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A Computational Methodology for 
Automatic Two-Dimensional 
Anisotropic Mesh Generation and 
Adaptation 
This paper describes a versatile computational program for automatic two-dimensional 
mesh generation and remeshing adaptation of triangular, quadrilateral and mixed meshes. 
The system is flexible to be incorporated into an adaptive global or local remeshing 
procedure and for generating both, iso and anisotropic meshes. The main contribution of 
this work is to extend well established procedures for the generation and adaptation of 
both, iso and anisotropic triangular meshes, such as local and global remeshing as well as 
boundary layer mesh generation, to deal with iso and anisotropic quadrilateral and mixed 
meshes. Several examples are presented to illustrate the quality of the meshes produced, 
and the flexibilities of the computational system. 
Keywords: Iso and anisotropic mesh generation, adaptive remeshing, triangular, 
quadrilateral and mixed unstructured meshes 
 
 
 

Introduction 
1The use of an adequate mesh consists in one of the main 

ingredients for an accurate numerical simulation. In order to obtain 
such a mesh, a versatile mesh generator and a mesh adaptive 
procedure must be available. Automatic mesh generation has 
received much attention from researchers on computational 
simulation, to minimize manual intervention, to improve mesh 
quality and to obtain more efficient procedures. Unstructured 
methodologies are becoming predominant due to the ability of 
modeling geometrically complex designs and because they are the 
natural environment for adaptivity, which may be the only hope for 
resolving very small scale features (e.g. boundary layers). Most 
finite element and finite volume codes use unstructured 
triangulations due to their geometrical flexibility and the low cost of 
linear triangular elements. However, certain formulations perform 
better with quadrilateral elements and it may be necessary to use 
different types of elements for different physics when solving 
coupled problems. In fluid-structure interaction problems, for 
instance, it is very common to use unstructured triangular meshes 
for the fluid and quadrilateral meshes for the structural problem. In 
computational fluid dynamics applications, it may also be 
interesting to use a mixed mesh, in which quadrilateral elements are 
used in regions where the flow is essentially one dimensional 
(Hwang and Wu, 1992). The utilization of unstructured mesh 
generation techniques for the simulation of boundary layer problems 
(Hassan, 1994, Marcum, 1995 and Thompson et al., 1999), (e.g. 
viscous flow) and for anisotropic adaptation is of great importance 
(Peraire et al., 1987, George, 1991, Borouchaki and Frey, 1998, 
Thompson et al., 1999 and Almeida et al., 2000) since the obtained 
meshes are capable of improving the accuracy of the numerical 
solution while at the same time improving the efficiency of the 
numerical method, as they guarantee an “optimal” number of 
elements in the mesh. The development of procedures for the 
generation of anisotropic unstructured meshes of triangles capable 
of capturing directional features of the physical problem is a topic of 
intensive research (Jansen and Shephard, 2001), but less work has 
been done regarding anisotropic meshes of quadrilaterals 
(Borouchaki and Frey, 1998). Some effort has also been made in 
order to build unstructured hexahedral meshes. However, most of 
the success achieved concentrates on generating quadrilaterals and 
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hexahedra in the vicinity of solids walls, i.e. inside boundary layers. 
It is known that quadrilateral and hexahedra require less cpu time 
and memory whenever an edge-based data structure is adopted for 
both finite element (FEM) and finite volume methods (FVM), 
(Borouchaki and Frey, 1998). Apart from that, it also improves 
accuracy in the FVM context (Hwang and Wu, 1992 and 
Borouchaki and Frey, 1998). However, the FEM does not always 
share the last property (Lyra and Almeida, 2002). Building good 
quality quadrilateral and mixed meshes is very challenging because 
quadrilaterals are very “stiff'' from a geometric point of view, and 
controlling element distortion in complex domains during analysis 
that incorporate adaptive procedures is certainly not an easy task.  

In this work, an automatic triangular mesh generator based on 
the advancing front technique (Peraire et al., 1987) is used as the 
main building block of a computational system for mesh generation 
that can build triangular, quadrilateral and mixed meshes over 
arbitrary domains. Quadrilateral elements are generated from an 
original mesh of triangles through a process of merging and 
splitting. These approaches allow a good control of the mesh density 
and gradation, and of the directional stretching and quality of both, 
triangular and quadrilateral elements. The so called “advancing 
layers'' technique (Hassan et al., 1994), which was originally 
devised to generate triangular/tetrahedral meshes, is also extended to 
deal with quadrilateral and mixed meshes allowing the construction 
of adequate meshes within the regions close to solid boundaries. The 
system also allows for either, a global adaptive remeshing procedure 
(Peraire et al., 1987), in which the whole mesh is re-built according 
to the mesh parameters dictated by the error estimate, or a local 
remeshing (Hassan et al., 1993a), in which we determine 
automatically the subregions within the domain where the mesh 
must be re-built.  

Here, we extend the local remeshing procedure to deal with 
anisotropic meshes by computing the mesh parameters, i.e. spacings 
and stretching directions, accordingly to an anisotropic error 
estimator, and then by determining the subregions in which at least 
one of those parameters must change significantly. We eliminate the 
elements within those subregions and re-built the mesh according to 
the new distribution of mesh parameters. The strategies adopted to 
build such general mesh generation/adaptation system are robust, 
easy to implement and will be fully described, with particular 
emphasis to the modifications and contributions proposed. Some 
relevant issues referring to the auxiliary data structures adopted and 
other numerical aspects are also discussed. Finally, several 
examples will be presented to illustrate the quality of the obtained 
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meshes and the importance of using a flexible and robust mesh 
generation/adaptation procedure when dealing with complex 
geometries and/or problems which involve complex features. 

Unstructured 2-D Mesh Generation 

The mesh generation problem consists in subdividing an 
arbitrary domain into a consistent assembly of elements 
(subregions). If the generated elements cover the entire domain and 
the intersection of the elements occurs only on common points or 
edges, the consistency of the mesh is guaranteed. According to 
Peraire (1987), the basic requirements for a mesh generator are: 

a. Capacity to handle arbitrary geometries with minimum user 
intervention; 

b. The necessity of as little input data as possible; 
c. Good control over the spatial variation of size and shape of 

the elements. 
d. Easy incorporation of adaptive strategies. 
Triangles are the most flexible elements for automatic mesh 

generation over complex two dimensional geometries, particularly 
when mesh grading is required. Several robust and versatile 
unstructured triangular mesh generators and their extensions for 3-D 
geometries (tetrahedral mesh generators) have been developed and 
are currently used in academic and industrial environments. There 
are several well-established triangulation procedures, such as the 
advancing front (Peraire et al., 1987 and Thompson et al., 1999) and 
the Delaunay triangulation (Schroeder and Shephard, 1990, 
Thompson et al., 1999, and Secchi and Simoni, 2003). 

