequency related to one of the vibration modes of the 
mechanical structure. 

Series Resonant Shunt Circuit 

The resonant shunt circuit in series, as shown in Figure 4 , was 
proposed by Hagood and von Flotow (1991). The same scheme can 
be found in Lesieutre (1998), Steffen and Inman (1999), Caruso 
(2001), Fleming et al. (2002), Fleming et al. (2003) and Park and 
Inman (2003). 
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Figure 4. The series resonant shunt circuit. 

 
An analysis of this circuit leads to the following relations: 
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Y s
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where: 
• L  is the inductance, 
• R  is the resistance, and 
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• T
PZTC  is the inherent capacitance of the piezoelectric patch taken 

at constant stress (free). 
Or, using Eq. (4), the non-dimensional impedance can be written 

as: 
 

2
2

1
( ) 1

1
SERIESRSP

S S
PZT PZT

Z s k
LC s RC s

 
= −   + + 

ijjj  (7) 

 
Equation (7) can be rewritten as: 
 

2
2

2 2 2
( ) 1SERIESRSPZ k

δγ
γ δ ξγ δ
 
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ijjj  (8) 

 
where: 

• 0
n

ωδ ω= is the non-dimensional tuning ratio, 

• 0
1

S
PZTLC

ω =  is the electrical resonance frequency, 

• n
K

Mω =  is the resonance frequency of the mechanical 

system, 

• S E
PZT nRCξ ω=  is the damping factor,  

• 
( )E

E
n

K K

Mω
+

= jj
 is the resonance frequency of the 

mechanical system, corresponding to the open circuit case, 
• K  is the stiffness of the mechanical system, 

• E
E

A
K

s L
= j

jj
jj j

is the stiffness of the piezoelectric patch 

corresponding to the open circuit case, and 

• E
n

sγ
ω

=  is the non-dimensional frequency. 

Hagood and von Flotow (1991) point out that the parameters δ  
and ξ  are similar to those found for the DVA. Consequently, the 
series resonant shunt circuit can be designed by considering these 
similarities. 

Figure 5  illustrates the two above-mentioned configurations for 
vibration reduction purposes. Figure 5 -(a) shows a system containing 
a DVA; and Figure 5 -(b) depicts a system containing an RSP. 
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Figure 5. Comparison between systems with a DVA (a)  and an RSP (b). 

The generalized electromechanical coupling coefficient is 
defined as:  

 
2 2
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where K  is the ratio between the piezoelectric short circuit modal 
stiffness and the total system modal stiffness. 

Now, it is possible to compare the frequency response functions 
for the DVA and the RSP, as calculated for the primary mass for 
both cases: 
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Equations (10) and (11) highlight the similarities between the 

DVA and the RSP. It can be seen that the generalized 

electromechanical coupling coefficient, 2Kij , for the system with 

RSP series is similar to the relationship between the mass of the 
DVA and the mass of the primary structure, µ , for the system with 
DVA. However, notice that the DVA operates by absorbing the 
kinetic energy associated to the vibration of the primary structure. 
The RSP, in a general way, dissipates a portion of the strain energy 
that is converted into electric energy. As a consequence, the optimal 
locations for each type of damping system are different: the DVA 
should be connected to a point of maximum displacement and the 
piezoelectric patch of an RSP should be bonded to a region of 
maximum deformation. 

Similarly to the system with a DVA, the design of the optimal 
RSP series is obtained from the optimal tuning ratio, δ , and the 
optimal damping factor, ξ , for the system. Therefore, these 
expressions are as below: 
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ξ

= +
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ij
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 (12) 

 
Figure 6  illustrates the transfer function of the system with an 

RSP series, adopting 2 0.05K =ij , SERIESRSP
OPTMδ δ= , and considering the 

non-dimensional frequency 
n

g ω
ω= , for different values of ξ . 

Similar to the system with a DVA, the two invariant points P and Q 
can be observed. Also, by increasing the value of the damping 
factor, the system behaves as a single degree of freedom one. 
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Figure 6. Transfer function of the primary mass for  systems with an RSP 
series. 

 
Finally, once the optimal parameters δ  and ξ  for the RSP 

series are obtained, it is possible to determine the optimal values for 
the inductor and resistor of the shunt circuit, from the following 
equations: 
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Parallel Resonant Shunt Circuit 

The parallel resonant shunt circuit (see Figure 7 ) was first 
proposed by Wu (1996), aiming at overcoming implementation 
difficulties of the series circuit. The practical aspects regarding the 
two circuit topologies will be discussed in the later sections. 
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Figure 7. The parallel resonant shunt circuit. 

