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this work is to extend well established procedures for the generation and adaptation of
both, iso and anisotropic triangular meshes, such aslocal and global remeshing aswell as
boundary layer mesh generation, to deal with iso and anisotropic quadrilateral and mixed
meshes. Several examples are presented to illustrate the quality of the meshes produced,

and the flexibilities of the computational system.
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Introduction

The use of an adequate mesh consists in one ofmntia
ingredients for an accurate numerical simulationodder to obtain
such a mesh, a versatile mesh generator and a augbtive
procedure must be available. Automatic mesh geperahas
received much attention from researchers on cortipnt
simulation, to minimize manual intervention, to irmpe mesh
quality and to obtain more efficient procedures. stanctured
methodologies are becoming predominant due to thiktyaof
modeling geometrically complex designs and becdleg are the
natural environment for adaptivity, which may be tmly hope for
resolving very small scale features (e.g. boundagers). Most
finite element and finite volume codes use unstmect
triangulations due to their geometrical flexibilayd the low cost of
linear triangular elements. However, certain foratiohs perform
better with quadrilateral elements and it may beessary to use
different types of elements for different physichien solving
coupled problems. In fluid-structure interactionolgems, for
instance, it is very common to use unstructureahgular meshes
for the fluid and quadrilateral meshes for the attital problem. In
computational fluid dynamics applications, it maysoa be
interesting to use a mixed mesh, in which quadniidtelements are
used in regions where the flow is essentially ommedsional
(Hwang and Wu, 1992). The utilization of unstruetirmesh
generation techniques for the simulation of boupdeyer problems
(Hassan, 1994, Marcum, 1995 and Thompson et a@9)19e.g.
viscous flow) and for anisotropic adaptation isgogat importance
(Peraire et al., 1987, George, 1991, Borouchaki Brey, 1998,
Thompson et al., 1999 and Almeida et al., 20009esithe obtained
meshes are capable of improving the accuracy ofntmaerical
solution while at the same time improving the éffiicy of the
numerical method, as they guarantee an “optimaltniver of
elements in the mesh. The development of procedfoeghe
generation of anisotropic unstructured meshesiangtes capable
of capturing directional features of the physiaalpem is a topic of
intensive research (Jansen and Shephard, 2001)edsutvork has
been done regarding anisotropic meshes of quashalat
(Borouchaki and Frey, 1998). Some effort has alsenbmade in
order to build unstructured hexahedral meshes. Mewemost of
the success achieved concentrates on generatirdyilgterals and
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hexahedra in the vicinity of solids walls, i.e.idesboundary layers.
It is known that quadrilateral and hexahedra regless cpu time
and memory whenever an edge-based data structacojsted for
both finite element (FEM) and finite volume metho(lBVM),
(Borouchaki and Frey, 1998). Apart from that, is@limproves
accuracy in the FVM context (Hwang and Wu,
Borouchaki and Frey, 1998). However, the FEM doet atways
share the last property (Lyra and Almeida, 2002)ildéng good
quality quadrilateral and mixed meshes is verylehging because
guadrilaterals are very “stiff" from a geometrigint of view, and
controlling element distortion in complex domaingidg analysis
that incorporate adaptive procedures is certaiotyan easy task.

In this work, an automatic triangular mesh generatsed on
the advancing front technique (Peraire et al., J987sed as the
main building block of a computational system foesih generation
that can build triangular, quadrilateral and mixettshes over
arbitrary domains. Quadrilateral elements are gdadrfrom an
original mesh of triangles through a process of gingr and
splitting. These approaches allow a good contréhefmesh density
and gradation, and of the directional stretching guality of both,
triangular and quadrilateral elements. The so dall@dvancing
layers" technique (Hassan et al., 1994), which waginally
devised to generate triangular/tetrahedral meshedso extended to
deal with quadrilateral and mixed meshes allowimg ¢onstruction
of adequate meshes within the regions close td solundaries. The
system also allows for either, a global adaptiveaghing procedure
(Peraire et al., 1987), in which the whole mesteibuilt according
to the mesh parameters dictated by the error esjnm a local
remeshing (Hassan et al., 1993a), in which we debter
automatically the subregions within the domain whére mesh
must be re-built.

Here, we extend the local remeshing procedure & wdéh
anisotropic meshes by computing the mesh paramégrspacings
and stretching directions, accordingly to an amggmt error
estimator, and then by determining the subregionshich at least
one of those parameters must change significatly eliminate the
elements within those subregions and re-built teshraccording to
the new distribution of mesh parameters. The gjreseadopted to
build such general mesh generation/adaptation reyste robust,
easy to implement and will be fully described, wiprticular
emphasis to the modifications and contributionsppsed. Some
relevant issues referring to the auxiliary datacttires adopted and
other numerical aspects are also discussed. Finalgveral
examples will be presented to illustrate the quadit the obtained
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meshes and the importance of using a flexible aimist mesh
generation/adaptation procedure when dealing wittmptex
geometries and/or problems which involve complexifees.

Unstructured 2-D M esh Generation

The mesh generation problem consists in subdividarg
arbitrary domain into a consistent assembly of el&®
(subregions). If the generated elements cover fitieeedomain and
the intersection of the elements occurs only onroom points or
edges, the consistency of the mesh is guaranteedording to
Peraire (1987), the basic requirements for a meskrgtor are:

a. Capacity to handle arbitrary geometries with minimuser

intervention;

b. The necessity of as little input data as possible;

c. Good control over the spatial variation of size ahdpe of

the elements.

d. Easy incorporation of adaptive strategies.