Advancing Front Triangular Mesh Generator 

The original advancing front algorithm has been developed over 
time into a family of programs which are very reliable and flexible 
for an easy incorporation of mesh adaptation. The advancing front 
mesh generator can be described as in Algorithm 1. 

 

Algorithm 1. Advancing front technique. 

1. Input of geometric data (using control points); 
2. Input of mesh control parameters (through a 

background mesh); 
3. Geometric modeling (using cubic splines);  
4. Boundary discretization (placing new points on 

the boundary); 
5. Domain discretization (simultaneously generating 

points and triangles);  
6. Mesh quality enhancement (through topological 

and geometrical strategies). 
 
The computational domain is modeled through the use of cubic 

splines which are defined by some control points. Close to 
singularities extra care must be taken in the definition of these 
points in order to avoid failure (Thompson et al., 1999). 

As a “pre-processing” stage, before the mesh generation begins, 
we must first build an initial and very coarse triangular background 
mesh that covers the whole domain. This coarser mesh is used only 
to provide a piecewise linear spatial distribution of the nodal 
parameters over the mesh to be constructed. Typically, elements of 
the generated mesh will have a projected length of 2δ  in the 

direction parallel to 2α  and a projected length of 2tS δ  in the 

direction normal to 2α  (see Fig. 1), with tS  being the stretching 

factor. During the generation process, the local values of these 
parameters will be obtained by a linear interpolation over the 
triangles of the background mesh. 
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Figure 1. Mesh parameters. 

 
The boundary of the domain is represented by the union of 

boundary segments forming closed loops. External boundaries are 
defined in an anti-clockwise fashion while inner boundaries are set 
in a clockwise manner. As described previously, the generation of a 
triangular mesh by the advancing front technique begins by the 
discretization of the boundary of the domain. New points are created 
according to the mesh parameters which are interpolated from those 
of the background mesh. At the beginning of the process, the 
generation front is made by a set of linear segments connecting the 
boundary nodes. With the initial front defined, one segment is 
chosen and, in general, a triangle is created through the insertion of 
an internal node or by simply connecting existing nodes. New 
triangles are built following the same procedure. During the process 
any segment available to build a new triangle is set as “active” and 
the others which are set as “non-active” are removed from the 
generation front. Therefore the boundary segments are not modified 
during the mesh generation. The procedure continues until the 
whole domain is discretized. When solving problems which develop 
some essentially one dimensional features at certain regions (e.g. 
boundary layer, shocks, etc.) it is not very efficient to use uniform 
isotropic meshes. In these cases, it is important to have the 
possibility to define a direction and a stretching factor for the 
elements close to such regions. At least for linear triangular 
elements, the use of anisotropic meshes can be extremely important 
in terms of computational effort and accuracy (Rippa, 1992). To 
generate an anisotropic triangulation of the desired domain, it is 
used a transformation T which is a function of the mesh parameters, 
i.e. iα  and ,iδ  i = 1, 2. This transformation (see Peiró et al., 1994), 

is given by,  
 

( ) ( )
1

1
,

=
= ⊗∑

N

i i i i
i i

T α δ α α
δ

 (1) 

 
where ⊗  denotes the tensor product of two vectors and N is the 
number of dimensions, here, N = 2. The effect of this transformation 
is to map the physical domain into a normalized domain, where a 
mesh is generated in which the elements are approximately 
equilateral with unit average size. Applying the inverse of this 

transformation 1,T −  we end up with a directional stretched mesh 
dictated by the mesh parameters, which are defined either by the 
analyst or by the mesh adaptive procedure. This mesh generator 
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provides an accurate geometric modeling and high quality meshes, 
where the high level of control of the distribution of local mesh 
parameters eases the incorporation of mesh adaptation strategies. 
The quality of the meshes is strongly influenced by the mesh 
optimization stage. A specific mesh improvement strategy for highly 
anisotropic meshes and the definition of an adequate sequence of 
mesh enhancement procedures are incorporated into the code. 
Several other modifications have been introduced in the original 
code in order to incorporate the flexibility to deal with predefined 
multidomains and automatically defined subregions, to build 
boundary layer meshes, to make possible generating quadrilateral 
and mixed meshes and the automatic definition of which domains or 
subregions should be filled up by triangular or by quadrilateral 
elements. These features will be fully described in the correspondent 
sections.  

Quadrilateral Mesh Generator 

Unstructured quadrilateral meshes can be automatically 
generated in several different ways and do not impose serious 
topological restrictions on the meshes, being appropriated to deal 
with complex geometries, naturally allowing local non-uniform 
mesh refinement. Several different approaches have been proposed 
to generate unstructured quadrilateral meshes. These methodologies 
can be divided into two basic groups: those that try to generate 
quadrilaterals directly (Blacker and Stevenson, 1991, Zhu et al., 
1991, Sarrate et al., 1993 and Gendong and Li, 1996), and those that 
convert a previously generated mesh of triangles into a mesh of 
quadrilaterals (Lee and Lo, 1994, Xie and Ramaekers, 1994, Alquati 
and Groehs, 1995, Lyra et al., 1998 and Lee et al., 2003). The 
conversion of triangular meshes is particularly attractive because 
these meshes can inherit the properties of the triangular meshes, 
whose generators are very well developed and once it is always 
possible to build a triangular mesh over any arbitrary 2-D domain, 
quadrilateral meshes can be constructed as general as the triangular 
ones. It also allows the use of any triangular mesh generator as a 
“black box”, even commercial ones for which source codes are not 
available, including procedures such as Delaunay methods 
(Weatherill, 1990) modified quadtree techniques (Schroeder and 
Shephard, 1990), etc. In the work of Ait-Ali-Yahia et al. (1996), 
anisotropic unstructured quadrilateral meshes were built using an 
edge-based error estimate and mesh movement. In the work of 
Borouchaki and Frey (1998), anisotropic quadrilateral meshes are 
generated using a more general approach based on defining an 
anisotropic discrete metric mapping. However, apart from the 
mentioned references, very little have been done with respect to 
anisotropic fully unstructured quadrilateral meshes. Here, the use of 
simple strategies during the conversion and mesh quality 
enhancement steps allows us to get reasonably good anisotropic 
quadrilateral meshes.  

