
S. S.Mahapatra and Amar Patnaik 

/ Vol. XXVIII, No. 4, October-December 2006  ABCM 422 

 
 

S. S.Mahapatra 
ssm@nitrkl.ac.in 

National Institute of Technology 

Department of Mechanical Engineering  

Rourkela. INDIA 

Amar Patnaik 
amar_mech@sify.com 

G.I.E.T  

Department of Mechanical Engineering 

Gunupur, INDIA 

 

 

 

 

 

 

 

Parametric Optimization of Wire 
Electrical Discharge Machining 
(WEDM) Process using Taguchi 
Method 
Wire electrical discharge machining (WEDM) is a specialized thermal machining process 
capable of accurately machining parts of hard materials with complex shapes. Parts 
having sharp edges that pose difficulties to be machined by the main stream machining 
processes can be easily machined by WEDM process. Technology of the WEDM process is 
based on the conventional EDM sparking phenomenon utilizing the widely accepted non-
contact technique of material removal with a difference that spark is generated at wire and 
work piece gap. Since the introduction of the process,  WEDM has evolved as a simple 
means of making tools and dies to the best alternative of producing micro-scale parts with 
the highest degree of dimensional accuracy and surface finish. This paper outlines the 
development of a model and its application to optimize WEDM machining parameters. 
Experiments are conducted to test the model and satisfactory results are obtained. The 
methodology described here is expected to be highly beneficial to manufacturing 
industries, and also other areas such as aerospace, automobile and tool making industries. 
Keywords: WEDM, metal removal rate, surface finish, taguchi method, genetic algorithm 
 
 
 

Introduction  

Electrical discharge machining (EDM) is a non-traditional, 
thermo-electrical process, which erodes materials from the work 
piece by a series of discrete sparks between the work and tool 
electrode immersed in a liquid dielectric medium. These electrical 
discharges melt and vaporize minute amounts of the work material, 
which are then ejected and flushed away by the dielectric. A wire 
EDM generates spark discharges between a small wire electrode and 
a work piece with de-ionized water as the dielectric medium and 
erodes the work piece to produce complex two and three 
dimensional shapes according to a numerically controlled (NC) 
path. The main goals of WEDM manufacturers and users are to 
achieve a better stability and higher productivity of the WEDM 
process. As newer and more exotic materials are developed, and 
more complex shapes are presented, conventional machining 
operations will continue to reach their limitations and the increased 
use of the WEDM in manufacturing will continue to grow at an 
accelerated rate (Guitrau, 1991). Wire electrical discharge 
machining manufacturers and users emphasize on achievement of 
higher machining productivity with a desired accuracy and surface 
finish. However, due to a large number of variables even a highly 
skilled operator with a state-of-the-art WEDM is rarely able to 
achieve the optimal performance (Williams and Rajurkar, 1991). An 
effective way to solve this problem is to determine the relationship 
between the performance measures of the process and its 
controllable input parameters. 1 