Triangles are the most flexible elements for autinenesh
generation over complex two dimensional geometipesticularly
when mesh grading is required. Several robust aacsatile
unstructured triangular mesh generators and tiesnsions for 3-D
geometries (tetrahedral mesh generators) have teezioped and
are currently used in academic and industrial emwitents. There
are several well-established triangulation proceslusuch as the
advancing front (Peraire et al., 1987 and Thompsai., 1999) and
the Delaunay triangulation (Schroeder and Shephdr@90,
Thompson et al., 1999, and Secchi and Simoni, 2003)

Advancing Front Triangular M esh Generator

The original advancing front algorithm has beenedigyed over
time into a family of programs which are very rblmand flexible
for an easy incorporation of mesh adaptation. Tdheaacing front
mesh generator can be described as in Algorithm 1.

Algorithm 1. Advancing front technique.

1. Input of geometric data (using control points);

2. Input of mesh control parameters (through| a
background mesh);

3. Geometric modeling (using cubic splines);

4. Boundary discretization (placing new points
the boundary);

5. Domain discretization (simultaneously generating
points and triangles);

6. Mesh quality enhancement (through topological
and geometrical strategies).

The computational domain is modeled through theafismibic
splines which are defined by some control pointdos€ to
singularities extra care must be taken in the daim of these
points in order to avoid failure (Thompson et 4099).

As a “pre-processing” stage, before the mesh géoerhegins,
we must first build an initial and very coarse nigalar background
mesh that covers the whole domain. This coarsehrisessed only
to provide a piecewise linear spatial distributioh the nodal
parameters over the mesh to be constructed. T{pieéments of

the generated mesh will have a projected lengthdpfin the
direction parallel toa, and a projected length 0§J, in the
direction normal toa, (see Fig. 1), withS being the stretching

factor. During the generation process, the locdues of these
parameters will be obtained by a linear interpotatiover the
triangles of the background mesh.
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Figure 1. Mesh parameters.

The boundary of the domain is represented by thienuof
boundary segments forming closed loops. Externahbaries are
defined in an anti-clockwise fashion while inneuhdaries are set
in a clockwise manner. As described previously,gbeeration of a
triangular mesh by the advancing front techniqugir= by the
discretization of the boundary of the domain. Neinfs are created
according to the mesh parameters which are intatgwifrom those
of the background mesh. At the beginning of thecess, the
generation front is made by a set of linear segseahnecting the
boundary nodes. With the initial front defined, osegment is
chosen and, in general, a triangle is created firdhe insertion of
an internal node or by simply connecting existingdes. New
triangles are built following the same proceduraribg the process
any segment available to build a new triangle tsase‘active” and
the others which are set as “non-active” are remofrem the
generation front. Therefore the boundary segmeaetshiat modified
during the mesh generation. The procedure continugg the
whole domain is discretized. When solving problevhsch develop
some essentially one dimensional features at certgions (e.g.
boundary layer, shocks, etc.) it is not very eéfitito use uniform
isotropic meshes. In these cases, it is importanthave the
possibility to define a direction and a stretchifagtor for the
elements close to such regions. At least for ling&ngular
elements, the use of anisotropic meshes can benesfy important
in terms of computational effort and accuracy (Ripf992). To
generate an anisotropic triangulation of the ddsilemain, it is
used a transformatioh which is a function of the mesh parameters,
i.e. g, and g, i =1, 2. This transformation (see Peir6 et #94),

is given by,

T(a.d)=3. (1)

i=1

(& Da;)

S|

where O denotes the tensor product of two vectors Bnid the
number of dimensions, hefd,= 2. The effect of this transformation
is to map the physical domain into a normalized aiomwhere a
mesh is generated in which the elements are appataly
equilateral with unit average size. Applying thevdérse of this
transformationT™, we end up with a directional stretched mesh

dictated by the mesh parameters, which are defaitar by the
analyst or by the mesh adaptive procedure. Thishngemerator
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provides an accurate geometric modeling and higilityumeshes,
where the high level of control of the distributiofi local mesh
parameters eases the incorporation of mesh adaptstiategies.
The quality of the meshes is strongly influenced thg mesh
optimization stage. A specific mesh improvemerdtsgy for highly

anisotropic meshes and the definition of an adegsatjuence of
mesh enhancement procedures are incorporated rgocode.

Several other modifications have been introducedhi original

code in order to incorporate the flexibility to tiedth predefined

multidomains and automatically defined subregions, build

boundary layer meshes, to make possible genergtiiagrilateral

and mixed meshes and the automatic definition a€wbomains or
subregions should be filled up by triangular or dwyadrilateral

elements. These features will be fully describethencorrespondent
sections.

Quadrilateral Mesh Generator

Unstructured quadrilateral
generated in several different ways and do not smpeerious
topological restrictions on the meshes, being gmpated to deal
with complex geometries, naturally allowing locabnauniform
mesh refinement. Several different approaches baee proposed
to generate unstructured quadrilateral meshes.eTimeshodologies
can be divided into two basic groups: those thattdr generate
quadrilaterals directly (Blacker and Stevenson,119hu et al.,
1991, Sarrate et al., 1993 and Gendong and Li,)199@ those that
convert a previously generated mesh of trianglés @ mesh of
quadrilaterals (Lee and Lo, 1994, Xie and RamaeKk&84, Alquati
and Groehs, 1995, Lyra et al.,, 1998 and Lee et2803). The
conversion of triangular meshes is particularlyaative because
these meshes can inherit the properties of theguwiar meshes,
whose generators are very well developed and ance always
possible to build a triangular mesh over any abjt2-D domain,
quadrilateral meshes can be constructed as gesethk triangular
ones. It also allows the use of any triangular mgsherator as a
“black box”, even commercial ones for which soucogles are not
available, including procedures such as Delaunaythoos
(Weatherill, 1990) modified quadtree techniquesh(Beder and
Shephard, 1990), etc. In the work of Ait-Ali-Yahé& al. (1996),
anisotropic unstructured quadrilateral meshes vben# using an
edge-based error estimate and mesh movement. Irwdhnke of
Borouchaki and Frey (1998), anisotropic quadrikdteneshes are
generated using a more general approach based foringean
anisotropic discrete metric mapping. However, apaom the
mentioned references, very little have been dorté waspect to
anisotropic fully unstructured quadrilateral meshdsre, the use of
simple strategies during the conversion and mestalitgu
enhancement steps allows us to get reasonably gosbtropic
quadrilateral meshes.