As in the series circuit, the analysis of the electrical circuit leads 
to the following equations: 
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And, consequently: 
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Using Eq. (15) and the proper modeling of the single DOF 

system, it is possible to obtain the transfer function as: 
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Wu (1996) presents details for obtaining the optimal parameters 

of the circuit. Similarly to Hagood and von Flotow (1991), he also 
makes use of the transfer function to draw his conclusions. This 
way, the expressions are: 
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And consequently: 
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Figure 8  shows the transfer functions of the system with an RSP 

parallel, adopting 2 0.05K =ij , SERIESRSP
OPTMδ δ= , and considering the 

non-dimensional frequency 
n

g ω
ω= , for different values of ξ . 
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Figure 8. Transfer function of the primary mass for  systems with an RSP 
parallel. 

Electric Analysis of the Shunted Piezoelectric 
Components 

The following sections show the analysis of the piezoelectric 
patch and the synthetic inductors from the electrical viewpoint. For 
the piezoelectric patch, the associated impedance and its behavior 
are verified when bonded to a vibratory structure. Two basic types 
of synthetic inductors are presented.  

The Piezoelectric Patch 

As an example, the manufacturer (Mide Technology 
Corporation) provides the information presented in Tab. 3 about the 
ACX QP15N piezoelectric patch. 

 

Table 3. ACX QP15N specifications. 

Size [mm] Weight[g] Number of 
elements 

50.8 x 25.4 x 0.254 2.268 1 piezoelectric patch 
Piezoelectric patch 

size [mm] Capacitance [nF] Operation range 
[V] 

45.974 x 20.574 x 
0.127 

100 ± 100 

 
However, for the system compound by an ACX QP15N bonded 

to a flexible beam as shown in Figure 9 , by using an impedance 
analyzer (Hewlett Packard HP4194A), a variation of the impedance 
with respect to the frequency is found, as shown by Figure 10 . 

 

 

 
Figure 9. ACX QP15N + Beam System. 

 
Figure 10  shows also that impedance is not purely reactive. The 

real part of the impedance, Figure 10 -(a), introduces a resistive 
element. Besides, the imaginary part of the impedance, Figure 10 -(b), 
confirms the capacitive element. From the phase curve, Figure 10 -
(d), the predominance of the capacitive component is verified, since 

the values obtained are close to –90º. The inherent impedance of the 
piezoelectric patch can be viewed as a resistor, Figure 10 -(e), which 
is in series with a capacitor, Figure 10 -(f).  

 

 
Figure 10. Impedance for the ACX QP15N + Beam  syst em. 

 
To validate the above-presented model, the ACX QP15N + 

beam system is tested using the setup shown in Figure 11 . 
Flexible Beam

Piezoelectric Device

RLOAD

Shaker

 
Figure 11. Experimental setup for the verification of the electrical 
characteristics of the ACX QP15N + Beam + RLOAD sys tem. 

 
A shaker excites the system according to a predefined frequency 

and amplitude. Therefore, according to the modeling of the 
piezoelectric device, the controlled voltage source (internal to the 
patch) also produces voltage. Electrically, the set constituted by the 
piezoelectric patch and load resistance forms a circuit characterized 
by a voltage source, a capacitor, a resistor and a load resistance, as 
shown in Figure 12 . 

 

CPZT

RPZT

RLOAD

VIN

VOUT

PZT

I

 
Figure 12. Resultant electric circuit from the ACX QP15N + Beam + RLOAD 
system. 

 

This way, the current and the electric power on LOADR  can be 

calculated by using the Ohm’s law: 
 

( )2

( ) ( )
( )

( )
IN OUT

TOTAL LOAD

RMS
OUTRMS RMS

LOAD OUT
LOAD

V V
I

Z R

V
P V I

R

ω ωω
ω

= =

= =

 (19) 
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Experimentally, the voltage ( )INV ω  can be obtained through an 

oscilloscope, by keeping the terminals of the piezoelectric element 
in open circuit, as illustrated in Figure 13. ( )INV ω depends on the 

magnitude of the excitation provided by the shaker. As the 
excitation remains the same , ( )INV ω  is not altered. 

 

CPZT

RPZT

VIN

PZT Oscilloscope

 
Figure 13. Setup for the experimental obtaining of VIN(ωωωω)))). 

 
Consequently, by varying the load resistance and measuring the 

voltage in the load resistance, the curves corresponding to 
 x OUT LOADV R ,  x LOADI R  and  x LOAD LOADP R can be generated. 

Figure 14 illustrates the comparison of the experimental data with 
those obtained from the analytical model of the proposed electric 
circuit. 

 

 
 

 
Figure 14. Experimental versus analytical data for the ACX QP15N + Beam 
+ RLOAD  system. 