Indirect Approach: Conversion of Triangular Meshes  

As we generate a quadrilateral mesh using the conversion 
strategy, the quadrilateral mesh inherits the characteristics of the 
initial triangulation. For both, iso and anisotropic meshes this 
strategy consists of four main steps, as presented in Algorithm 2.  

 
 
 
 
 
 
 
 
 

Algorithm 2. Indirect approach for quadrilateral me sh generation. 

1. Generate a triangular mesh (either iso or anisotropic);  
2. Remove an edge between two adjacent triangles, to form 

a quadrilateral; 
3. Split all elements in the intermediate mixed mesh 

(triangles into three quadrilaterals and quadrilaterals into 
four quadrilaterals); 

4. Perform some post processing steps in order to enhance 
mesh quality. 

 
The standard strategy of merging triangles into quadrilaterals 

consists in eliminating a common edge that belongs to two adjacent 
triangles. Following the work done by Xie and Ramaekers (1994) 
and Alquati and Groehs (1995), our mesh generator is such that it 
refrains from merging triangles that would form a non-convex 
quadrilateral.  Besides, for anisotropic meshes, the merging process 
will remove a common edge between two adjacent triangles, only if 
the two quadrilaterals to be created satisfy a quality criteria which is 
controlled by two geometric parameters, φ  which is defined in Lee 

and Lo (1994), and the minimum internal angle θ . These 
parameters are compared to user defined tolerances MINφ  and MINθ , 

and if, for an inner edge, φ  > MINφ  and θ  > MINθ  this edge is 

marked to be eliminated. We have attempted other strategies, in 
which the edges are previously grouped in some order (Alquati and 
Groehs, 1995), but our experiments have shown no significant 
improvement on the final mesh quality. Additionally, when dealing 
with anisotropic meshes, we redefine the merging procedure (step 2 
of Algorithm 2), which is now performed as long as the common 
edge is one of the two biggest edges of both triangles and we also 
try to minimize the number of isolated triangles remaining after the 
merging step, by relaxing the quality criteria, as in general those 
isolated triangles will lead to bad quality quadrilaterals. The 
enhancement of the mesh quality (step 4) is slightly different for iso 
and anisotropic meshes and will be described later on this paper. 
The adopted procedure generates a quadrilateral mesh with edges 
that are approximately half of those of the corresponding triangular 
elements and usually this is not a serious concern, since the user can 
generate a coarser initial triangulation to obtain the desired mesh 
density. The four steps involved in the quadrilateral mesh generation 
can be seen in Figs. 2 to 5. 

Multi-Domains and Mixed Meshes 

By performing the initial triangulation for each domain at a 
time, keeping, of course, a consistent node numbering through the 
interfaces of those domains, the mesh generator is capable to build 
multi-domain meshes. The multi-domain meshes can either consist 
of a single element type or different element types in each domain 
(Lyra and Carvalho, 2000). It must be observed that the mesh 
consistency between two adjacent domains is guaranteed in our 
mesh generation process due to the fact that the boundary nodes 
(including those between two different domains) are created first 
with a consistent numbering and then the process of node/element 
generation is performed independently for each domain. Besides, 
those edges which lie between two domains are identified and none 
of the mesh enhancement procedures described in the present paper 
is performed. The multi-domain flexibility is very important 
whenever addressing for instance fluid flow problems, such as non-
miscible, multi-phase flow, and solid mechanic problems, with 
different material properties on different portions of the domain. It 
might also be interesting to use quadrilateral elements in regions 
where the solution is essentially one dimensional (e.g. internal and 
external boundary layers) and triangular elements elsewhere. These 
remarks are valid for both, the finite element and the finite volume 
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method. In Algorithm 3 it is presented the strategy we have devised 
to create multi-domains and mixed meshes over predefined 
subdomains. 

 
 

 

 

Figure 2. Initial triangulation.   Figure 3. Interm ediate mesh. 

 
 

 
Figure 4. Mesh non-optimized. Figure 5. Final quadr ilateral mesh. 

 
 

Algorithm 3. Generation of multi-domains and mixed meshes. 

1. Independent triangulation of each subdomain; 
2. Predefinition of which subdomains will be filled up 

with quadrilaterals;  
3. Subdivision of triangles over triangular regions 

(splitting each triangle into four); 
4. Conversion of triangles into quadrilaterals over the 

predefined regions (Algorithm 2); 
5. Optimization of the created quadrilaterals. 

 
The aforementioned mesh optimization process (step 5 in 

Algorithm 3) is only performed over quadrilaterals due to the fact 
that the new triangles are created in such a way that they inherit the 
quality of the “father” triangle, which was already optimized during 
the initial triangulation. The whole procedure can be illustrated 
through an academic example in the sequence of meshes shown in 
Figs. 6 to 9, where we have consistent assemblies of triangular and 
quadrilateral elements for complex geometries.  

 
 

To illustrate the flexibility of the mesh generator, in Figs. 10 and 
11 we present, respectively, a directional non-stretched mixed mesh 
and its directional stretched counterpart. For the isotropic directional 
mesh and for the anisotropic directional mesh, both, the stretching 
factor and the direction of stretching were defined by the control 
mesh parameters, δ  and α , which are provided through the 
background mesh as defined previously (see Eq. 1). Those meshes 
are built considering the previous knowledge that a one dimensional 
feature occurs in the region in the vicinity of the diagonal of the 
rectangular domain, which was then subdivided into three domains 
and later filled up with triangular and quadrilateral elements. It 
should be noted that one of the quadrilateral element directions is 
almost aligned with the diagonal of the domain while the other is 
orthogonal to this direction. 
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Figure 6. Initial triangular mesh. 

 

 
Figure 7. Intermediate mesh. 

 
Figure 8. Mesh non-optimized. 

 

 

Figure 9. Final mixed mesh. 

 

 
Figure 10. Directional mixed mesh without stretchin g. Figure 11. Directional mixed mesh with stretchin g. 