Investigations into the influences of machining input parameters 
on the performance of WEDM have been widely reported (Rajurkar 
and Royo, 1989 Williams and Rajurkar 1991, Sone and Masui, 
1991, Matsuo and Oshima, 1992, Soni and Chakraverti, 1994). 
Several attempts have been made to develop mathematical model of 
the process by Scott, Boyina and Rajurkar (1991), Indurkhya and 
Rajurkar (1992), and Rajurkar and Wang (1993). In these reports,  
productivity of the process and the surface roughness of the 
machined work piece are used as measures of the process 
performance. Neural network models on material removal rate in 
EDM has been studied by Tsai and Wang (2001) whereas Lee and 
Li (2001) concentrated on effects of process parameters in EDM 
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using tungsten carbide as work material. Hocheng et al. (1997) 
investigated the correlation between current and spark on-time with 
the crater size produced by a single spark of SiC/Al work materials. 
Qu et al. (2002) have, through examination of literature, concluded 
that research has not been directed towards EDM applications in the 
area of newly developed engineering materials and the boundaries 
that limit the material removal rate (MRR). Hence, investigations 
were carried out to study the effect of spark on-time duration and 
spark on-time ratio, two important EDM process parameters, on the 
surface finish characteristics and integrity of the four types of 
advanced engineering material such as porous metal foams, metal 
bond diamond grinding wheels, sintered Nd-Fe-B magnets, and 
carbon-carbon bipolar plates. Scott, Boyina and Rajurkar (1991), 
used a factorial design method, to determine the optimal 
combination of control parameters in WEDM considering the 
measures of machining performance as metal removal rate and the 
surface finish. The study concludes that discharge current, the pulse 
duration and the pulse frequency are significant control factors. 
Tarng and Chung (1995) used a neural network model to estimate 
cutting speed and surface finish using input settings as pulse 
duration, pulse interval, peak current, open circuit voltage, servo 
reference voltage, electric capacitance and table speed. Trezise 
(1982) suggests that fundamental limits on machining accuracy are 
dimensional consistency of the wire and the positional accuracy of 
the work table. However, other factors conspire to prevent this 
theoretical precision from being achieved. Most of the uncertainties 
arise because of the wire remote from the guides. The detailed 
section of the working region of the wire electrode is shown in 
Fig.1. It is evident from Fig.1 that it is absolutely essential to hold 
the wire in a designated position against the object because the wire 
repeats complex oscillations due to electro-discharge between the 
wire and work piece. Normally, the wire is held by a pin guide at the 
upper and lower parts of the work piece. In most cases the wire, 
once used, will be discarded. However, there are problematic points 
that should be fully considered in order to enhance working 
accuracy.  
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Figure 1. Details of WEDM Cutting Gap. 

 

The most important performance measures in WEDM are metal 
removal rate, work piece surface finish, and cutting width. 
Discharge current, pulse duration, pulse frequency, wire speed, wire 
tension, dielectric flow rate are the machining parameters which 
affect the performance measures. The gap between wire and work 
piece usually ranges from 0.025 to 0.075 mm and is constantly 
maintained by a computer controlled positioning system. The 
material removal rate (g/min) is calculated by weight difference of 
the specimens before and after machining. The surface finish value 
(µm) is obtained by measuring the mean absolute deviation, Ra, 
from the average surface level. In WEDM operations, material 
removal rate determine the economics of machining and rate of 
production. In setting the machining parameter, the main goal is to 
maximize MRR and SF (surface finish). In order to investigate the 
effects of various process parameters on MRR and SF and then to 
suggest the optimal process settings, statistically designed 
experiments are used in this study. Generally, the machine tool 
builder provides machining parameter table to be used for setting 
machining parameter. This process relies heavily on the experience 
of the operator. In practice, it makes very difficult to utilize the 
optimal functions of a machine owing to there being too many 
adjustable machining parameters. The Taguchi method, a powerful 
experimental design tool, uses simple, effective, and systematic 
approach for deriving of the optimal machining parameters. Further, 
this approach requires minimum experimental cost and efficiently 
reduces the effect of the source of variation. An inexpensive and 
easy to operate methodology must be evolved to modify the 
machined surfaces as well as maintain accuracy. The methodology 
uses Taguchi’s experimental design for setting suitable machining 
parameters in order to effectively control the amount of removed 
materials and to produce complicated precise components. 

Experimental Method 

The experiments were performed on Robofil 100 high precision 
five axis CNC WEDM, which is manufactured by Charmilles 
Technologies Corporation. The basic parts of the WEDM machine 
consists of a wire, a work table, a servo control system, a power 
supply and dielectric supply system. The Robofil 100 allows the 
operator to choose input parameters according to the material and 
height of the work piece and tool material from a manual provided 
by the WEDM manufacturer. The Robofil 100 WED machine has 
several special features. The pulse power supply uses a transistor 
controlled RC circuit. The discharge energy is determined by the 
value of the capacitor that is parallel to the machining gap. The 
experimental set-up for the data acquisition of the sparking 
frequency and machine table speed is illustrated in the Fig. 2. The 
WEDM process generally consists of several stages, a rough cut 
phase, a rough cut with finishing stage, and a finishing stage. During 
the rough cut phase metal removal rate is of primary importance. 

Only during the rough cut with finishing stage are metal removal 
rate and surface finish both of primary importance. This means that 
the rough cut with finishing phase is the most challenging phase 
because two goals must simultaneously be considered. We shall 
therefore consider the rough cut with finishing phase here. 