The Resonant Shunt Circuit and the Synthetic Inductor 

Equations (13) and (18) show that the values of the inductance 
are inversely proportional with respect to the angular frequency. In 
the real cases, the associated frequencies are relatively low. As a 
consequence, the resonant shunt circuits require large values for the 
inductance. These values would typically attain hundreds of henries. 
The weight and the volume of such inductors would make 
unfeasible the use of this technique. To overcome this limitation, 
synthetic inductors are obtained by using operational amplifiers, as 
in previous works (Riordan, 1967; Antoniou, 1969; Stephenson, 
1985; Schaumann et al., 1990; Massara et al., 2000 and Park and 
Inman, 2003). Even assuming different configurations, these circuits 
are known as synthetic inductors or gyrators. In the present 
contribution, two types of synthetic inductors were explored, 
namely the one proposed by Antoniou (1969), and the other one 
based on Riordan (1967). For the sake of simplicity,  they are called 
Antoniou synthetic inductor and Riordan synthetic inductor, 
respectively. 

Antoniou Synthetic Inductor 

Figure 15 shows the synthetic inductor circuit as proposed by 
Antoniou (1969). 

 

OA1

OA2

Z1 Z2 Z3 Z4

Z5

ZIN

V1 V2 V3 V4 V5I1 I2 I3 I4

 
Figure 15. Circuit for the Antoniou synthetic induc tor. 

 
The input impedance is given by equation (20):  
 

1 3 5

2 4
IN

Z Z Z
Z

Z Z
=  (20) 

 
From the previous equation, a synthetic inductor is obtained by 

using the following relations: 4
4

jZ Cω
−= , 1 1Z R= , 2 2Z R= , 

3 3Z R=  and 5 5Z R= . The equivalent circuit impedance INZ  is the 

same as an inductor (eqL ), as shown below: 

 

1 3 4 5

2

 ;IN eq

eq

Z j L

R R C R
L

R

ω=

=

 (21) 

Riordan Synthetic Inductor 

Figure 16 shows the synthetic inductor circuit as proposed by 
Riordan (1967). 
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Z1

Z2

Z3

Z4

Z5

OA2
OA1

V1
V2

V3

ZIN

 
Figure 16. Circuit for the Riordan synthetic induct or. 

 
In despite of presenting a different topology, the equations for 

the input impedance are the same as those of the Antoniou synthetic 
inductor. 

Practical Aspects about the Synthetic Inductors 

In order to test the performance of synthetic inductors at low 
electrical frequencies (as typically found in most mechanical 
systems), experiments simulating the resonant shunt circuit were 
performed. An RLC series filter was configured in this experiment 
by using the synthetic inductor together with a resistor 0R , a 

capacitor PZTC  and a signal generator (Brüel & Kjær Sine/Noise 

Generator Type 1049). The filter is described by Eq. (22), which 
relates the voltage in 0R  and the voltage in the generator. A signal 

analyzer (Spectral Dynamics SD380) was used to perform the 
frequency analysis of the circuit.  The setup of the experiment is 
shown in Figure 17. 

 

1
( )

1 1
1

LOAD

PZT

H

j L
R C

ω
ω

ω

=
 

+ − 
 

 (22) 

 

SD380 AnalyserPC

B&K - Sine/Noise Generator

CPZT R0

Synthetic
Inductor

VIN

VOUT

 
Figure 17. Experimental setup to test the synthetic  inductors. 

 
The signal generator introduces in the circuit a white noise of 

bandwidth 2Hz to 2kHz, with 1.25V of RMS value. The signals were 
acquired simultaneously in a sample of T=1.6s, with intervals of 
dt=0.78125ms. Then the maximum frequency analyzed is 
fmax=500Hz and the frequency resolution is df=0.625Hz. The 
transfer function was estimated by using 50 samples. 

The capacitors 4C  and PZTC  and the resistor 0R  were fixed to 

108.5nF, 110.1nF and 9.98kΩ, respectively. Table 4 shows the 
values used for the remaining components along the experiments. In 
this case, the inductance is calculated according to the equation: 

( )2

1

2
eq

elet PZT

L
f Cπ

=  (23) 

 

Table 4. Experimental values for R 1, R2, R3 and R5 and the calculated one 
for L eq. 

Experiment 1R [kΩ] 2R [kΩ] 3R [kΩ] 5R [kΩ] eqL  [H] 

#1 2.18 2.17 97.7 2.16 23.00 
#2 5.51 5.52 38.6 5.51 23.03 
#3 14.78 14.68 14.35 14.67 22.0 
#4 46.2 46.2 4.61 46.0 23.01 
#5 99.9 99.3 2.13 99.1 23.04 
#6 219 220 0.964 221 23.01 
#7 330 329 0.643 329 23.02 

 
Figure 18 and Figure 19 present the graphics of the amplitude, 

phase and coherence of the transfer function for the two types of 
synthetic inductors. A comparison between the two types of 
synthetic inductors does not allow any straightforward conclusion 
about the superiority of one with respect to the other. However, by 
taking into account the graphics of the module and phase, it is 
possible to notice good repeatability for the tests, since the 
resonance frequency remains approximately the same for all the 
experiments. The graphics of the coherence indicate that along the 
experiments the values of the coherence become worse, probably 
due to the values of the resistors. Finally, it is also possible to notice 
that the electric network available contaminates the experiments in 
60Hz (used in Brazil) and in some other harmonics in all the 
experiments. 