 

Boundary Layer Unstructured Meshes  

One alternative for the generation of meshes suitable for viscous 
flow simulations consists in the development of a mesh generator 
which generates a structured grid in the immediate vicinity of the 
solid surfaces and completes the triangulation using the unstructured 
mesh approach, leading to the so called hybrid meshes. This 
procedure has been successfully used for many realistic viscous 
flow simulations, see for instance Weatherill (1990). However, this 
approach is not very flexible for the inclusion of adaptivity or the 
extension for general complex 3-D configurations. Alternatively, the 
approach, presented by Hassan et al. (1991) and further developed 
in reference Hassan et al. (1993b), for generating and adapting fully 
unstructured viscous meshes, overcome the shortcomings mentioned 
above and presents as a good choice. This strategy is normally 
referred to as “advancing layers” and it basically consists in a 
modification of the usual advancing front technique in which a set 
of layers of stretched elements are created adjacent to the 

geometrical entities that represent solid walls. As long as all the 
elements of a layer are created, the points, which do not belong to 
the boundary, are moved towards the solid walls to a prior specified 
position, keeping obviously, the mesh consistency. The elements in 
which the nodes go to the same position do not share the desired 
characteristics and therefore are eliminated. Each layer of elements 
is created according to a user explicitly predefined spacing, or 
through a continuous reference to a mesh control function which 
computes this spacing in order to guarantee that the final mesh 
possesses a reasonable smooth transition of the sizes of the 
elements. The generic procedure consists in five steps as shown in 
Algorithm 4. 
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Algorithm 4. Advancing layers algorithm. 

1. Creation of the first layer of nodes and elements 
adjacent to solid walls through an advancing front 
procedure; 

2. Movement of the non-boundary nodes towards the 
solid walls using a predefined distance and keeping 
the consistency of the mesh; 

3. Elimination of non-desired elements;  
4. Repetition of steps 2 and 3 through a continuous 

reference to a control function of the mesh or until a 
user defined number of layers is achieved; 

5. Triangulation of the rest of the domain using the 
advancing front technique. 

 
For further details see Hassan et al. (1991), and for other 

alternatives see for instance, Marcum (1995) and Thompson et al. 
(1999). As mentioned before we have extended this technique to 
deal with quadrilateral and mixed meshes. This feature can be 
extremely useful to handle boundary layer problems. By using the 
criterion proposed in this paper for merging anisotropic triangles 
into quadrilaterals, an important feature of our mesh generation 
procedure is that, even when tackling with multiple domains, the 
quadrilateral or mixed meshes generated keep the anisotropic feature 
of the initial triangular mesh near the boundaries. A key point to get 
good quality meshes, both inside and outside the boundary layer 
regions, is to prevent the Laplacian smooth for all nodes inside the 
boundary layer when dealing with quadrilateral meshes. The 
flexibility to deal with multi-domains mixed meshes incorporating 
boundary layer elements can be seen in Fig. 12 and a zoom on the 
boundary layer region is shown in Fig. 13. 

 

 
Figure 12. Mixed boundary layer mesh. 

 

 
Figure 13. Zoom of the mixed boundary layer mesh. 

 
 
 
 
 

Some Important Numerical and Implementation Issues 

Assessment of the Mesh Quality 

For the triangular and quadrilateral elements quality assessment, 
we used, respectively, the ε  and φ  parameters (Lee and Lo, 1994). 
These metrics depend basically on the shape of the triangles and 
quadrilaterals. The ε  parameter varies on the range [0,1], and for 
equilateral triangles 1ε= . The φ  parameter also varies between 0 

and 1 for convex quadrilaterals, with 1=φ  for rectangles. For non-

convex quadrilaterals φ  is negative. Apart from using the φ  
parameter, we can assess the quality of a quadrilateral element by 
the values of its internal angles. According to this criterion the shape 
of a quadrilateral is satisfactory if all of its angles satisfy the 

recommended range (Zhu et al, 1991) of o o45 135θ≥ ≥ . If an 
element do not satisfy the previous condition, Zhu et al. (1991) 
affirms that a quadrilateral element is not satisfactory if any of its 
internal angles is out of the following acceptable 

range30o o150θ≥ ≥ . For both parameters, ε  and φ , we can also 

define the geometric mean values mε  and mφ  which are used to 

evaluate the quality of the triangular and quadrilateral meshes, 
respectively. For mixed meshes, we use the parameter mϕ , which is 

the geometric mean of mε  and mφ . According to Lee and Lo 

(1994), an isotropic triangular mesh is of good quality when 

m>0.87ε  and excellent if m>0.94ε . If m>0.54φ  the isotropic 

quadrilateral mesh is considered good and if m>0.72φ  the mesh is 

considered excellent. Mixed isotropic meshes, compounded of 
triangles and quadrilaterals, are considered extremely good if 

m>0.69ϕ . All these values of quality measurement are set rather 

arbitrarily for the purpose of comparison. Another criterion such as 
the number of elements connected to a node, which is ideally six for 
an internal node on triangular meshes and four on the quadrilateral 
ones, can be used as a measure of the quality of the meshes. The 
stretching ratio of a quadrilateral element, defined here as the ratio 
between the largest and the smallest distances between any two 
nodes of an element, is another quality parameter. We monitor these 
values to avoid excessively distorted elements on isotropic meshes.  

It is worthy mentioning that different metrics have been 
proposed and can be used to assess the quality of both, triangular 
and quadrilateral isotropic meshes (Knupp, 2003 and Secchi and 
Simoni, 2003). For anisotropic meshes the quality of the mesh is 
extremely case dependent and, as far as the authors know, there are 
no simple parameters to assess the quality of those meshes. In such 
case we must relax on the requirements for the quadrilateral meshes 
to be acceptable and the final answer, whether the mesh is good or 
not, is given by the performance of the numerical analysis using 
such meshes.  

Table 1 presents the mesh assessment parameters of the mixed 
mesh of Fig. 9. This figure stresses the quality achieved for isotropic 
quadrilateral meshes, in which most angles are close to ninety 
degrees. Table 1 shows values of the multiple mean parameters used 
to assess the quality of the triangular and quadrilateral elements and 
also of the mixed mesh. Indeed, Table 1 also shows that only 1.38% 
of the total angles (i.e. 57 angles) are outside of the recommended 
range and only 0.43% (i.e. 18 angles) are outside an acceptable 
range for an optimal unstructured quadrilateral mesh, in which the 
total number of angles is 4108. 
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Table 1. Assessment parameters for mesh of Fig. 9. 