Indirect Approach: Conversion of Triangular Meshes

As we generate a quadrilateral mesh using the csiove
strategy, the quadrilateral mesh inherits the dtarstics of the
initial triangulation. For both, iso and anisotropmeshes this
strategy consists of four main steps, as presentattjorithm 2.
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Algorithm 2. Indirect approach for quadrilateral me sh generation.

1. Generate a triangular mesh (either iso or anisyop

2. Remove an edge between two adjacent trianglesrio f
a quadrilateral;

3. Split all elements in the intermediate mixed mesh
(triangles into three quadrilaterals and quadrnidseinto
four quadrilaterals);

4. Perform some post processing steps in order tonesha
mesh quality.

The standard strategy of merging triangles intodglegerals
consists in eliminating a common edge that beldogs/o adjacent
triangles. Following the work done by Xie and Rakee (1994)
and Alquati and Groehs (1995), our mesh generatsuch that it
refrains from merging triangles that would form anfconvex
guadrilateral. Besides, for anisotropic meshes,ntierging process
will remove a common edge between two adjacentdtés, only if
the two quadrilaterals to be created satisfy aityuetiteria which is
controlled by two geometric parameteys,which is defined in Lee

and Lo (1994), and the minimum internal angte. These
parameters are compared to user defined toleragggsand é,,,, ,

and if, for an inner edgep > ¢,, and 8 > 6, this edge is

marked to be eliminated. We have attempted othategfies, in
which the edges are previously grouped in somerdalguati and
Groehs, 1995), but our experiments have shown gaifgiant
improvement on the final mesh quality. Additionayhen dealing
with anisotropic meshes, we redefine the mergirggature (step 2
of Algorithm 2), which is now performed as long ta®& common
edge is one of the two biggest edges of both tleEngnd we also
try to minimize the number of isolated trianglemagning after the
merging step, by relaxing the quality criteria, iasgeneral those
isolated triangles will lead to bad quality quaabdrals. The
enhancement of the mesh quality (step 4) is slgfifferent for iso
and anisotropic meshes and will be described latethis paper.
The adopted procedure generates a quadrilaterdi migs edges
that are approximately half of those of the coroesiing triangular
elements and usually this is not a serious consamoe the user can
generate a coarser initial triangulation to obttie desired mesh
density. The four steps involved in the quadri@tenesh generation
can be seen in Figs. 2t0 5.

M ulti-Domains and Mixed M eshes

By performing the initial triangulation for each rdain at a
time, keeping, of course, a consistent node num@dtirough the
interfaces of those domains, the mesh generatoagable to build
multi-domain meshes. The multi-domain meshes ctrereconsist
of a single element type or different element tyjpesach domain
(Lyra and Carvalho, 2000). It must be observed that mesh
consistency between two adjacent domains is gusgenin our
mesh generation process due to the fact that thedaoy nodes
(including those between two different domains) ereated first
with a consistent nhumbering and then the processodé/element
generation is performed independently for each donBesides,
those edges which lie between two domains areifdehind none
of the mesh enhancement procedures described préisent paper
is performed. The multi-domain flexibility is verymportant
whenever addressing for instance fluid flow protdesuch as non-
miscible, multi-phase flow, and solid mechanic peats, with
different material properties on different portioofsthe domain. It
might also be interesting to use quadrilateral el&sin regions
where the solution is essentially one dimensioral.(internal and
external boundary layers) and triangular elemelseswhere. These
remarks are valid for both, the finite element énel finite volume
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method. In Algorithm 3 it is presented the strategyhave devised
to create multi-domains and mixed meshes over firede

subdomains.

Algorithm 3. Generation of multi-domains and mixed

Figure 4. Mesh non-optimized.

meshes.

5.

Independent triangulation of each subdomain;

Predefinition of which subdomains will be filled U

with quadrilaterals;

Subdivision of triangles over triangular regio|

(splitting each triangle into four);

Conversion of triangles into quadrilaterals ovee

predefined regions (Algorithm 2);
Optimization of the created quadrilaterals.

p
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th

The aforementioned mesh optimization process (&ejn
Algorithm 3) is only performed over quadrilateralge to the fact
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To illustrate the flexibility of the mesh generator Figs. 10 and
11 we present, respectively, a directional nontctierl mixed mesh
and its directional stretched counterpart. Forishb&opic directional
mesh and for the anisotropic directional mesh, bité stretching
factor and the direction of stretching were defirdthe control
mesh parametersg and a, which are provided through the
background mesh as defined previously (see Eqrtgse meshes
are built considering the previous knowledge thaha dimensional
feature occurs in the region in the vicinity of tdiagonal of the
rectangular domain, which was then subdivided thtee domains
and later filled up with triangular and quadrila@ieelements. It
should be noted that one of the quadrilateral eterdé@ections is
almost aligned with the diagonal of the domain wtithe other is

that the new triangles are created in such a watytktey inherit the orthogonal to this direction.

quality of the “father” triangle, which was alreadptimized during
the initial triangulation. The whole procedure cha illustrated
through an academic example in the sequence ofe@redtown in
Figs. 6 to 9, where we have consistent assembligsaagular and

quadrilateral elements for complex geometries.
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Figure 10. Directional mixed mesh without stretchin g.