 

 
Figure 18. Amplitude, phase and coherence of the tr ansfer function for 
Antoniou synthetic inductor. 
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Figure 19. Amplitude, phase and coherence of the tr ansfer function for 
Riordan synthetic inductor. 

 
Figure 18 and Figure 19 also show a discrepancy between the 

experimental results and the analytical model adopted for the RLC 
circuit, as described by Eq.(22). For example, in all cases the gains 
are not unitary in the resonant frequency. It can be concluded that 
the non-idealities of the synthetic inductor generate one or more 
parasite resistances associated with the equivalent inductor. Park et 
al (2003) discussed about an experiment that evaluates the 
impedance of the synthetic inductor. By using an impedance 
analyzer, it was shown the existence of a frequency dependent 
inherent resistance in the synthetic inductor. 

In this work, it is desired to obtain an equivalent model for the 
synthetic inductor. To achieve this aim, four different configurations 
were tested as candidates for the equivalent circuit used in the 
experiments, as shown in Figure 20. 

 

CPZT

PZT

R0

synthetic inductor

RS

Leq

(a)

CPZT

PZT

R0

synthetic inductor

RP Leq

(b)  

CPZT

PZT

R0

synthetic inductor

RS

LeqRP

(c)

CPZT

PZT

R0

synthetic inductor

RS

LeqRP

(d)  
Figure 20. Candidate configurations to the syntheti c inductor equivalent 
circuit (a) a resistor R S in series with an inductor L eq , (b) a resistor R P in 
parallel with an inductor L eq ,(c) a resistor R P in parallel with an inductor 
Leq  and a resistor R S in series with this branch and (d) a resistor R S in 
series with an inductor L eq  and a resistor R P in parallel with this branch. 

Experiment #4 for the Riordan synthetic inductor was arbitrarily 
chosen to check which model better describes the behavior of the 
real circuit. From a curve fitting procedure, it was possible to obtain 
the values of SR  and PR , as presented in Table 5 and Figure 21. 

 

Table 5. Values of R S and Rp. 

Circuit 
Figure 
20-(a) 

Circuit 
Figure 
20-(b) 

Circuit 
Figure 20-(c) 

Circuit 
Figure 20-(d) 

SR  

[kΩ] 
PR  

[kΩ] 
SR  

[kΩ] 
PR  

[kΩ] 
SR  

[kΩ] 
PR  

[kΩ] 
4.969 72.495 3.067 140.591 3.506 5.398 x 1011 

 

 
 

 
Figure 21. Amplitude and phase of the experimental and analytical 
transfer functions. 

 
By analyzing Table 5 and Figure 21, it can be concluded that the 

best representation of the real electrical circuit is given by the circuit 
(a), for which the synthetic inductor is characterized as a resistor RS 

in series with an equivalent inductorL , as described by Eq. (22). 
Circuit (d) presents very similar results, however, the value of the 
resistor PR  is extremely high, suggesting that PR tends to infinite 

(open circuit). This characteristic automatically leads to the choice 
of circuit (a). In this work, the inherent resistance of the synthetic 
inductor is called PARASITER . 

Once defined the model for the synthetic inductor, a second set 
of experiments verifies the behavior of the inherent resistance as a 
function of the value of the equivalent inductor, both for the 
Antoniou and Riordan synthetic inductors. In the experiments, the 
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values of 0R  and 0C  were fixed to 9.86kΩ and 111.5nF, 

respectively, and a number of different values for the resonance 
frequency of the circuit, 0f , was predefined. Consequently, the 

value of the inductor varies, leading to the variation of PARASITER . 

For both considered inductors the values of 0R , 1R , 2R , 5R , 0C  

and 4C  were fixed to 9.86kΩ, 46.2kΩ, 46.2kΩ, 46.0kΩ, 111.5nF, 

and 112.6nF, respectively. 
The results can be seen in Table 6 and Figure 22. 
 

Table 6. Experimental value for f 0, Leq  and RPARASITE. 

Antoniou Synthetic Inductor 
Experiment 0f [Hz] L [H] PARASITER [kΩ] 

#1 396.25 1.3573 0.9553 
#2 301.25 2.3175 1.1314 
#3 198.75 5.3116 1.7849 
#4 100.00 20.6205 4.0478 
#5 49.375 81.4147 10.9426 
#6 22.50 368.4433 39.4855 

Riordan Synthetic Inductor 
Experiment 0f [Hz] L [H] PARASITER [kΩ] 

#1 401.875 1.4682 1.0776 
#2 297.500 2.5302 1.2170 
#3 200.000 5.3308 1.7967 
#4 99.375 20.5834 4.2154 
#5 48.750 81.5618 11.1978 
#6 23.125 368.1111 37.6879 

 

 
 

 
Figure 22. R PARASITE versus L for the synthetic inductors. 