Total number of points 2092 
Total number of elements 2999 
Max. number of elements per node 8 
Angles outside range 45 135 − 

� �  1.38% 

Angles outside range 30 150 − 
� �  0.43% 

Average mε  of initial triang. mesh 0.953 

Average mε  of final triang. mesh 0.952 

Average mφ  before cosmetics 0.408 

Average mφ  after cosmetics 0.648 

Average mϕ  of final mixed mesh 0.836 

Maximum stretching ratio 4.805 

Control and Improvement of Mesh Quality 

In general, finite element analysis using triangular elements is 
less sensitive to element distortion than using quadrilateral or mixed 
meshes. For the latter, the control of the mesh quality, and therefore 
of the shape of the elements, is very important because the results of 
the analysis obtained using quadrilateral elements can be seriously 
compromised due to high element distortion (Bathe, 1996). Element 
distortion can have bad effects on the rate of convergence of finite 
element solutions and also introduces error when using numerical 
integration. The mesh generator should therefore be able to prevent 
excessively large aspect ratios and geometric distortion to keep the 
actual rate of convergence as close as possible to the theoretical one 
and the precision of the numerical integration. Finally, it is 
important to remark that mesh distortion problems are even more 
serious if higher order elements are attempted. In order to improve 
the quality of the mesh and to reduce the effect of the mesh 
distortion in the numerical solution, two mesh optimization 
sequences can be adopted. The choice of the sequence depends on 
whether the mesh is triangular or quadrilateral and whether it is iso 
or anisotropic.  

Triangular Meshes 

For triangular meshes the strategy adopted can be seen in 
Algorithm 5. 

For both, iso and anisotropic meshes we have included an extra 
diagonal swapping (step 5 of Algorithm 5). For isotropic meshes the 
second diagonal swapping (step 5 of Algorithm 5) is also performed 
in order to obtain a more even distribution of the number of 
elements per node. Most of these procedures are standard and 
further details can be found in literature (Peraire et al., 1987, 
George, 1991, Peiró et al., 1994 and Thompson et al., 1999). For 
anisotropic meshes this second diagonal swapping can be extremely 
important in order to eliminate angles too obtuse. Considering Fig. 
14, this swapping criterion can be summarized as described in 
Algorithm 6. 

 

Algorithm 5. Mesh optimization sequence for triangu lar meshes. 

1. Node elimination (remove nodes surrounded by three 
elements); 

2. Laplacian smoothing (move nodes using an “elastic 
spring analogy”); 

3. Diagonal swapping (try to get a more even number of 
triangles per node); 

4. Laplacian smoothing (move nodes using an “elastic 
spring analogy”); 

5. Diagonal swapping (iso and anisotropic meshes). 

Algorithm 6. Diagonal swapping to eliminate highly obtuse angles. 

1. Set Maxang = User predefined threshold; 
2. Compute Maxbef = Maximum angle before 

swapping; 
3. Compute Maxaft = Maximum angle after swapping; 
4. If ((Maxbef > Maxang) and (Maxbef > Maxaft)) 

then: Swap (A-C) by (B-D). 

 

A
B

C

D

A
B

C

D

 
Figure 14. Sketch of edge swapping to eliminate hig hly obtuse angles.  

 
It must be observed that, though some of the referred mesh 

optimization strategies may lead to a lost of the directionality in 
anisotropic meshes, it was found that this lost is minimal and local, 
and that the use of such strategies were very important to obtain 
final meshes with reasonable good shaped elements to be used in 
numerical analysis. Although the choice of the user defined 
threshold “Maxang'” is completely problem dependent, we adopted 
Maxang = 170° which proved to be a good choice for all the 
applications attempted (Lyra et al., 2000, 2001, 2002). 

Quadrilateral Meshes 

In general, an unstructured quadrilateral mesh might contain 
undistorted elements (squares), elements with aspect-ratio distortion 
(rectangles), elements with parallelogram distortion (ordinary 
parallelograms) and elements with angular distortion (generic 
quadrilaterals) (Bathe, 1996). It is not always simple to determine if 
the quadrilateral is stretched when it has angular distortion. In order 
to define which quadrilateral subregions would require the use of 
the procedure to generate anisotropic meshes, we keep some 
additional information from the triangular mesh generator. The 
stretching factor of a triangle is defined as the ratio between the 
biggest side of the element and its correspondent height. Through 
some numerical experiments, we have defined that a subdomain is 
considered anisotropic if an overall majority (say 90%) of the 
triangular elements on the initial triangular mesh has a stretching 
factor bigger than a predefined threshold (e.g. 2), otherwise it is 
considered isotropic. The new optimization sequence we have 
devised for quadrilateral meshes is given in Algorithm 7. 

 

Algorithm 7. Mesh optimization sequence for quadril ateral meshes. 

1. Diagonal swapping (in the intermediate mesh); 
2. Diagonal swapping (try to get a more even number of 

elements per node); 
3. Laplacian smoothing (move nodes using an “elastic spring 

analogy”); 
4. Node movement (to eliminate quadrilaterals with bad 

angles); 
5. Diagonal swapping (try to eliminate quadrilaterals with bad 

angles). 
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The diagonal swapping of step 1 of Algorithm 7 interchanges 
edges shared by triangles and quadrilaterals in the intermediate 
mesh (see Algorithm 8 and Fig. 15). In our experiments we have 

used, 160Anglim= � and 170Anglim= �  for iso and anisotropic 
meshes respectively, achieving good results in both cases. With this 
procedure we have tried to avoid having isolated triangles with 
highly obtuse angles left to be split directly into three bad shaped 
quadrilaterals.  

 

Algorithm 8. Diagonal swapping in the intermediate mesh (see Fig. 15).  

1. Set Anglim = User predefined threshold; 
2. Compute Badang = ( )1 2 3, ,Max b b b ;  

3. If ((Badang > Anglim) then: 
4. If ( )2 3α α>  then swap (1-2) by (3-4); 

5. If ( )2 3α α>  then swap (1-2) by (3-5). 
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Figure 15. Sketch of edge swapping  performed in th e intermediate mixed 
mesh. 