Boundary Layer Unstructured M eshes

One alternative for the generation of meshes deital viscous
flow simulations consists in the development of esmgenerator
which generates a structured grid in the immedvatiity of the
solid surfaces and completes the triangulationgugie unstructured
mesh approach, leading to the so called hybrid esesfhis
procedure has been successfully used for manystiealliscous
flow simulations, see for instance Weatherill (1p98owever, this
approach is not very flexible for the inclusion adfaptivity or the
extension for general complex 3-D configurationkeratively, the
approach, presented by Hassan et al. (1991) atttefudeveloped
in reference Hassan et al. (1993b), for generatimdyadapting fully
unstructured viscous meshes, overcome the shomgsmnentioned
above and presents as a good choice. This strasegprmally
referred to as “advancing layers” and it basicalnsists in a
modification of the usual advancing front technigmnevhich a set
of layers of stretched elements are created adjatenthe
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Figure 11. Directional mixed mesh with stretchin

Z

@

geometrical entities that represent solid walls. I&sg as all the
elements of a layer are created, the points, wi@imot belong to
the boundary, are moved towards the solid walls poior specified
position, keeping obviously, the mesh consistefitye elements in
which the nodes go to the same position do notestier desired
characteristics and therefore are eliminated. Hapbr of elements
is created according to a user explicitly predefirspacing, or
through a continuous reference to a mesh contmattion which

computes this spacing in order to guarantee thatfithal mesh
possesses a reasonable smooth transition of thes <t the
elements. The generic procedure consists in figpssas shown in
Algorithm 4.
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Algorithm 4. Advancing layers algorithm.

1. Creation of the first layer of nodes and elements
adjacent to solid walls through an advancing frpnt
procedure;

2. Movement of the non-boundary nodes towards |the
solid walls using a predefined distance and keeping
the consistency of the mesh;

3. Elimination of non-desired elements;

4. Repetition of steps 2 and 3 through a continupus
reference to a control function of the mesh orlunti
user defined number of layers is achieved;

5. Triangulation of the rest of the domain using
advancing front technique.

he

For further details see Hassan et al. (1991), amdofher
alternatives see for instance, Marcum (1995) andnigson et al.
(1999). As mentioned before we have extended #thrique to
deal with quadrilateral and mixed meshes. Thisufeatcan be
extremely useful to handle boundary layer probleBysusing the
criterion proposed in this paper for merging amigoit triangles
into quadrilaterals, an important feature of oursmeyeneration
procedure is that, even when tackling with multiglemains, the
quadrilateral or mixed meshes generated keep iketawpic feature
of the initial triangular mesh near the boundarfe&ey point to get
good quality meshes, both inside and outside thendwary layer
regions, is to prevent the Laplacian smooth fomalies inside the
boundary layer when dealing with quadrilateral nesshThe
flexibility to deal with multi-domains mixed meshéworporating
boundary layer elements can be seen in Fig. 12aar@bm on the
boundary layer region is shown in Fig. 13.
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Figure 13. Zoom of the mixed boundary layer mesh.
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Some Important Numerical and | mplementation Issues

Assessment of the M esh Quality

For the triangular and quadrilateral elements tpaksessment,
we used, respectively, the and ¢ parameters (Lee and Lo, 1994).
These metrics depend basically on the shape ofritregles and
guadrilaterals. Thes parameter varies on the range [0,1], and for
equilateral triangles =1. The ¢ parameter also varies between 0
and 1 for convex quadrilaterals, witb=1 for rectangles. For non-
convex quadrilateralsy is negative. Apart from using the
parameter, we can assess the quality of a quatdlaglement by
the values of its internal angles. According ta ttiterion the shape
of a quadrilateral is satisfactory if all of its gles satisfy the
recommended range (Zhu et al, 1991) 48° >0 >135°. If an
element do not satisfy the previous condition, Ztual. (1991)

affirms that a quadrilateral element is not satisfey if any of its
internal angles is out of the following acceptable

range30° > 0 >150°. For both parameters;, and ¢, we can also
define the geometric mean valueg and ¢, which are used to

evaluate the quality of the triangular and quatkil meshes,
respectively. For mixed meshes, we use the parametewhich is

the geometric mean ot,, and ¢,,. According to Lee and Lo

(1994), an isotropic triangular mesh is of good liggavhen
en>0.87 and excellent ife,,>094. If ¢,>0.54 the isotropic

quadrilateral mesh is considered good ang,j$0.72 the mesh is

considered excellent. Mixed isotropic meshes, camged of
triangles and quadrilaterals, are considered exfengood if
©n>0.69. All these values of quality measurement are atter

arbitrarily for the purpose of comparison. Anotleeiterion such as
the number of elements connected to a node, whitdeally six for

an internal node on triangular meshes and foutherguadrilateral
ones, can be used as a measure of the qualityeai#dshes. The
stretching ratio of a quadrilateral element, defiere as the ratio
between the largest and the smallest distancesebatwny two
nodes of an element, is another quality param@termonitor these
values to avoid excessively distorted elementsotrdapic meshes.

It is worthy mentioning that different metrics haveeen
proposed and can be used to assess the qualitytiof toiangular
and quadrilateral isotropic meshes (Knupp, 2003 &adchi and
Simoni, 2003). For anisotropic meshes the qualftyhe mesh is
extremely case dependent and, as far as the althons there are
no simple parameters to assess the quality of tmeshes. In such
case we must relax on the requirements for therfjatmtal meshes
to be acceptable and the final answer, whethenmtieh is good or
not, is given by the performance of the numerigalgsis using
such meshes.

Table 1 presents the mesh assessment parametes wixed
mesh of Fig. 9. This figure stresses the qualibieaed for isotropic
guadrilateral meshes, in which most angles areeclos ninety
degrees. Table 1 shows values of the multiple rpeaameters used
to assess the quality of the triangular and quetéril elements and
also of the mixed mesh. Indeed, Table 1 also slibatsonly 1.38%
of the total angles (i.e. 57 angles) are outsidéhefrecommended
range and only 0.43% (i.e. 18 angles) are outsideaaeptable
range for an optimal unstructured quadrilateralhmé&s which the
total number of angles is 4108.
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Table 1. Assessment parameters for mesh of Fig. 9.