Both for the Antoniou and for the Riordan synthetic inductors, it 
is easy to notice that the value of the parasite resistance increases 
when the inductance values also increase. This behavior is quite 
linear along the analyzed range. This means that, by taking into 
account a pre-defined value for the capacitance, the RLC filters 
exhibit better performance when designed to operate at larger 
electrical resonance frequencies. This fact has a direct consequence 
in shunted piezoelectric applications, since the frequencies of 
interest in these cases are rather low from the electrical point of 
view. 

Multiple Degree-of-Freedom (MDOF) Systems 

Real systems are continuous and non-homogeneous, which 
means that an infinite number of degrees of freedom should be 
considered to represent them, accordingly. Therefore, the analysis of 
this type of systems is only possible through analytic (exact) 
models. Unfortunately, the solution of these models is not easily 
obtained. Thus, it is necessary to use approximate techniques that 
describe the behavior of the system by using a finite number of 
degrees of freedom (Maia and Silva, 1997).  To exemplify, consider 
the undamped N DOF system shown in Figure 23. 

 

mNm1 m2

k1 k2 k3
kN kN+1…

x1 x2 xN

f1 f2 fN

 
Figure 23. Discrete model for an N degrees of freed om system. 

 
The equation of motion can be written in the matrix notation as: 
 

2ω − =
 
K M x f  (24) 

 
By taking 0=f , it is possible to obtain the modal model for the 

free system, which is commonly expressed by the following pair of 
NxN matrices: 
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The eigenvalues 2
1ω , 2

2ω ,..., 2
Nω  represent the natural 

frequencies of the undamped system. The eigenvector matrix ψ  
(also known as the modal matrix of the system), is compound by the 
modal shapes given by { }rψ (r = 1, 2, ..., N). 

In order to find the FRF of the system, it is necessary to perform 
the following matrix transformations: 
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where rm  and rk  are known as modal mass and modal 

stiffness, respectively. 
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The FRF that relates the acceleration obtained at the position i 
when an external force is applied at the position k is given by the 
following equation: 

 

2
2

1

( ) i k
ikH

N
r r

r r r

s s
k s m

ψ ψ

=
=

+
∑  (27) 

 
For more details about MDOF systems refer to Maia and Silva 

(1997). 

Modeling of Shunted Piezoelectrics for MDOF Systems 

As previously shown in Viana (2005), it is possible to note the 
similarity between Eq. (5), which describes the system of 1 DOF 
containing the shunted piezoelectric device and Eq.(27), which 
describes a MDOF system. It can be observed that Eq. (27) takes 
into account the influence of the N modes in the system response.  

This way, by considering the analyses above, the effect of the 
piezoelectric patches and their shunt circuits can be easily 
introduced in the MDOF system. This can be achieved by adding 

the term ( )rMECZ sjj  in the denominator of Eq. (27). Mathematically: 

 

( )
2

2
1

( ) i k
ikH

r

N
r r
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r r r

s s
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ω=

=
+ +

∑
jj

 (28) 

 
It is worth mentioning that rm  and rk in Eq. (28) include the 

influence of the PZT (Pereira, 2003). 
As an example, consider the case as depicted in Figure 24. This 

figure illustrates an undamped flexible beam (a) containing two 
piezoelectric passive damping devices (b). A PZT and its 
corresponding shunt circuit characterize each passive device. 
Damping in this case is designed to reduce the vibration amplitudes 
of two pre-defined modes, simultaneously. 

 

(a)

Clamp

Beam

 
(b)

Clamp

Beam

PZT 01

Shunt
Circuit 01

Shunt
Circuit 02

PZT 02

 
Figure 24. Beam (a) without and (b) with piezoelect ric shunt devices. 

 
Figure 25 shows the FRF obtained numerically. The circuits 

were designed to reduce the vibration amplitudes of the second and 
third modes, simultaneously. 

 
Figure 25. FRF for systems with and without passive  damping. 

Optimal Design Strategy for Multimodal Shunted 
Piezoelectrics 

Equation (28) shows that a modification introduced in any mode 
influences the FRF in the whole frequency band. This means that 
the effect of a resonant shunt circuit, tuned for a specific mode, does 
not influence only that single frequency, but the whole frequency 
band. Therefore, considering the design for multimodal passive 
vibration suppression systems, the circuits cannot be designed 
separately, using closed solutions, as for the single mode case. Thus, 
the most effective strategy should consider the influence of each 
mode and the band of interest. In this work, the design of the 
resonant shunt circuits is treated as an optimization problem, as 
presented in Steffen and Inman (1999) and Rade and Steffen (2000). 