 

 
Figure 2. Experimental Set-up of Robofil 100 WEDM. 

Material, Test Conditions, and Measurement 

The experimental studies were performed on a Robofil 100 
WEDM machine tool. Settings of control parameters of the machine 
are listed as Table 1. Few other factors, which 

 

Table 1. Parameters of Robofil 100 WEDM. 

Control 
Factors Symbols Fixed Parameters 

Discharge 
 Current 

Factor  A Wire 
Zinc coated  
copper wire 

Pulse Duration Factor  B Shape   
Rectangular  
product 

Pulse 
Frequency 

Factor  C 
Location of 
work piece on 
working table 

At the center  
of the table 

Wire Speed Factor  D Angle of cut Vertical 

Wire Tension Factor  E 
Thickness of  
work piece 

10 mm 

Dielectric  
Flow Rate 

Factor  F Stability Servo control 

  
Height of work 
piece 

25 mm 

  Wire type 
Stratified, copper, 
diameter  0.25 mm 

 

can be expected to have an effect on the measures of performance, 
are also listed in Table 1. In order to minimize their effects, these 
factors were held constant as for as practicable. The control factors 
were chosen based on review of literature, experience, and some 
preliminary investigations. Different settings of six controllable 
factors such as discharge current, pulse duration, pulse frequency, 
wire speed, wire tension, and dielectric flow rate were used in the 
experiments as shown in Table 2 whereas pulse interval time and  

 

Table 2. Levels for Various Control Factors. 

Level 
Control Factor I II III Unit 

A.  Discharge 
Current 

16.00 24.00 32.00 amp 

B.  Pulse Duration 3.20 6.40 12.80 µsec 
C.  Pulse   

Frequency 
40.00 50.00 60.00 KHz 

D.  Wire Speed 7.60 8.60   9.20 m/min 
E.  Wire Tension 1000.00 1100.00 1200.00 g 
F.  Dielectric  

Flow Rate 
1.20 1.30 1.40 Bars 
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table feed rate were kept constant throughout the experiment. Zinc 
coated copper wire with 0.25 mm diameter was used in the 
experiment. Each time the experiment was performed, a particular 
set of input parameters was chosen and the work piece, a block of 
D2 tool steel (1.5%C, 12%Cr, 0.6%V, 1%Mo, 0.6%Si, 0.6%Mn and 
balance Fe), was cut completely through 10 mm length of the cut. 
The gap between wire and work piece usually ranges from 0.025 to 
0.075 mm and is constantly maintained by a computer controlled 
positioning system. The most important performance measures in 
WEDM are metal removal rate, and work piece surface finish. The 
material removal rate (g/min) was calculated by weight difference of 
the specimens before and after machining, using a type E-12005 
sartorius precision scale (maximum capacity =1210g, precision = 
0.001g). The surface finish value (µm) was obtained by measuring 
the mean absolute deviation from the average surface level using a 
type C3A Mahr Perthen Perthometer (stylus radius of 5 µm). In this 
investigation, the height of the work piece was chosen to be 25 mm 
so that the cross-section of the cut made was 10 mm  ×××× 25 mm. A 
0.25 mm diameter stratified wire (zinc coated copper wire) with 
vertical configuration was used.  

Design of Experiment based on Taguchi Method 

By using Robofil 100 WEDM, the input parameters are to be 
chosen from a limited set of possible values. The values of input 
parameters which are of interest in the rough cut with finishing 
phase are recorded. To evaluate the effects of machining parameters 
on performance characteristics (MRR and SF), and to identify the 
performance characteristics under the optimal machining 
parameters, a specially designed experimental procedure is required. 
Classical experimental design methods are too complex and difficult 
to use. Additionally, large numbers of experiments have to be 
carried out when number of machining parameters increases. 
Therefore, Taguchi method, a powerful tool for parameter design, 
was used to determine optimal machining parameters for maximum 
MRR and SF in WEDM. The control factors are used to select the 
best conditions for stability in design of manufacturing process, 
whereas the noise factors denote all factors that cause variation. 
Taguchi proposed to acquire the characteristic data by using 
orthogonal arrays, and to analyze the performance measure from the 
data to decide the optimal process parameters. In this work, it is 
planned to study the behavior of six control factors viz., A, B, C, D, 
E, and F and two interactions viz.,  