 
The diagonal swapping of step 2 in Algorithm 7 is similar to 

that adopted for the triangular mesh. It is used to obtain a more even 
distribution of the number of elements per node. The Laplacian 
smoothing (step 3) is also similar to that used for the triangular 
mesh. Both strategies are fully described in Lyra et al. (1998). For 
anisotropic meshes, after the previous strategies, few low quality 
quadrilaterals can still remain. To reduce or eliminate such bad 
quality elements which are originated by the splitting of isolated 
triangles left after the merging step,  another diagonal swapping and 
new moving node strategies are performed to improve the internal 
angles of such elements. There are two basic node movement 
strategies, the first one tries to eliminate angles which are too acute 
and the second aims to eliminate angles too obtuse. In order to 
illustrate both node movement strategies (Step 4 of Algorithm 7), 
which are detailed in Algorithms 9 and 10, see sketches of Figs. 16 
and 17. 

 
 
 
 
 
 
 

Algorithm 9. Moving node to eliminate very acute an gles (see Fig. 16).  

1. Determine the two biggest edges of the triangle that 
originated the distorted quadrilateral element; 

2. Move the nodes located on the middle points of these 
edges over the edges of the quadrilateral neighbors;  

3. Move the central node to a position where the β  
angle is set as near as possible of 120o. 

 

Algorithm 10. Moving node to eliminate very obtuse angles (see Fig. 17).  

1. Determine if the central angle η  is too obtuse; 

2. Move node I to the middle point of the edge i-k if the φ  
parameter of the 3 surrounding quadrilaterals after 
movement is not smaller than a threshold. 

 

b
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Figure 16. Sketch of nodal movement strategy in the  presence of acute 
angles. 
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Figure 17. Sketch of nodal movement strategy in the  presence of obtuse 
angles. 

 
The final diagonal swapping strategy, referred in Step 5 of 

Algorithm 7 and sketched in Fig. 18 is described in Algorithm 11. 
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Figure 18. Sketch of swapping to eliminate quadrila terals with bad angles.  

 

Algorithm 11. Diagonal swapping to eliminate quadri laterals with bad 
angles (see Fig. 18).  

1. Set ( )3 4 5 6, , ,M Max a a a a= ; 

2. If ( )1 2a M and a M< <  then: 

       If ( ) ( )( )( )3 4 5 6a a and a a> >  then: 

       swap (1-2) by (3-5) 
       Else:  
       swap (1-2) by (4-6) 

Auxiliary Data Structures 

The conventional finite element data structure uses an integer 
array of nodal connectivities and a floating point array of nodal 
coordinates. Apart from the auxiliary data structures used during the 
triangulation stage, we need several extra arrays for the conversion 
of a mesh of triangles to a mesh of quadrilaterals, and also to build 
mixed meshes and meshes with subregions and/or subdomains. 
These arrays allow accessing the topological features of the mesh 
used in the algorithm, in constant time, avoiding search loops that 
would have made the algorithm too expensive (Lyra et al., 1998). 
The most important auxiliary arrays adopted are: 

• iside(5,medge), lists the number of the first node, the last 
node, the element on the left and the element on the right 
of the edge and the number of the subdomain which 
contain the edge, for all medge edges in the mesh. If an 
edge belongs to the boundary, a zero is used as the 
corresponding element number and if the edge belongs to 
the interface between two subdomains, a zero is used as 
the corresponding subdomain number. 

• idom(ndom), is an array introduced to keep the 
information for each of the ndom subdomains indicating 
which one must be of quadrilateral elements.  

• ietsid(3,ntri), lists the number of the edges that form each 
triangle, for all triangles in the mesh.  

• ieqside(4,nquad), lists the number of the edges that form 
each quadrilateral, for all quadrilaterals in the mesh. 

 
 
 

Mesh Adaptation 

Adaptation is the automatic modification of parameters of a 
numerical simulation in order to improve the accuracy with reduced 
computational resources. Several parameters can be adapted in a 
numerical simulation Lyra (1994), (governing equations, mesh, size 
of the time-step, etc.). Our mesh generator methodology is flexible 
to incorporate an adaptive global or local remeshing procedure in 
which a new mesh is totally or partially built according to a set of 
control parameters estimated using an error analysis. The main 
characteristic of the adaptive remeshing procedure is the complete 
detachment of the stages involved, i.e. generation of the discrete 
model, analysis algorithm, post-processing error estimation and 
mesh parameters definition are all done independently. The analysis 
algorithm remains with its original data structure and once a suitable 
mesh generator is available the adaptive remeshing procedure can be 
incorporated directly into many different finite element or finite 
volume programs. When using the advancing front technique 
described here, it is necessary to get a new distribution of the mesh 
parameters ( ), andtSδ α on a suitable background mesh and to 

proceed as described previously. When dealing with triangular 
meshes, the remeshing procedure consists in the steps presented in 
Algorithm 12. 

 

Algorithm 12. Remeshing procedures for triangular m eshes.  

1. Set the current mesh as the background mesh; 
2. Determine the mesh control parameters (according to 

an error analysis); 
3. Generate a new triangular mesh (using the advancing 

front technique). 
 
For quadrilateral or mixed meshes we propose a new procedure 

which consists in the steps presented in Algorithm 13. 
 

Algorithm 13. Remeshing procedures for quadrilatera l meshes.  

1. Triangulate the quadrilateral elements in the current 
mesh; 

2. Perform the triangular remeshing procedure 
(Algorithm 12); 

3. Generate a new triangular mesh  
4. (using the advancing front technique). 

 
This new procedure seems somewhat involved but it can be 

fully automated. The conversion of quadrilaterals into triangles 
incurs in very low computational cost, and the reuse of a well tested 
and robust triangular remeshing procedure without any modification 
to it or to the quadrilateral mesh generator is extremely attractive.  