For illustration, consider the situation shown in Figure 24-(b) 
and described by Eq. (28). The response, ( )ikH s , must be 

minimized over predefined frequency bands as chosen by the user. 
For example, in the case illustrated by Figure 24 and Figure 25, the 
second and third modes were taken as target modes for attenuation 
purposes. Consequently, in the most general case, the system may 
have a group of N  piezoelectric patches and their shunt circuits, 
each one tuned up for a different mode. Under these circumstances, 
the optimal design of shunt circuits consists of determining the 
value of each one of the N  inductors and N  resistors to be used in 
the shunt circuits. 

Then, the optimization problem is defined as the minimization 
of the objective function given by: 
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where: 
• p : is the number of values of ( )ikH s ; these values are 

computed by using the modeling of multi-modal 
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piezoelectric shunt systems as shown in the previous 
section, 

• ( )ikH s : is the frequency response function, 

• sm : represents the Laplace variable within the frequency 
band of interest; 

• iL  and iR : are the inductors and resistors to be used in the 

damping of the ith  mode, respectively, and 
• N : is the number of shunt circuits to be used. 

The optimization task that defines the design of the shunt 
circuits is an example of direct problem. In spite of this, the use of 
classical optimization methods fails in many cases, due to local 
minima found in the design space. For this reason, in the present 
work, a natural optimization method was used, namely the 
LifeCycle Model, to be briefly reviewed in the following sub-
section. 

LifeCycle Model – an Overview 

LifeCycle Model (Krink and Løvberg, 2002) is inserted in the 
natural optimization context, in which Genetic Algorithms (GA) and 
Particle Swarm Optimization (PSO) also belong. In biology, the 
term refers to the passage through the phases during the life of an 
individual. As life phases, can be cited the sexual maturity and the 
mating seasons, for example. As it happens in nature, the ability of 
an individual to actively change its own phase or stage in response 
to its success in the environment is the main inspiration for 
LifeCycle. In fact, the idea behind LifeCycle is to use the transitions 
to deal with the mechanism of self-adaptation to the optimization 
problem. The fitness offers a criterion used by each individual to 
shift to another life stage. To close the definition, LifeCycle stages 
must be presented. In the present work, two heuristics are used as 
stages, namely the GA and the PSO. Other versions of the LifeCycle 
can be proposed by considering other heuristics and a mix of them, 
as shown in Krink and Løvberg (2002). 

Since the algorithm is composed by various heuristics, it is 
necessary to set the parameters of every heuristic used in the 
LifeCycle model. Nevertheless, there is a parameter inherent to the 
LifeCycle model, namely the number of iterations that represents a 
stage of the LifeCycle, called as stage interval. At the end of each 
stage interval, the less well-succeeded individuals must change their 
stage in order to improve their fitness. This means that the 
optimization approach does not follow a rigid scheme as proposed 
in Assis and Steffen (2003), in which various techniques are used 
sequentially in a cascade-type of structure. In other words, it is the 
mechanism of self-adaptation to the optimization problem that 
counts. 

It is important to notice that the algorithm can run in a parallel 
scheme, since the original population is divided in a subpopulation 
of PSO particles and another one of GA individuals. During the 
optimization procedure the agents of each subpopulation commute 
to the other in a way to improve its own fitness. 

Details about GA are provided by Michalewicz (1994) and 
Haupt and Haupt (1998), while PSO is comprehensively  presented 
by  Kennedy and Eberhart (1995) and Venter and Sobieski (2002). 

The outline of a basic LifeCycle algorithm is presented below: 
1. Initialize the algorithm parameters for the PSO and GA. 
2. Evaluate the fitness for all particles (PSO) and individuals 

(GA).If there is no recent improvement, switch the LifeCycle 
stage (change from GA to PSO or vice-versa). 

3. For all PSO particles, run the PSO algorithm. 
4. For all GA individuals, run the GA algorithm. 
5. Go to step 2 and repeat until the stop criteria are achieved. 

For more detailed information about LifeCycle Model the reader 
should refer to (Rojas et al., 2004). 

Experimental Results 

Using a mechanical system composed by a flexible beam, two 
piezoelectric patches and their respective shunt circuits, it was 
possible to perform the experimental verification of the design 
methodology presented above. Figure 26 shows details of the 
experimental setup. Figure 26-(a) gives the configuration used for 
single mode vibration suppression, in which a single piezoelectric 
patch and shunt circuit are used. Figure 26-(b) shows the 
configuration for two modes, in which a pair of PZT patches and 
shunt circuits is needed. 

 

 

(a)

Accelerometer

Force Transducer
(coupled with a plastic

or rubber tip)

Piezoelectric
Patch

Synthetic
Inductor

Signal
Conditioners

 

Synthetic
Inductors

(b)

Flexible Beam Details
(the other piezoelectric patch and its

connection with the synthetic
inductor)

 
Figure 26. Experimental setup. 