A×B and A×F, based on past experience and extensive literature 
review. The experimental observations are further transformed into 
a signal-to-noise (S/N) ratio. There are several (S/N) ratios available 
depending on objective of optimization of the response. The 
characteristic with higher value represents better machining 
performance, such as MRR, is called ‘higher is better, HB’. 
Inversely, the characteristic that has lower value represents better 
machining performance, such as SF. Therefore, “HB” for the MRR, 
and “LB’’ for the SF were selected for obtaining optimum 

machining performance characteristics. The loss function (L) for 
objective of HB and LB is defined as follows, where MRRy  and 

SFy  represent response for metal removal rate and surface finish 

respectively and ‘n’ denotes the number of experiments. 
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The S/N ratio can be calculated as a logarithmic transformation of 
the loss function as shown below.  

 
S/N ratio for MRR= -10log 10( HBL ) (3) 

 
S/N ratio for SF = -10log 10 ( LBL ) (4) 

 

 
Figure 3. Modified Linear Graphs for L27 Array. 

 
The standard linear graph is modified using line separation 

method, as shown in Fig.3, to assign the factors and interactions to 
various columns of the orthogonal array (Glen, 1993, Madhav, 
1989)  The array chosen was the L27 (313) which have 27 rows 
corresponding to the number of experiments with 13 columns at 
three levels. The factors and their interaction are assigned to the 
columns using modified linear graph. The plan of experiments is as 
follows: the first column was assigned to discharge current (A), the 
second column to pulse duration (B), the eighth column to pulse 
frequency (C), the ninth column to wire speed (D), the tenth  
column to wire tension (E), the fifth  column to dielectric flow rate 
(F), the third and fourth columns are  assigned to A×B for 
estimating interaction between discharge current (A) and pulse 
duration (B) respectively, The sixth and seventh columns are 
assigned to A×F for estimating interaction between discharge 
current (A) and dielectric flow rate (F) respectively. The L27 

orthogonal array with assignment of factors and interactions is 
shown in Table 3. The experiments were conducted for each 
combination of factors (rows) as per selected orthogonal array. The 
number of observation under each combination of factors is one i.e. 
number of replications is one. The experimental results are shown in 
Table 4. 
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Table 3. Orthogonal Array for L27(313) Design with Factor Assignment to Columns. 

L27(313) 
1 
A 

2 
B 

3 
(AxB)1 

4 
(AxB)2 

5 
F 

6 
(AxF)1 

7 
(AxF)1 

8 
C 

9 
D 

10 
E 

11 12 
13 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 2 2 2 2 2 2 2 2 2 
3 1 1 1 1 3 3 3 3 3 3 3 3 3 
4 1 2 2 2 1 1 1 2 2 2 3 3 3 
5 1 2 2 2 2 2 2 3 3 3 1 1 1 
6 1 2 2 2 3 3 3 1 1 1 2 2 2 
7 1 3 3 3 1 1 1 3 3 3 2 2 2 
8 1 3 3 3 2 2 2 1 1 1 3 3 3 
9 1 3 3 3 3 3 3 2 2 2 1 1 1 
10 2 1 2 3 1 2 3 1 2 3 1 2 3 
11 2 1 2 3 2 3 1 2 3 1 2 3 1 
12 2 1 2 3 3 1 2 3 1 2 3 1 2 
13 2 2 3 1 1 2 3 2 3 1 3 1 2 
14 2 2 3 1 2 3 1 3 1 2 1 2 3 
15 2 2 3 1 3 1 2 1 2 3 2 3 1 
16 2 3 1 2 1 2 3 3 1 2 2 3 1 
17 2 3 1 2 2 3 1 1 2 3 3 1 2 
18 2 3 1 2 3 1 2 2 3 1 1 2 3 
19 3 1 3 2 1 3 2 1 3 2 1 3 2 
20 3 1 3 2 2 1 3 2 1 3 2 1 3 
21 3 1 3 2 3 2 1 3 2 1 3 2 1 
22 3 2 1 3 1 3 2 2 1 3 3 2 1 
23 3 2 1 3 2 1 3 3 2 1 1 3 2 
24 3 2 1 3 3 2 1 1 3 2 2 1 3 
25 3 3 2 1 1 3 2 3 2 1 2 1 3 
26 3 3 2 1 2 1 3 1 3 2 3 2 1 
27 3 3 2 1 3 2 1 2 1 3 1 3 2 

 

Table 4. Experimental Design using L27 Orthogonal Array. 