Total number of points 2092
Total number of elements 2999
Max. number of elements per node 8
Angles outside rangE=45« - 135] 1.38%
Angles outside rang%o - 150] 0.43%
Averagee,, of initial triang. mesh 0.953
Averagee,, of final triang. mesh 0.952
Average ¢,, before cosmetics 0.408
Average ¢,, after cosmetics 0.648
Average g, of final mixed mesh 0.836
Maximum stretching ratio 4.805

Control and I mprovement of Mesh Quality

In general, finite element analysis using triangdkements is
less sensitive to element distortion than usinglgladeral or mixed
meshes. For the latter, the control of the meslitguand therefore
of the shape of the elements, is very importanabge the results of
the analysis obtained using quadrilateral elemeatsbe seriously
compromised due to high element distortion (Batl®#96). Element
distortion can have bad effects on the rate of eayence of finite
element solutions and also introduces error whéngusumerical
integration. The mesh generator should thereforahibe to prevent
excessively large aspect ratios and geometricrtimtoto keep the
actual rate of convergence as close as possilttettheoretical one
and the precision of the numerical integration. afjn it is
important to remark that mesh distortion problems even more
serious if higher order elements are attemptedrdier to improve
the quality of the mesh and to reduce the effectthaef mesh
distortion in the numerical solution, two mesh optation
sequences can be adopted. The choice of the segdepends on
whether the mesh is triangular or quadrilateral whéther it is iso
or anisotropic.

Triangular M eshes

For triangular meshes the strategy adopted caneee &
Algorithm 5.

For both, iso and anisotropic meshes we have iedah extra
diagonal swapping (step 5 of Algorithm 5). For ispic meshes the
second diagonal swapping (step 5 of Algorithm 3l performed
in order to obtain a more even distribution of thember of
elements per node. Most of these procedures arelesth and
further details can be found in literature (Peragteal., 1987,
George, 1991, Peir6 et al., 1994 and Thompson. el @99). For
anisotropic meshes this second diagonal swappingpeaxtremely
important in order to eliminate angles too obtuSensidering Fig.
14, this swapping criterion can be summarized ascrieed in
Algorithm 6.

Algorithm 5. Mesh optimization sequence for triangu lar meshes.

1. Node elimination (remove nodes surrounded by three
elements);

2. Laplacian smoothing (move nodes using an “elastic
spring analogy”);

3. Diagonal swapping (try to get a more even numbef of
triangles per node);

4. Laplacian smoothing (move nodes using an “elastic
spring analogy”);

5. Diagonal swapping (iso and anisotropic meshes).
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Algorithm 6. Diagonal swapping to eliminate highly obtuse angles.

1. Set Maxang = User predefined threshold;

2. Compute Maxbef = Maximum angle before
swapping;

3. Compute Maxaft = Maximum angle after swapping;

4. If ((Maxbef > Maxang) and (Maxbef > Maxaft))
then: Swap (A-C) by (B-D).

B B
A

Figure 14. Sketch of edge swapping to eliminate hig  hly obtuse angles.

It must be observed that, though some of the mdemesh
optimization strategies may lead to a lost of tlireationality in
anisotropic meshes, it was found that this loshiisimal and local,
and that the use of such strategies were very iapto obtain
final meshes with reasonable good shaped elemertg tused in
numerical analysis. Although the choice of the uskefined
threshold “Maxang™ is completely problem dependeve adopted
Maxang = 170 which proved to be a good choice for all the
applications attempted (Lyra et al., 2000, 2000220

Quadrilateral Meshes

In general, an unstructured quadrilateral mesh magimtain
undistorted elements (squares), elements with &sgibc distortion
(rectangles), elements with parallelogram distartiordinary
parallelograms) and elements with angular distorti@eneric
quadrilaterals) (Bathe, 1996). It is not alwaysparto determine if
the quadrilateral is stretched when it has angliktortion. In order
to define which quadrilateral subregions would fegjthe use of
the procedure to generate anisotropic meshes, vep lseme
additional information from the triangular mesh eerior. The
stretching factor of a triangle is defined as th#or between the
biggest side of the element and its correspondeigthh Through
some numerical experiments, we have defined thatbaomain is
considered anisotropic if an overall majority (s89%) of the
triangular elements on the initial triangular méss a stretching
factor bigger than a predefined threshold (e.g.o®)erwise it is
considered isotropic. The new optimization sequenee have
devised for quadrilateral meshes is given in Aliponi 7.

Algorithm 7. Mesh optimization sequence for quadril ateral meshes.

1. Diagonal swapping (in the intermediate mesh);

2. Diagonal swapping (try to get a more even number of
elements per node);

3. Laplacian smoothing (move nodes using an “elaging
analogy”);

4. Node movement (to eliminate quadrilaterals with bad
angles);

5. Diagonal swapping (try to eliminate quadrilatenalth bad
angles).
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The diagonal swapping of step 1 of Algorithm 7 iok@nges
edges shared by triangles and quadrilaterals inirttermediate
mesh (see Algorithm 8 and Fig. 15). In our experitweve have

used, Anglim=160 and Anglim=170 for iso and anisotropic

meshes respectively, achieving good results in baties. With this
procedure we have tried to avoid having isolatéangles with
highly obtuse angles left to be split directly intoee bad shaped
quadrilaterals.

Algorithm 8. Diagonal swapping in the intermediate mesh (see Fig. 15).

Set Anglim = User predefined thresholq;
Compute Badang Max(b,,b,,b,) ;

If (Badang > Anglim) then:

If (a,>a,) then swap (1-2) by (3-4);

If (a,>a,) then swap (1-2) by (3-5).

g dwdhdpE

1
8
VvV 3
™ /7
5 2
If (a,>a) If (a,>a)

Figure 15. Sketch of edge swapping performed inth e intermediate mixed
mesh.