Error Estimate 

In fluid dynamics the importance of using anisotropic meshes 
can not be over emphasized as many flow features are strongly 
directional. When using such meshes it is necessary to incorporate 
an anisotropic error estimate to drive the adaptive procedure. In 
order to introduce the error estimator, consider a family of 
triangulations { }hτ  of Ω . Assuming that the approximate solution 

hu  is a good approximation for u (Almeida et al., 2000), then 
 

( )
( )( )( ) ( )

( )
0 0p ph R hL L

u u c H u x x x x x
Ω Ω

− ≅ − ⋅ −  (2) 
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which shows that the interpolation error in one point depends on the 
direction ( )0x x−

 
and on the recovered Hessian matrix in that point 

( )( )( )0R hH u x x x− , where pL
⋅ stands for the pL  norm. However, 

this matrix is not positive-definite, precluding its use as a metric. If 

the tensor TG L L= Λ  is used, as suggested in Peiró (1989), where 

the columns entries of L are the left eigenvectors of ( )( )R hH u x  and 

{ }1 2,diag λ λΛ=  is formed by its absolute eigenvalues 

( )1 2λ λ≤ , it is possible to define the following anisotropic error 

estimator of the element he τ∈ : 
 

( )1 2
2 0 22 p

e earea xη λ δ=  (3) 

 
The global error estimator is given by, 
 

( )

1

h

p
p

e
e τ

η η
∈

    = 
    
∑  (4) 

 
where 0x  is the element baricenter and 2δ  is the element size in the 

direction of the eigenvector associated to 2λ . In that definition an 

optimal local error constraint was assumed, requiring that the 
element shape be such that the estimated error yields the same value 
in any direction. For further details see Almeida et al. (2000), and 
for the extension and application of this error estimate for 
quadrilateral meshes when solving CFD problems, see Lyra et al. 
(2001) and Lyra et al. (2002). 

Adaptive Remeshing 

In a global remeshing procedure the whole mesh is rebuilt 
according to the mesh parameters dictated by the error estimates. On 
the other hand, in a local remeshing strategy (Hassan et al. (1993a), 
the mesh is re-built only at certain portions of the domain according 
to the new distribution of mesh parameters. An important feature of 
our mesh generation methodology is that we have generalized this 
procedure to deal with triangular, quadrilateral or mixed meshes 
over multiple domains, considering both iso and anisotropic meshes. 
The local remeshing strategy on generic 2-D domains is shown in 
Algorithm 14. The determination of the new mesh parameters is 
always done on a triangular mesh, therefore a quadrilateral or mixed 
mesh is always transformed into a triangular mesh after the 
computation of the error estimates. This step computes not only the 
new mesh parameters dictated by the solution error but also 
approximately recovers the mesh parameters that were used to 
generate the current mesh (detailed later). This is consistent with the 
mesh generation technique adopted, which consists in always 
generating first an initial triangular mesh. 

It must be emphasized that during the automatic quadrilateral 
mesh adaptation, at each new generated mesh, the nodal spacings 
obtained through the error analysis are automatically doubled in 
order to account for the element splitting stage that we adopted to 
generate quadrilaterals. The regions of the domain where there is a 

large difference between the desired mesh parameters, NEWδ and 
NEWα , and the ones of the current mesh, OLDδ  and OLDα , are then 

selected as regions for local remeshing. 
The elements in these regions are deleted, and the mesh 

generation is performed on the resulting “holes”. The resulting mesh 
is then converted back into a quadrilateral or mixed mesh. 

 

Algorithm 14. Local remeshing strategy for iso and anisotropic meshes. 

1. When dealing with a quadrilateral or a mixed mesh, 
triangulate the quadrilateral elements in the current mesh; 

2. Estimate the parameters of the current mesh OLDδ  and 
OLDα  as described in Algorithms 15 and 16; 

3. Compute the desired mesh parameters NEWδ  and 
NEWα accordingly to the error estimation; 

4. Automatically determine he subregions in which the mesh 

parameters must significantly change by comparingOLDδ , 
OLDα  and NEWδ  and NEWα ; 

5. Eliminate the elements within those subregions; 
6. Re-triangulate those subregions, according to the new mesh 

parameters; 
7. When dealing with a quadrilateral or a mixed mesh, convert 

the new triangular mesh back to a quadrilateral or a mixed 
mesh. 

 
When addressing problems involving moving boundaries and an 

“ALE” (Arbitrarian Lagrangian-Eulerian) formulation (Lyra and 
Antunes, 2002) the criteria to determine the elements to be 
eliminated considers also the quality of the elements, which might 
have been deteriorated due to the dynamic character of the mesh. 
Considering fully isotropic triangular meshes, in which the 
quadrilateral elements had been converted into the two best (closest 
to equilateral) triangles, we only need to estimate the spacing 
distribution in the current mesh (Fig. 19). An average nodal value of 

this spacing mδ  is computed as described in Algorithm 15. 
 

Algorithm 15. Isotropic mesh parameter estimation ( see Fig. 19). 

1. Identify the surrounding elements of a given node; 
2. For each element, calculate the height of the triangle 

correspondent to the edge opposite to the consider node 
( )( )i

2
eδ ; 

3. Compute the arithmetic mean of these heights and 

associates it to the node OLD mδ δ= . 

 

)2(
e1

δ

)2(
e2

δ)2(
e3

δ

 
Figure 19. Estimate of nodal spacing for isotropic meshes. 

 
For anisotropic quadrilateral or mixed meshes, we propose a 

procedure in which the quadrilateral elements are subdivided into 
triangles (step 1 of Algorithm 14) through their biggest diagonal 
before the domain is actually remeshed. For the anisotropic 
triangular meshes, the average nodal values of the mesh parameters 
are computed as shown in Algorithm 16. Figure 20 presents how to 

obtain  ( ) ( ),
i i

1 2
e eδ δ  and ( )

i

1
eα  in an anisotropic mesh. It must be 

remarked that, in general, the variation of the spacing is more 
important than that of the principal directions and so the threshold 
adopted to determine the subregions to be remeshed is more 
restricting for the spacing. It is worthy mentioning that the 

parameters ( )NEW i
δ  and NEWα  are obtained through a-posteriori 
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error estimate as described previously and with the theoretical 
knowledge of the a-priori error estimate (Almeida et al., 2000). 

 

Algorithm 16. Anisotropic mesh parameters estimatio n (see Fig. 20). 

1. Identify the surrounding elements of a given node; 

2. For each element, determine the biggest edge ( )
i

1
eδ , the 

triangle height relative to that edge ( )
i

2
eδ  and the angle of 

this edge relative to the global system of reference ( )
i

1
eα . 

3. Compute the arithmetic mean of these parameters and 

associated them to the node ( )OLD mδ δ=  and 

( )OLD mα α= . 
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Figure 20. Estimate of nodal spacing for anisotropi c meshes. 

Further Examples 

Some extra examples are presented in this section to illustrate 
some of the flexibilities of the mesh generation methodology and to 
shown its performance on some CFD computations. Here, we just 
present the meshes used during these applications. For further 
details on the different formulations adopted and detailed results of 
the presented problems see the references listed on each application.  