Expt. 
No. 

A B C D E F 
MRR 

(g/min) 
S/N  Ratio 

(db) 
Surface Roughness (Ra) 

(µm) 
S/N Ratio 

(db) 
1 1 1 1 1 1 1 0.139939 -17.0812 3.68 88.6820 
2 1 1 2 2 2 2 0.127569 -17.8851 3.61 88.8514 
3 1 1 3 3 3 3 0.115264 -18.7661 3.53 89.0493 
4 1 2 2 2 2 1 0.169761 -15.4032 3.82 88.3584 
5 1 2 3 3 3 2 0.150028 -16.4766 3.77 88.4805 
6 1 2 1 1 1 3 0.156325 -16.1195 3.70 88.6461 
7 1 3 3 3 3 1 0.182900 -14.7557 3.86 88.2607 
8 1 3 1 1 1 2 0.166973 -15.5471 3.83 88.3468 
9 1 3 2 2 2 3 0.146937 -16.6574 3.77 88.4688 
10 2 1 1 2 3 1 0.141560 -16.9812 3.64 88.7723 
11 2 1 2 3 1 2 0.132273 -17.5706 3.63 88.8088 
12 2 1 3 1 2 3 0.151855 -16.3714 3.67 88.7120 
13 2 2 2 3 1 1 0.222566 -13.0508 3.89 88.1925 
14 2 2 3 1 2 2 0.219497 -13.1714 3.87 88.2436 
15 2 2 1 2 3 3 0.220792 -13.1203 3.90 88.1698 
16 2 3 3 1 2 1 0.165344 -15.6322 3.86 88.2722 
17 2 3 1 2 3 2 0.156703 -16.0985 3.83 88.3295 
18 2 3 2 3 1 3 0.165329 -15.6330 3.86 88.2722 
19 3 1 1 3 2 1 0.168143 -15.4864 3.73 88.5755 
20 3 1 2 1 3 2 0.174135 -15.1823 3.75 88.5098 
21 3 1 3 2 1 3 0.170947 -15.3428 3.73 88.5688 
22 3 2 2 1 3 1 0.161285 -15.8481 3.80 88.4047 
23 3 2 3 2 1 2 0.169096 -15.4373 3.84 88.3123 
24 3 2 1 3 2 3 0.169818 -15.4004 3.83 88.3353 
25 3 3 3 2 1 1 0.188897 -14.4755 3.99 88.9833 
26 3 3 1 3 2 2 0.155701 -16.1542 3.89 88.2038 
27 3 3 2 1 3 3 0.174034 -15.1873 3.89 88.1982 
           

Analysis 

The S/N ratio for MRR and SF is computed using Eqs. (3) and 
(4) respectively for each treatment as shown in Table 4. Then, 
overall mean for S/N ratio of MRR and SF is calculated as average 
of all treatment responses. The overall mean for S/N ratio of MRR is 
found to be -15.04 db whereas overall mean for S/N ratio of SF is 
obtained as 88.45 db. The graphical representation of the effect of 

the six control factors on MRR and SF is shown in Fig. 4 and Fig. 5 
respectively. The analysis was made using the popular software 
specifically used for design of experiment applications known as 
MINITAB 14. Before any attempt is made to use this simple model 
as a predictor for the measures of performance, the possible 
interactions between the factors must be considered. The factorial 
design incorporates a simple means of testing for the presence of 
interaction effects. The S/N ratio response tables for MRR and SF 
are shown in Table 5 and 6 respectively.  
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The purpose of the analysis is to determine the factors and their 
interactions that have strong effects on the machining performance. 
It is evident from Table 5 that factor A, B and F can be treated as 
significant factors whereas factor C, D and E are less significant 
factors for maximization of MRR. The interaction of factors A and 
B presents the strongest significant effects as evident from Fig. 6. 
Before determining the recommended levels for factors A and F, the 
interaction between the factors A and F must be analyzed. As such 
factor F is a weak factor by itself, its preferred level should be 
determined purely based on the interaction AxF. It is observed from 
Fig. 7 that the interaction between AxF shows significant effect on 
MRR. Hence factor F can not be neglected. So, for maximization of 
MRR, the significant effects observed for factors A, B and F along 
with interactions are AxB and AxF.  
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Table 5. S/N Ratio Response Table for MRR. 