 
A pair of piezoelectric patches ACX QP10N (QP10N-11571 and 

QP10N-11573) was used in the experiments. As previously 
presented, the manufacturer furnished the information shown in 
Table 7. However, as was done for QP15N, the values computed in 
the design of the  shunted PZTs were obtained from tests by using 
the impedance analyzer Hewlett Packard HP4194A. The 
corresponding experimental data are illustrated in Figure 27. 
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Table 7. ACX QP10N specifications. 

Device size [mm] Device weight[g] Number of 
elements 

50.8 x 25.4 x 0.381 2.834 1 piezoelectric patch 
Piezoelectric patch 

size [mm] 
Device capacitance 

[nF] 
Operation range 

[V] 
45.974 x 20.574 x 

0.254 
60 ± 200 

 

 
 

 
Figure 27. Impedance for the ACX QP10N + Beam  syst em. 

 
In the design of the shunt circuits, it was considered that the 

capacitance of the piezoelectric patches that should be tuned by the 
inductor is 50.5033 nFPZTC =  (corresponding to the average value 

of the capacitances shown in Figure 27). 

Computational Model for the Mechatronic System 

As stated above, the modal mass and modal stiffness of the 
system are required in the design of the piezoelectric passive 
damping device. For this aim, it was used the finite element method 
(FEM). 

Figure 28 shows the FEM model of the structure: Figure 28-(a) 
presents a schematic representation of the system; Figure 28-(b) 

shows details regarding the FEM model; and Figure 28-(c) presents 
the degrees of freedom considered. 
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(b) Elements and nodes of the FEM Model

(c) DOF of the Nth Element

vn
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Elements
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n
leftθ n
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Figure 28. Mechatronic system model. 

 
Table 8 shows the physic and geometric properties used in the 

FEM model. 
 

Table 8. Properties used in the FEM model. 

 Piezoelectric 
Patch Beam Nth 

Element 
Elastic modulus [Pa] 69 x 109 70 x 109 - 
Density [Kg/m3] 7700 250 - 
Length [m] 0.051 0.306 0.051 
Width [m] 0.0254 0.0254 0.0254 
Thickness [m] 0.00381 0.00317 0.00381 
 
The classical Euler-Bernoulli theory for modeling the beam was 

used. To validate the model, experimental tests were performed. 
Figure 29 illustrates the amplitudes of the FRF obtained through the 
computational and experimental models. It is possible to notice an 
agreement in the resonance frequencies. This means that it is 
possible to use the model above to design the parameters of the 
shunt circuits. 
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Figure 29. Computational and experimental results. 

 
To close the requirements for the design of the shunt circuits, 

Table 9 shows the generalized electromechanical coupling 
coefficients for the first three modes of the structure. 

 

Table 9. Generalized electromechanical coupling coe fficients for each 
piezoelectric patch. 

 Generalized Electromechanical 
Coupling Coefficient 

Mode QP10N – 11571 QP10N – 11573 
1st 0.0664 0.0929 
2nd 0.0223 0.0130 
3rd 0.1175 0.1364 

Single Mode Case 

Considering that the capacitance of the piezoelectric patch is 
50.5033 nFPZTC =  and by choosing arbitrarily the QP10N-11571 

PZT patch, the optimal parameters of the resonant shunt circuits for 
the first three vibration modes are presented in Tab. 10. 

 

Table 10. Optimal shunt  parameters for the single mode case. 

Shunt Circuit Configuration   
Series Parallel 

Target 
Mode 

SERIESRSP
OPTMR  

[KΩ] 

SERIESRSP
OPTML  

[H] 

PARALLELRSP
OPTMR  

[KΩ] 

PARALLELRSP
OPTML  

[H] 
1st 10.3053 611.0547 1174.0849 615.1039 
2nd 0.5837 17.2534 585.416 17.2663 
3rd 1.1489 2.4476 42.1820 2.4986 
 
As can be observed, the values of the inductors are extremely 

large, especially for the first mode. As previously announced in this 
paper, synthetic inductors are designed to overcome the problem of 
large inductance values. For the resistors, it is noticed that the 
parallel configuration leads to larger values than the series one. This 
means an advantage of the parallel topology as compared to the 
series one. Since synthetic inductor presents a parasite resistance, it 
creates a voltage divisor with the load resistor of the shunt circuit. 
Thus, in order to facilitate electric energy dissipation in the resistor 
designed for the shunt circuit, a smaller influence of the parasite 
resistance is necessary. This means that the parallel topology 
becomes more attractive than the series one. Consequently, in all the 
experiments presented in this work, it was used the parallel 
topology. 

Figure 30 shows the results of the experiments related to the 
vibration reduction of a single mode. For each mode considered, the 
response of the shunted PZT system is compared with the open 
circuit case. 