The diagonal swapping of step 2 in Algorithm 7 iiikar to
that adopted for the triangular mesh. It is usedbtain a more even
distribution of the number of elements per nodee Taplacian
smoothing (step 3) is also similar to that used tf@ triangular
mesh. Both strategies are fully described in Lyrale(1998). For
anisotropic meshes, after the previous stratedess,low quality
quadrilaterals can still remain. To reduce or afabé such bad
quality elements which are originated by the dplittof isolated
triangles left after the merging step, anothegaieal swapping and
new moving node strategies are performed to imptbeeinternal
angles of such elements. There are two basic nodeement
strategies, the first one tries to eliminate angtbgch are too acute
and the second aims to eliminate angles too obtuserder to
illustrate both node movement strategies (Step Algbrithm 7),
which are detailed in Algorithms 9 and 10, seedies of Figs. 16
and 17.
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Algorithm 9. Moving node to eliminate very acute an  gles (see Fig. 16).

1. Determine the two biggest edges of the trianglé tha
originated the distorted quadrilateral element;
2. Move the nodes located on the middle points ofehes
edges over the edges of the quadrilateral neighbol
3. Move the central node to a position where tfe

angle is set as near as possible 0120

n

Algorithm 10. Moving node to eliminate very obtuse angles (see Fig. 17).

1. Determine if the central angle is too obtuse;
2. Move node | to the middle point of the edge i-kié ¢

parameter of the 3 surrounding quadrilaterals gfter
movement is not smaller than a threshold.

Initial
Position
Final
Position

Figure 16. Sketch of nodal movement strategy in the presence of acute
angles.

D Initial Position
of node i

Final Position
of node i

~
3

} K [

Figure 17. Sketch of nodal movement strategy in the presence of obtuse
angles.

The final diagonal swapping strategy, referred bepS5 of
Algorithm 7 and sketched in Fig. 18 is describedligorithm 11.
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Figure 18. Sketch of swapping to eliminate quadrila  terals with bad angles.

Algorithm 11. Diagonal swapping to eliminate quadri laterals with bad

angles (see Fig. 18).

1. SetM =Max(a,,a,,3,a,) ;
2. If (al<|\/| anda2<M) then:

If (((a; >a,)and(a; > a,))) then:
swap (1-2) by (3-5)

Else:

swap (1-2) by (4-6)

Auxiliary Data Structures

The conventional finite element data structure wmesnteger
array of nodal connectivities and a floating poémtay of nodal
coordinates. Apart from the auxiliary data struesuused during the
triangulation stage, we need several extra arrayshe conversion
of a mesh of triangles to a mesh of quadrilateeaisl, also to build
mixed meshes and meshes with subregions and/oromaias.
These arrays allow accessing the topological feataf the mesh
used in the algorithm, in constant time, avoidiegrsh loops that
would have made the algorithm too expensive (Lyrale 1998).
The most important auxiliary arrays adopted are:

M esh Adaptation

Adaptation is the automatic modification of paraenetof a
numerical simulation in order to improve the accyraith reduced
computational resources. Several parameters caadapted in a
numerical simulation Lyra (1994), (governing eqoas, mesh, size
of the time-step, etc.). Our mesh generator metloggtas flexible
to incorporate an adaptive global or local remastprocedure in
which a new mesh is totally or partially built aoding to a set of
control parameters estimated using an error amsalyBie main
characteristic of the adaptive remeshing procedutbe complete
detachment of the stages involved, i.e. generatfothe discrete
model, analysis algorithm, post-processing errdimegion and
mesh parameters definition are all done indepehdértie analysis
algorithm remains with its original data structared once a suitable
mesh generator is available the adaptive remeghismedure can be
incorporated directly into many different finiteeatent or finite
volume programs. When using the advancing fronhriepe
described here, it is necessary to get a new loligion of the mesh

parameters(d,s anda) on a suitable background mesh and to
proceed as described previously. When dealing witmngular

meshes, the remeshing procedure consists in the ptesented in
Algorithm 12.

Algorithm 12. Remeshing procedures for triangular m eshes.

1. Setthe current mesh as the background mesh;
2. Determine the mesh control parameters (according to
an error analysis);
3. Generate a new triangular mesh (using the advancing
front technique).

For quadrilateral or mixed meshes we propose apreeedure
which consists in the steps presented in Algoriffdn

Algorithm 13. Remeshing procedures for quadrilatera | meshes.

1. Triangulate the quadrilateral elements in the aurfe
mesh;

2. Perform the
(Algorithm 12);

3. Generate a new triangular mesh

4. (using the advancing front technigue).

triangular remeshing procedure

This new procedure seems somewhat involved buérit loe
fully automated. The conversion of quadrilaterai$oi triangles

- iside(5medge), lists the number of the first node, the lastncurs in very low computational cost, and the ecoba well tested

node, the element on the left and the element emigt

and robust triangular remeshing procedure withaytraodification

of the edge and the number of the subdomain whid® it or to the quadrilateral mesh generator iseerely attractive.

contain the edge, for athedge edges in the mesh. If an

edge belongs to the boundary, a zero is used as tBgror Estimate

corresponding element number and if the edge bsltmg
the interface between two subdomains, a zero id ase
the corresponding subdomain number.

In fluid dynamics the importance of using anisoitomeshes
can not be over emphasized as many flow featuress&ongly

J. of the Braz. Soc. of Mech. Sci. & Eng.

idom(ndom), is an array introduced to keep thedirectional. When using such meshes it is necedsanycorporate

information for each of thedom subdomains indicating &n anisotropic error estimate to drive the adapfivecedure. In
which one must be of quadrilateral elements. order to introduce the error estimator, considerfaeily of

ietsid(3,ntri), lists the number of the edges that form eackiangulations{r, } of Q. Assuming that the approximate solution

triangle, for all triangles in the mesh. u, is a good approximation far (Almeida et al., 2000), then
iegside(4,nquad), lists the number of the edges that form

each quadrilateral, for all quadrilaterals in thesim
= ol ) = €t () (¢ 30)- (- Xo)"wm) @

Copyr ight O 2006 by ABCM  October-December 2006, Vol. XXVIII, No. 4 / 407



which shows that the interpolation error in onenpoiepends on the  Algorithm 14. Local remeshing strategy for iso and
direction (xf xo) and on the recovered Hessian matrix in that pointq

HR(uh(x))(x— %), where ||| , stands for theL? norm. However,

this matrix is not positive-definite, precluding iise as a metric. If
the tensorG = LAL" is used, as suggested in Peir6 (1989), where

the columns entries of are the left eigenvectors ¢ (u,(x)) and

A=diag{|\|.]\,]} is formed by its absolute eigenvalues| 4

(A <o) it is possible to define the following anisotroror

estimator of the elemerde 7, :

ne = 2areal® ), (%,)|63 3)
The global error estimator is given by,
Yp
n—{Z(neY’} )
ecTh

Paulo Roberto M. Lyra and Darlan Karlo E. de Carvalho

anisotropic meshes.