 A B (AXB)1 (AXB)2 F (AXF)1 (AXF)2 C D E 
Level 1 -16.52 -16.74 -16.42 -15.43 -15.78 -15.46 -15.56 -15.41 -15.46 -15.56 
Level 2 -15.29 -14.89 -16.08 -15.71 -15.82 -15.72 -15.65 -15.95 -15.72 -15.65 
Level 3 -15.39 -15.57 -14.70 -16.06 -15.60 -16.02 -15.99 -15.84 -16.02 -16.00 
Delta 1.23 1.85 1.72 0.63 0.22 0.56 0.43 0.53 0.56 0.44 

 

Table 6. S/N Ratio Response Table for SF. 

 A B (AXB)1 (AXB)2 F (AXF)1 (AXF)2 C D E 
Level 1 88.57 88.72 88.50 88.40 88.39 88.39 88.42 88.45 88.44 88.42 
Level 2 88.42 88.35 88.46 88.44 88.45 88.45 88.42 88.45 88.43 88.45 
Level 3 89.34 89.26 88.37 89.49 88.49 88.50 88.49 88.43 88.46 88.47 
Delta 0.23 0.46 0.13 0.09 0.10 0.11 0.07 0.02 0.04 0.05 
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Similarly, Table 6 indicates that factors A, B and F have 

significant effect whereas factor C, D and E have least significant 
effect on maximization of SF. Factors A and B not only shows 
significant effect individually but also their interaction shows strong 
effect on SF as shown in Fig. 8. Similarly, Factor F as such has also 
no significant effect on SF but its interaction with factor A shows 
significant effect on SF as shown in Fig. 9. Therefore, it is suggested 
that interaction of factors A and F can not be neglected.  

Analysis of the results leads to conclusion that factors at level 
A2, B2 and F3 can be set for maximization of MRR. Similarly, it is 
recommended to use the factors at levels such as A1, B1 and F3 for 
maximization of SF. It has been observed that the optimal settings 
of parameters for MRR and SF are quite different but the factors are 
essentially same. It is to be noted that the optimal levels of factors 
differ widely for both the objectives. 

Confirmation Experiment  

The confirmation experiment is the final step in any design of 
experiment process. The purpose of the confirmation experiment is 
to validate the conclusions drawn during the analysis phase. The 
confirmation experiment is performed by conducting a test with 
specific combination of the factors and levels previously evaluated. 
In this study, a new experiment was designed with combinations of 
control factors A2, B3 and F3 to obtain MRR. An experiment was 
conducted with new combination of factors and the result was noted 
down. The estimated S/N ratio is calculated with the help of the 
prediction equation shown below: 

 

( ) ( ) ( ) ( )[
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332,
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By combining like terms, the equation reduces to  
 

322321

−−−−−∧
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Substituting values from response table and interaction matrix 

for MRR, 1̂η  is estimated as 

db5558.151

^

−=η  

 
The estimated S/N ratio for SF can be calculated with the help 

of the following prediction equation for new combinations A1, B2 

and F2. 
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Table 7 and Table 8 show the comparison of the predicted value 
with the new experimental value for the selected combinations of 
the machining parameters. As shown in these tables, the 
experimental values agree reasonably well with predictions because 
an error of 4.062 % for the S/N ratio of MRR and 1.53 % for the 
S/N ratio SF is observed when predicted results are compared with 
experimental values. Hence, the experimental result  

 

Table 7. Results of the Confirmation Experiment for MRR. 

 Optimal machining parameter 
 Prediction Experimental 
Level 
S/N ratio for MRR 

A2B3F3 

-15.5558 
A2B3F3 

-16.2145 
 

Table 8. Results of the Confirmation Experiment for SF. 