 

 
 

 
 

 
Figure 30. Experimental results for the single mode  case. 
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Multiple Mode Case 

As described previously, the design of shunt circuit parameters 
for the multimode case is treated as an optimization problem. The 
attenuation of the vibration in the neighborhood of the second and 
third modes is addressed in the present work. 

Table 11 gives the shunt circuit parameters as obtained by 
following the optimization strategy. Figure 31 gives the 
characteristics of the optimal design: Figure 31-(a) shows the 
frequency bands of the spectrum chosen to have their vibration 
amplitudes minimized; Figure 31-(b) and (c) give the evolution of 
LifeCycle  along the optimization process. 

 

Table 11. Optimal design of the shunt circuit param eters for the 1 st and 2nd 
modes. 

Mode Patch  [K ]OPTMR Ω   [H]OPTML  

1st QP10N-11571 1125.8039 606.7015 
2nd QP10N-11573 821.2278 17.1836 

 

 
 

 
Figure 31. Optimization for 1 st and 2 nd modes – multimode case. 

 
It is important to point out the importance of the optimization 

process in the design of the parameters of the shunt circuits. In one 
hand, the parameters calculated by using the single mode 
formulation give the final value of the objective function equal to 

{ } { } 5( , ) 2.2085 10single single  x J =L R . On the other hand, the design 

obtained from the optimization process gives 

{ } { } 5( , ) 10optm optm 2.1842 x J =L R . 

Figure 32 shows the experimental results obtained for the 
multimode case. 

 

 
 

 
Figure 32. Experimental results for the 1 st  and 2nd  modes – multimode 
case. 

 
Table 12 presents the shunt circuit parameters, as obtained by 

using the optimization approach. Figure 33 shows the characteristics 
of the optimal design: Figure 33-(a) exhibits the frequency bands of 
the spectrum chosen to have their vibration amplitudes minimized; 
Fig. 33-(b) and (c) give the evolution of LifeCycle along the 
optimization process. 

 

Table 12. Optimal design of the shunt circuit param eters for the 2 nd and  
3rd modes – multimode case. 

Mode Patch  [K ]OPTMR Ω   [H]OPTML  

2nd QP10N-11571 814.8445 17.1468 
3rd QP10N-11573 53.7718 2.5338 
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Figure 33. Optimization for 2 nd  and 3 rd modes – multimode case. 

 
It is worth pointing out the importance of the optimization 

process in the design of the parameter of the shunt circuits when 
various modes are considered simultaneously. The parameters 
calculated by using the single mode formulation lead to the final 
value of the objective function equal to 

{ } { } 5( , ) 1.9407 10single single  x J =L R . However, the design 

obtained from the optimization process  (multimode case) 

gives { } { } 5( , ) 1.7812 10optm optm  x J =L R . 

Figure 34 shows the experimental results for the second and 
third modes, obtained for the multimode case. 

It is worth mentioning that the results concerning the multimode 
case take into account two piezoelectric patches bonded to the 
structure. Each patch is tuned to a specific mode. Consequently, the 
amount of energy dissipated through this system is larger than the 
one found for the single mode case (in which a single patch was 
used).  

 

 
 

 
Figure 34. Experimental results for the 2 nd  and 3 rd  modes – multimode 
case. 

Conclusions 

The present contribution was dedicated to the study of passive 
vibration damping by using piezoelectric patches and resonant shunt 
circuits. The analytical model of the system shows that the general 
behavior of shunted piezoelectric systems is similar to the classical 
dynamic vibration absorber. This paper presented a complete study 
concerning resonant shunted piezoelectric, including the analytical 
and experimental aspects together with the synthetic inductor 
design. This was intended to offer a complete study regarding 
resonant shunted piezoelectric, allowing further implementations by 
the interested reader. Besides, the study devoted to the multimode 
case as developed by the authors represents a more realistic 
approach. It should be considered that the multimode case is not a 
simple extension of the single mode case. Also, the use of 
optimization techniques can be considered a valuable contribution 
because no closed solution can be derived for the multimode case. 
The optimization results were validated experimentally. It was 
observed that it is possible to obtain closed form solutions for the 
shunt parameters only in the case of single mode attenuation. An 
important aspect is that the multimode technique is mandatory in a 
great number of real situations, in which the modes are quite close 
in the frequency spectrum. In such cases the influence of each mode 
in the response cannot be discarded. It was necessary to design 
synthetic inductors based on operational amplifiers, to avoid 
cumbersome traditional inductors. Details were given about the 
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design of synthetic inductors and experimental tests were included 
to help in the choice of the circuits’ parameters. Both numerical and 
experimental results are very encouraging in the sense that electric 
shunt circuits can be successfully used in order to attenuate 
vibrations of flexible structures.  Further studies will be focused on 
other attenuation schemes such as the one proposed by the so-called 
negative impedance converter. 
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