When dealing with a quadrilateral or a mixed mesh,
triangulate the quadrilateral elements in the curmeesh;

2. Estimate the parameters of the current meSh® and

a®P as described in Algorithms 15 and 16;

3. Compute the desired mesh parameted™

o™ accordingly to the error estimation;
Automatically determine he subregions in which thesh

parameters must significantly change by compafhg,

a®P and 6"V and oV ;

5. Eliminate the elements within those subregions;

6. Re-triangulate those subregions, according to #ve mesh
parameters;

7. When dealing with a quadrilateral or a mixed mesmyvert
the new triangular mesh back to a quadrilaterad onixed
mesh.

and

When addressing problems involving moving boundaaied an
“ALE” (Arbitrarian Lagrangian-Eulerian) formulatior{fLyra and
Antunes, 2002) the criteria to determine the eldmeto be
eliminated considers also the quality of the eleisewhich might

where x, is the element baricenter aig is the element size in the have been deteriorated due to the dynamic charaftére mesh.

direction of the eigenvector associatedXp. In that definition an
optimal local error constraint was assumed, reagirthat the

Considering fully isotropic triangular meshes, inhigh the
quadrilateral elements had been converted intdvthebest (closest
to equilateral) triangles, we only need to estimtte spacing

element shape be such that the estimated erraisyiiee same value gistribution in the current mesh (Fig. 19). An age nodal value of

in any direction. For further details see Almeidaak (2000), and
for the extension and application of this errorireste for
guadrilateral meshes when solving CFD problems,Lsea et al.
(2001) and Lyra et al. (2002).

Adaptive Remeshing

In a global remeshing procedure the whole meshelsiilt
according to the mesh parameters dictated by the estimates. On
the other hand, in a local remeshing strategy (kfaes al. (1993a),
the mesh is re-built only at certain portions af tomain according
to the new distribution of mesh parameters. An irtgpu feature of
our mesh generation methodology is that we havergéped this
procedure to deal with triangular, quadrilateral mixed meshes
over multiple domains, considering both iso and@indopic meshes.
The local remeshing strategy on generic 2-D domarghown in
Algorithm 14. The determination of the new meshapaeters is
always done on a triangular mesh, therefore a gataal or mixed
mesh is always transformed into a triangular mefler ahe
computation of the error estimates. This step cdegpnot only the
new mesh parameters dictated by the solution epur also
approximately recovers the mesh parameters thae wsed to
generate the current mesh (detailed later). Thisnsistent with the
mesh generation technique adopted, which consistalivays
generating first an initial triangular mesh.

It must be emphasized that during the automatidGiateral
mesh adaptation, at each new generated mesh, tz spacings
obtained through the error analysis are autométicdubled in
order to account for the element splitting stage the adopted to
generate quadrilaterals. The regions of the domwdiere there is a
large difference between the desired mesh parasnes&f and
oV and the ones of the current mesAi® and o°°, are then
selected as regions for local remeshing.

The elements in these regions are deleted, andntbgh
generation is performed on the resulting “holedie Tesulting mesh
is then converted back into a quadrilateral or whieesh.

408 / Vol. XXVIII, No. 4, October-December 2006

this spacings™ is computed as described in Algorithm 15.

Algorithm 15. Isotropic mesh parameter estimation ( see Fig. 19).

1. Identify the surrounding elements of a given node;
2. For each element, calculate the height of the gt@an
correspondent to the edge opposite to the considde

(2)).
(o)
3. Compute the arithmetic mean of these heights
associates it to the nod&° = ™,

and

2}

Figure 19. Estimate of nodal spacing for isotropic meshes.

For anisotropic quadrilateral or mixed meshes, weppse a
procedure in which the quadrilateral elements alelivided into
triangles (step 1 of Algorithm 14) through theigdést diagonal
before the domain is actually remeshed. For theso#mipic
triangular meshes, the average nodal values ahesh parameters
are computed as shown in Algorithm 16. Figure 28&ents how to

obtain 6&1),522) and agl) in an anisotropic mesh. It must be

remarked that, in general, the variation of thecempis more
important than that of the principal directions awdthe threshold
adopted to determine the subregions to be remesheaiore
restricting for the spacing. It is worthy mentiogirthat the

parameterss"™) and "W are obtained through a-posteriori
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error estimate as described previously and with tteoretical
knowledge of the a-priori error estimate (Almeidale, 2000).

Algorithm 16. Anisotropic mesh parameters estimatio n (see Fig. 20).

NN

1. Identify the surrounding elements of a given node; W
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Figure 21. a) Triangular mesh around cylinder after remeshing: b) Zoom of
quadrilateral mesh around cylinder after remeshing.