 Optimal machining parameter 
 Prediction Experimental 
Level 
S/N ratio for  SF 

A1B2F2 

88.4731 
A1B2F2 
87.1194 

 
confirms the optimization of the machining parameters using 
Taguchi method for enhancing the machining performance. The 
resulting model seems to be capable of predicting both the MRR and 
SF to a reasonable accuracy. However, the error in MRR can be 
further expected to reduce if the number of measurements is 
increased.  

Multi-objective Optimization of WEDM Parameters 

In this study, main objective is to derive machining parameter 
settings for maximization of MRR and SF. The multi-objective 
optimization requires quantitative determination of the relationship 
between the metal removal rate and surface finish with combination 
of machine setting parameters. In order to express, metal removal 
rate and surface finish in terms of machining parameter settings, a 
mathematical model in the following form is suggested. 

 
Y = K0 + K1 × A + K2 × B + K3 × F + K4 × A × B+ 
+ K5 × A × F (9) 
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Here, Y is the performance output terms and Ki (i = 0,1   .5) are 
the model constants. The constant are calculated using non-linear 
regression analysis with the help of MINITAB 14 software and the 
following relations are obtained.  

 
MRR = 1.011-0.580×A+0.362×B-0.659×F- 
-0.371×A×B+1.046×A×F r2 =0.98 (10) 

 
SF = 0.927-0.001×A+0.095×B-0.066×F-0.031×A×B+0.081×A×F  
r2 =0.99 (11)  

 
The correctness of the calculated constants is confirmed as high 

correlation coefficients (r2) in the tune of 0.9 are obtained for 
equations (10) and (11) and therefore, the models are quite suitable 
to use for further analysis. A weighting method is followed to assign 
weights to performance outputs in the multi-objective optimization 
function. In order to overcome the large differences in numerical 
values between two different objects such as MRR and SF, the 
function corresponding to every machining performance output is 
normalized. The weighting method enables to express normalized 
performance output of MRR and SF as a single objective. Here, the 
resultant weighted objective function to be maximized is given as: 

 
Maximize    Z = (w1 x f1 + w2  x 1/ f 2) x (1- K x C) (12)  

 
f 1   Normalized function for MRR  
f 2   Normalized function for SF  
C   violation coefficient  
K   a penalty parameter, usually the value is 1 0  

Subjected to constraints: 
 

Amin <    A   <   Amax (13) 
 

Bmin <    B   <   Bmax (14) 
 

Fmin <    F   <    Fmax (15) 
 

w1 and w2 are the weighting factors applied to the normalized MRR 
and SF functions used in the objective function of optimization 
process. The weighting factors are selected in such a manner that 
their sum is equal to one. A higher value of weighting factor w1 

indicates that more emphasis is put on the objective of MRR. The 
min and max in Eqs.13-15 shows the lowest and highest control 
factors settings (machining parameters) used in this study (Table 2). 

Genetic algorithm (GA) is used to obtain the optimum 
machining parameters for multi-objective outputs by using the 
several combinations of the weight. The values of the weights are 
assigned randomly in such a way that their sum should be equal to 
one. The larger the weighting factor, greater improvement in 
corresponding machining performance output can be achieved. To 
optimize the multi-objective function, the GA parameters are 
summarized in Table 9. The computational algorithm is 
implemented in Turbo C++ code and run on an IBM Pentium IV 
machine. Genetic algorithms (GAs) are mathematical optimization 
techniques that simulate a natural evolution process. They are based 
on the Darwinian Theory, in which the fittest species survives and 
propagate while the less successful tend to disappear. The concept 
of genetic algorithm is based on the evolution process and was 
introduced by Holland (1975). Genetic algorithm mainly depends on 
three types of operator’s viz., reproduction, crossover and mutation. 
Reproduction is accomplished by copying the best individuals from 
one generation to the next, in what is often called an elitist strategy. 
The best solution is monotonically improving from one generation 
to the next. The selected parents are submitted to the crossover 
operator to produce one or two children. The crossover is carried out 
with an assigned probability, which is generally rather high.   If a 
number randomly sampled is inferior to the probability, the 
crossover is performed. The genetic mutation introduces diversity in 
the population by an occasional random replacement of the 
individuals. The mutation is performed based on an assigned 
probability. A random number is used to determine if a new 
individual will be produced to substitute the one generated by 
crossover. The mutation procedure consists of replacing one of the 
decision variable values of an individual, while keeping the 
remaining variables unchanged. The replaced variable is randomly 
chosen, and its new value is calculated by randomly sampling within 
its specific range.  