Steady-State Inviscid Flow Simulation with Isotropic 
Remeshing 

A triangular mesh used for the simulation of a supersonic 
compressible flow around a cylinder, at Mach number of 3.0 and 
angle of attack of 0° (Lyra, 1994 and Lyra and Morgan, 2002) was 
used in this example to demonstrate the flexibility for isotropic 
remeshing. The solution main features consist basically in the front 
bow shock, the rarefaction zone and the weak shocks behind the 
cylinder. Figure 21a shows the triangular mesh created by the 
remeshing procedure. Figure 21b shows a portion of the 
quadrilateral mesh created with remeshing and originated from the 
mesh presented in Fig. 21a. 

 

 
a) b) 

Figure 21. a) Triangular mesh around cylinder after  remeshing: b) Zoom of 
quadrilateral mesh around cylinder after remeshing.   

Steady-State Inviscid Flow Simulation with Anisotropic 
Remeshing 

Consider the solution of the inviscid flow problem of regular 
shock reflection at a flat plate (Lyra and Morgan, 2002). A flow 
impinging on the plate at a Mach number of 2.0 and at an angle of 
attack of -10°. The theoretical solution consists of a leading edge 
reflected shock at 29.3° to the flat plate. A rectangular domain, such 
that the theoretical shock is positioned at its diagonal, is adopted. In 
Fig. 22 the final meshes obtained after four stages of global adaptive 
remeshing is presented for either triangular (Fig. 22a) or 
quadrilateral (Fig. 22b) elements. The meshes are refined and 
aligned with the shock. The triangular mesh has 1835 elements and 
939 nodes and the quadrilateral mesh has 1377 elements and 1401 
nodes. The adaptive strategy is such that the element shape and 
direction is obtained by requiring that the local error estimative 
yields the same value in any direction.  

 

 
(a) 

 
(b) 

Figure 22. Final adapted meshes: a) triangular mesh ; b) quadrilateral 
mesh. 
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Figure 23 illustrates the flexibility and robustness of the 
anisotropic triangular local remeshing procedure. In Figure 23a we 
plot the remaining elements after eliminating the elements which 
must change significantly the spacing and/or stretching direction, 
according to the error analysis. In Figure 23b shows the mesh after 
the holes are filled by triangles using the advancing front technique. 
Those meshes correspond to the first local remeshing performed 
after a global remeshing on the initial mesh.  

 

 
(a) 

    
(b) 

Figure 23. Triangular local remeshing. 

Transient Inviscid Flow 

Considers the solution of an internal transient inviscid 
supersonic flow (Lyra et al. 2002). The geometry consists in a wind 
tunnel with a step and the inflow boundary condition consists of a 
uniform Mach 3.0 flow with angle of attack 0°. At the right 
boundary the flow is let free to leave the domain and along the 
walls, reflecting boundary conditions are applied. During the 
transient adaptive procedure several adapted meshes are generated 
along the time integration according to the error analysis. Figure 24 
shows some selected meshes: mesh 3, is the third mesh generated 
during the transient adaptive process, and meshes 20, 27 and 49 are 
meshes generated before and after the time when the shock starts to 
be reflected from the top boundary. The mesh refinement is clearly 
following the physical features of the flow. The adaptive algorithm 
try to obtain an “optimal” mesh for a pre-defined number of 
elements. The target number of elements for this analysis was 1000 
and a limited aspect ration of 4 was considered. The number of 
elements generated in the meshes shown was 620, 977, 994 and 
1010, and the corresponding number of nodes was 638, 1007, 1029 
and 1047, showing that the procedure obeyed well the imposed 
constraints (Lyra et al. 2002). 

 

 
Mesh 3 

 
Mesh 20 

 
Mesh 27 

 
Mesh 29 

Figure 24. Selected initial meshes for the transien t adaptive procedure 
(Meshes 3, 20, 27 and 29). 

Moving Boundary Application 

In order to keep the mesh acceptable for numerical computation, 
when solving problems involving large amplitudes of the boundary 
movement, an adaptive local remeshing was adopted in the 
following academic problem (Lyra and Antunes, 2002). As for the 
fluid-structure interaction applications we consider viscous flows, 
the boundary layer mesh is adopted and kept undeformed for 
accuracy purpose. Figure 25 presents the sequence of stages 
involved during the local remeshing procedure. Figure 25a presents 
the initial no-deformed mesh and in Fig. 25b we present a detail of a 
distorted mesh resulting from the rotation of the cylinder. A moving 
mesh strategy was used in the “ALE” formulation, but it was not 
enough to prevent element deterioration that makes impossible the 
use of such mesh for numerical computation. Figure 25c shows an 
intermediate stage of the local remeshing adaptive procedure, where 
the undesirable elements were taken out of the mesh forming several 
holes, which have to be filled in the next stage using the advancing 
front mesh generator. Figure 25d depicts the final mesh obtained.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 25. Local remeshing for problems involving m oving meshes: a) 
mesh without “bad” elements; b) final mesh; c) init ial mesh; d) deformed 
mesh. 

Final Remarks and Conclusions 

We have briefly described the most important features of a 
general two-dimensional unstructured mesh generation/adaptation 
computational methodology, and we also presented some academic 
examples to illustrate its flexibility and the good quality of the 
meshes obtained by using it. The main goals during the development 
stages of the methodology were to keep the strategies simple and 
ease to implement, and to make possible: to convert any available 
triangular mesh into a quadrilateral or mixed mesh; to inherit from 
an available triangular mesh generator the capability for controlling 
the quality, gradation and stretching of the elements; to retain and 
extend the flexibility for mesh adaptation through remeshing; to 
create directional stretched meshes in any portion of the domain. 
This mesh generator/adapter program opens the possibility to the 
analyst to choose the best type of element for his formulation and 
application, and basically whatever can be done with triangles can 
also be done with quadrilaterals. Some examples of computational 
fluid dynamics applications have been tackled with our 

methodology and were also briefly presented showing that the 
obtained meshes are valid for numerical simulation. The extension 
of some of the proposed approaches into three dimensions would 
require a lot more effort, if possible, and the issue of a robust 
unstructured hexahedra mesh generator faces many difficulties and 
represents a very challenging research topic (Thompson et al., 1999 
and Carey, 2002). 
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