Steady-State Inviscid Flow Simulation with Anisotropic
Remeshing

Consider the solution of the inviscid flow problesh regular
shock reflection at a flat plate (Lyra and Morg&002). A flow
impinging on the plate at a Mach number of 2.0 ahdn angle of
attack of -10. The theoretical solution consists of a leadingeed
reflected shock at 2930 the flat plate. A rectangular domain, such
that the theoretical shock is positioned at itgdiel, is adopted. In
Fig. 22 the final meshes obtained after four stadegobal adaptive

Figure 20. Estimate of nodal spacing for anisotropi ¢ meshes. remeshing is presented for either triangular (FRRa) or
quadrilateral (Fig. 22b) elements. The meshes efmed and
aligned with the shock. The triangular mesh hassl&8ments and

Further Examples 939 nodes and the quadrilateral mesh has 1377 elsraad 1401
nodes. The adaptive strategy is such that the elestepe and
direction is obtained by requiring that the locatoe estimative
yields the same value in any direction.

Some extra examples are presented in this seaidfustrate
some of the flexibilities of the mesh generatiorthrodology and to
shown its performance on some CFD computationse Hee just
present the meshes used during these applicatfwrs.further
details on the different formulations adopted asthiled results of
the presented problems see the references listedainapplication.

Steady-State Inviscid Flow Simulation with [sotropic
Remeshing

A triangular mesh used for the simulation of a ssqeic
compressible flow around a cylinder, at Mach numbfeB.0 and
angle of attack of O(Lyra, 1994 and Lyra and Morgan, 2002) was
used in this example to demonstrate the flexibifity isotropic
remeshing. The solution main features consist agim the front (a)
bow shock, the rarefaction zone and the weak shbekénd the
cylinder. Figure 21a shows the triangular mesh teteaby the
remeshing procedure. Figure 21b shows a portion tho#
quadrilateral mesh created with remeshing and raatgd from the
mesh presented in Fig. 21a.

(b)

Figure 22. Final adapted meshes: a) triangular mesh ; b) quadrilateral
mesh.
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Figure 23 illustrates the flexibility and robustsesf the
anisotropic triangular local remeshing procedureFigure 23a we
plot the remaining elements after eliminating ttements which
must change significantly the spacing and/or gtiete direction,
according to the error analysis. In Figure 23b shtlve mesh after
the holes are filled by triangles using the advagdront technique.
Those meshes correspond to the first local remgsparformed
after a global remeshing on the initial mesh.

Mesh 3
1
\ \
\
Mesh 20
[/ ]
[ 7 \
Mesh 27
N\
(b)
Figure 23. Triangular local remeshing.
. . . I
Transient Inviscid Flow
Considers the solution of an internal transient isicid Mesh 29

supersonic flow (Lyra et al. 2002). The geometrgisists in a wind  Figure 24. Selected initial meshes for the transien  t adaptive procedure
tunnel with a step and the inflow boundary conditamnsists of a (Meshes 3, 20, 27 and 29).
uniform Mach 3.0 flow with angle of attack°.0At the right
boundary the flow is let free to leave the domaid @long the . o
walls, reflecting boundary conditions are applidduring the Moving Boundary Application
transient adaptive procedure several adapted meshegenerated In order to keep the mesh acceptable for numetimaiputation
along the time integration according to the ermalysis. Figure 24 | v solving problems involving large amplitudesthus boundar3’/
shows some selected meshes: mesh 3, is the thsd generated movement, an adaptive local remeshing was adoptecthe
during the transient adaptive process, and mesherand 49 are  ¢,1ing academic problem (Lyra and Antunes, 200%3 for the
meshes generated before and after the time wheshtiek starts 10,y strycture interaction applications we consigtscous flows,
be reflected from the top boundary. The mesh referd is clearly o boundary layer mesh is adopted and kept unuetbrfor
following th(_a physii:al f_eatlires of the flow. Theapl_jve algorithm accuracy purpose. Figure 25 presents the sequehcetages
try to obtain an “optimal” mesh for a pre-definedimber of i, eqd during the local remeshing procedure. Fige5a presents
elements. The target number of elements for thigyars was 1000 4 jnitial no-deformed mesh and in Fig. 25b wespre: a detail of a
and a limited aspect ration of 4 was considered mimber of  yigtorted mesh resulting from the rotation of tiinder. A moving
elements generated in th_e meshes shown was 620,9947and | ..h strategy was used in the “ALE” formulationt Huwas not
1010, and the corresponding number of nodes wasBE, 1029 gq,gh to prevent element deterioration that makgessible the
and 1047, showing that the procedure obeyed wellithposed ;sq of such mesh for numerical computation. Figife shows an
constraints (Lyra et al. 2002). intermediate stage of the local remeshing adajpiiveedure, where
the undesirable elements were taken out of the meesting several
holes, which have to be filled in the next stagegishe advancing
front mesh generator. Figure 25d depicts the fimesh obtained.
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Figure 25. Local remeshing for problems involving m
mesh without “bad” elements; b) final mesh; c) init
mesh.

oving meshes: a)
ial mesh; d) deformed

Final Remarksand Conclusions

We have briefly described the most important fesgtuof a
general two-dimensional unstructured mesh genevafi@ptation
computational methodology, and we also presentatksacademic
examples to illustrate its flexibility and the goaphality of the
meshes obtained by using it. The main goals duhiaglevelopment
stages of the methodology were to keep the stesegimple and
ease to implement, and to make possible: to corargrtavailable
triangular mesh into a quadrilateral or mixed meshinherit from
an available triangular mesh generator the capalfdi controlling
the quality, gradation and stretching of the eletsieto retain and
extend the flexibility for mesh adaptation througtmeshing; to
create directional stretched meshes in any pomiothe domain.
This mesh generator/adapter program opens thebigsto the
analyst to choose the best type of element forfdrimulation and
application, and basically whatever can be doné wiangles can
also be done with quadrilaterals. Some examplesoofputational
fluid dynamics applications have been tackled withur
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methodology and were also briefly presented showviimagf the
obtained meshes are valid for numerical simulatidme extension
of some of the proposed approaches into three diiores would
require a lot more effort, if possible, and theussof a robust
unstructured hexahedra mesh generator faces méigulties and
represents a very challenging research topic (Tksompet al., 1999
and Carey, 2002).
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