 

Table 9. Genetic Algorithm Parameters for Case 1, 2 and 3. 

 
Population size                                                  50  
Maximum number of generation                     500 
Number of problem variables                             3 
Probability of crossover                                   75% 
Probability of mutation                                      5% 
 

 

Table 10. Optimum Machining Conditions for Multi-performance with Different Weighting Factors. 

Optimum Machining Conditions 
Control Factors and  
Performance Characteristics  Case-1 

(w1=0.9,w2=0.1) 
Case-2 

(w1=0.5,w2=0.5) 
Case-3 

(w1=0.1,w2=0.9) 
A: Discharge Current    (amp.) 32.0000 32.0000 16.0000 
B: Pulse Duration          (µsec) 4.0300 3.4800 3.2400 
F: Dielectric Flow Rate  (bars) 1.3400 1.3700 1.3118 
MRR                             (g/min) 0.1512 0.1605 0.0947 
SF                                   (µm) 3.6524 3.7404 3.6187 

 
The pseudo-code for standard genetic algorithm is presented 

below. 
Where Sa is initial population. 

The Standard Genetic Algorithm 

{ 
Generate initial population Sa 
Evaluate population Sa 
While stopping criteria not satisfied repeat 
{ 
Select elements from Sa to put into Sa+1 
Crossover elements of Sa and put into Sa+1 

Mutate elements of Sa and put into Sa+1 
Evaluate new population Sa+1 

Sa = Sa+1 
} 
} 

The process parameters with higher MRR (or SF) can be 
obtained by increasing the respective weighting factor in the 
objective function. Table 10 shows the optimum conditions of the 
machining parameters for multi-performance outputs with different 
combinations of the weighting factors. From this study Case-2 gives 
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optimal machining performance with maximization of MRR and SF 
under equal importance of the weighting factors (w1 = 0.5, w2 = 0.5).  

Conclusions 

In this work, it is intended to study factors like discharge 
current, pulse duration, pulse frequency, wire speed, wire tension 
and dielectric flow rate and few selected interactions both for 
maximizations of MRR and minimization of surface roughness in 
WEDM process using Taguchi Method. The analysis shows that 
factors like discharge current (A), pulse duration (B), dielectric flow 
rate (F) and interactions AxB and AxF have been found to play 
significant role in cutting operations. Analysis of the results leads to 
conclude that factors at level A2, B2 and F3 can be set for 
maximization of MRR. Similarly, it is recommended to use the 
factors at levels such as A1, B1 and F3 for maximization of SF. In 
any process, few interactions play vital role in defining the optimal 
performance measures. A study without considering interaction 
effects seems to lack in-depth analysis. Hence, in this study, not 
only the factor but also few selected interactions have been 
considered. The results of confirmation experiment agree well the 
predicted optimal settings as an error of 4.062 % is found with 
MRR. Similarly, an error of 1.53 % was observed for SF. It is 
expected that errors can be reduced if more number of replications 
are taken during experimental stage. It is to be noted that the optimal 
levels of the factors for both the objectives differ widely. In order to 
optimize for both the objectives, mathematical models are 
developed using non-linear regression method. The optimum search 
of machining parameter values for the objective of maximizing both 
MRR and SF are formulated as a multi-objective, multi-variable, 
non-linear optimization problem. This study also evaluates the 
performance measures with equal importance to weighting factors, 
since high MRR and high SF are equally important objectives in 
WEDM application. The rationale behind the use of genetic 
algorithm lies in the fact that genetic algorithm has the capability to 
find the global optimal parameters whereas the traditional 
optimization techniques are normally stuck up at the local optimum 
values. The algorithm is tested to find optimal values of parameters 
varying weighting factors for different objectives. In future, the 
study can be extended using more than two objectives, different 
work materials, and hybrid optimization techniques. 
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